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Adiabatic Invariants of Periodic Classical SYstems*
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Recently there has been renewed interest in adiabatic invariants of simply-periodic classical systems
subject to perturbation by slow variation of parameters. In several interesting cases it has been shown that
if the system varies slowly from one steady state to a different steady state, the appropriate adiabatic
invariant is constant to an arbitrarily high order in a slowness parameter.

It is shown here how these and similar results may be derived by systematic use of a technique of per-
turbation theory of classical Hamiltonian systems. The method is essentially iteration of the transformation
to action and angle variables.

I. INTRODUCTION

ECENTLY there has been renewed interest in the
subject of adiabatic invariants of periodic classical

systems perturbed by slow variation of parameters. In
two interesting cases, Kruskal' and Lenard' have shown
that if the system varies slowly from one steady state
to a diRerent steady state, the appropriate adiabatic
invariant is constant, not only to first order, but to all
orders in a parameter measuring the slowness of vari-
ation. Kruskal considered a charged particle in a
slowly-varying magnetic field. The adiabatic invariant
in this case is the magnetic moment of the current
loop described by the particle in one cyclotron gyration.
Lenard considered a slowly-varying periodic system
with one degree of freedom. The adiabatic invariant
here is the familiar action integral. The special case of
Lenard's result, in which the system is the harmonic
oscillator, was considered previously by Kulsrud' and
by Hertweck and Schluter. 4 In what follows we wish to
point out how these and similar results can be derived by
a perturbation method suggested by Chandrasekhar's
treatment of the harmonic oscillator. '

II. PERIODIC SYSTEMS WITH ONE
DEGREE OF FREEDOM

We consider a system having one degree of freedom,
varying slowly with time, so that the Hamiltonian may
be written

H=H(q, P,pt),

where e is small. We suppose that the lines H= constant
(t being fixed) in the q-p plane are closed curves nested
one inside the other, so that they can be distorted into
a family of concentric circles by a continuous distortion
of the q-p plane. We suppose that H and its derivatives
of all orders with respect to q, p, pt are continuous.

*Part of the work reported on here was done at New York
University with the support of the U. S. Atomic Energy Com-
mission.

' M. Kruskal, Atomic Energy Commission Report NYO-7903
(PM-S-33) (unpublished).

2 A. Lenard, Ann. Phys. (N. Y.) 6, 261—276 (1959).' R. M. Kulsrud, Phys. Rev. 106, 205 (1957).' F. Hertweck and A. Schluter, Z. Naturforsch. 12A, 844 (1957).
S. Chandrasekhar, in The Plasma in a Magnetic Field, edited

by R. Landshoff (Stanford, 1958).

To obtain an asymptotic solution of the equations of
motion by perturbation theory we proceed as follows:
We determine an area-preservieg and (sense-preserving)
mapping of the q-p plane into a q'-p' plane such that
the curves H=constant in the q-p plane are mapped
into concentric circles in the q'-p' plane with centers at
the origin. This mapping may be constructed as follows:
Let J(q,p, pt) be the area of the H=constant curve
through q, p. Let r, 8 be the polar coordinates, in the
q', p' plane, of the image of the point q, p. Then

r = [J/m-jl,

~c u

&s/[vH
I

dS &H

The integrals here are line integrals on the H= constant
curve; dS is the element of arc length, and V'H is the
gradient of H. To remove an element of arbitrariness
in 0, we specify that the ray from the center of the
H-curves in the q, p plane toward positive q maps into
the positive q'-axis. Of course J and tt/2s are the usual
action and angle variables. Now, using the fact that
the Jacobian of q', p' with respect to q, p is unity, it is
easily shown that

is a complete differential (t being fixed), and so we can
find a function F (q,p', pt) such that

q'= BF/Bp', p= BF/Bq

We set the integration constant by specifying Ii =0 for
q'=0, p'=0. We note that H depends on q', p' only via
(q')'+ (p')' i.e., H is of the form

H=Hp[(q')'+ (p')' ptj.

Now we deGne a canonical transformation as follows:

q'= BF/Bp', p= BF/Bq,

H'=H+BF/Bt=H+ pBF/8(pt),
and we see that H' has the form

H'=Hp[(q')'+(p')', pt]+ Hi(qp', p', pt).
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The level lines of II' in the q'-p' plane are now nearly
circles. We can make them circles by an area-preserving
mapping that is nearly the identity mapping —given by

q"= [q'p"+ pF'(q', p"; «)],
8

p'=, Lq'p"+ pF'(q', p"; t)],
Bq'

magnetic field, some preliminary preparations are
required. We assume R, B are slowly-varying functions
of the space coordinates x, and the time t, that E B is
small, and that 8 is bounded away from zero. We
express these conditions by assuming that the vector
and scalar potentials have the form

1
A =—A'(px, ,«),

where we make F'=0 at q"=0, p"=0. Using q'p"+ pF'

as generating function, we perform a canonical trans-
formation, and obtain

H"=Hot(c")'+(p")' «]
+ pHiL(q )s+ (P )2 «]+ psH

This procedure can be repeated ad libAuns. We obtain,
for any given 1V, variables q~, p~ and a Hamiltonian H~
which is a function of «and (q~)s+ (p )' plus terms of
order e . Using Hamilton's equations of motion,

P =—y'(px, ,pt),

E B=O(p).

The Hamiltonian H is (for simplicity we assume
e=1, sos=1)

1 s p 1
H=-y'+-', P ( p;—-A

c i=1 0 p

we see that

dp"/dt = —BH~/8q",

dq~/dt = BHN/8p~

L (pK) 2+ (qN) 2]—O(pN)

(where we denote the momentum conjugate to x; by
the symbol p,). We can find geometric parameters n, p,
functions of ex;, et, so that

B=(1/")v XwP.

Therefore with the proper gauge, ' we can write

Hence J~, given by

JN +5(pN) 2+—(qN)2

is invariant to any desired order in 6.
From the construction, it is clear that if at any time

the derivatives, of all orders, of H with respect to et are
zero, then qN, p are identical with q', p', and J~ is
identical with J. Thus we have the following result
(which was proved in another manner by Lenard):
Suppose that at et=0 and at et= 1 the derivatives, of
all orders, of H with respect to ~t are zero. Consider a
motion defined by initial conditions

q= qp, p= pp fol «= 0,

where qp, pp are independent of p. Let qi, pi be the values
of q, p at «= 1. (Then qi, pi are functions of c.) Then
we have

J(qi,pi, 1)=J(qp, pp, 0)+O(P ')

for any integer Ã, however large.
For the sake of mathematical rigor, sufficient assump-

tions should be made about the function H so that we
can be sure the mapping of q, p into q', p' and also the
inverse mapping are continuously differentiable any
number of times.

III. THE CHARGED PARTICLE IN A SLOWLY VARYING
ELECTROMAGNETIC FIELD

To apply the perturbatioo-theory approach to the
motion of a charged particle in a slowly-varying electro-

A, '= (1/p)n(BP/Bx, ).

We define a parameter 5, a function of ex, , et, by saying
that S/p is the are leegth along a line of force. We now
define coordinates and momenta q;, p, and their associ-
ated Hamiltonian H by

q, = BF/Bp, ,

p;= BIT/Bx, ,

II=H+ BF/at,

where the generating function is

S P n
F(~'; p:) = ps+ pi+ ps p—ips--—

1 18S 18P 1 Bn
p, ——A =— ps —— q+— p, ,

C ~ l9Ãz 6 +z t. t9&z

n=6p + qi, ps
p= pqi+ pps)

5= aqua.

We note that ps, qs, ps are essentially components of
velocity, and are thus O(1), and pqs, ppi, «qi are essen-
tially geometric coordinates, and are thus O(1).

' The use of the parameters n and P was suggested by Professor
H. Grad of New York University.
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The Hamiltonian function is constant on closed
curves (ellipses) in the q3P3 plane if all other variables
are fixed; and is a slowly-varying function of time and
also is a slowly-varying function of the additional
variables q2, ql, Pl. These circumstances permit a per-
turbation-theory treatment modeled on the method of
the 6rst part of the paper. The 6rst step, as before, is to
find an area-preserving mapping of the qp, P3 plane into
a q3', P3' plane which takes the curves Hp ——constant
into circles. I et us exhibit the dependence of Hp on the
various variables as follows:

The Hamiltonian H can now be written down. We
have

1 1' 1 1 1
H= 4'+-——(.p,) +- -(vS)p,—(vp)q3

~8t 2 e

1 2 1 (BS) 18n
+-(&~)P3 +-I —IP2+ P-3—

E(Bt) E R

Hp=Hp(Eql, Epl', Eqp, p2', qp, pp,
'

E4).

Then we can find a function F, where

P qlpl +q2p2 +i/I( Eql Epl Eq2 p2 q3 p3 E/)
1

H = H 1+H—p+ eHl+ (2) such that if we determine q3', P3' by solving

The coefficients here are understood to be evaluated in
terms of q's, p's by use of the relations (1).It is appro-
priate to expand in powers of q3, P3, since the terms
eq3, ep3 in (1) are Of higher Order than the termS epl, eql.
If we carry out this expansion, we see that H has the
form

Where H l iS a funCtian Of eql, ePl, eq2, d but

H 1
——0(e)

8(eq2)

qp' ——8P/app',

p3 = BP/Bqpl

(3)
we find that the curves in the qp'-P3' plane given by

Hp(Eql Epl
' e'q2 p2

'
qp, pp

'
Et) =collstallt

t this follows from the assumption E B=O(e) and the
relation E= BA/Bt—Vp j;—and where H p, Hl, etc. , are
funCtianS Of eql, ePl, eq2, d and alSO Of P2, q3, P3. NOte
that since p', BP/Bt depend on n, P, which in turn con-
tain terms eq3, EP3, the first term in H above contributes
terms to Hp.

are concentric circles with center q3' ——0, P3' ——0.
Now we perform a canonical transformation as

follows:

q = BP/Bp,

p, = BP/aq;,

H =H+ BP/83 =H+ eBP/8 (E/) ~

A 8
H l @'+-—

At
(4) We then obtain

1 2 BS (EXB) P2
Hp= — 2 i'+ p2'+ ——+ ~ vS p, ——,(5)

ei Bt 8

Eql
——eql'+0 (e'),

Epi= Epi +0(e )

eq2 ——eq2'+0 (e),

p2= p2'+0(e),
where the vector v& is given by

or

vS vp vn B EXB
vl = p2 — q3+ p3 —p2——

C 8 g2

vp- 1 p B EXB~ (vSXvn)
q+ —,I p —+

E24 8 82 ) 8
v 1 p B EXBi (vSXvp)-

+ P3+—,I P2—+
e e20 P 82 j 8 (7)

0,'= 6 y)

Here it is understood that the coefficients are to be
evaluated in terms of the q's and p's by setting

and it follows Lmaking use of (5)) that H' has the form

H'= (1/e)H l+Hp'+eHl'+. . . ,

and now H p' depends on q3', P3' only via the combination
(q3')'+ (P3')'

The procedure can now be repeated; by an appropri-
ate infinitesimal canonical transformation we can bring
it about that H" depends on q3", P3" only via (qp")'
+(P3")' except for terms of order e', and so forth.

In this way we can construct an asymptotic integral
of the equations of motion, which is constant to any
desired order in e. Using (5) and (7) which show

exphcitly how H p depends on. q, and Pp, and referring to
the definition of the invariant as an area, we see that,
to lowest order, the invariant p, we construct is

e2V 2 g2p 2 'Vg 2
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If E and B are constant in space and time, we can
choose n, P, and S to be rectangular coordinates; and
it is seen that the perturbation process terminates
with H'; and so in this case

exactly. This observation furnishes a proof of the
theorem of Kruskal, which can be stated as follows:

If before the time et=0 and after the time 4=1, it
happens that E, B are constant vectors (independent of
space coordinates and of time), then the value of v, '/8
at d = 1 differs from its value at et =0 by a quantity
which is O(c~), however large E may be.

It can be seen from the above developments that in
H(~) we may neglect terms of order e~ and replace
(pp&~&)p+(qp~~&)' in what remains by its initial value
and thereby commit errors which are small of any
desired order in e, if S is large enough. We then have a
Hamiltonian of a system with tao degrees of freedom.
This can be interpreted as the Hamiltonian describing
the motion of the guiding center7 of the particle. If the
guiding-center motion is approximately periodic in the
qQ-pQ plane, it can happen that a second adiabatic
invariant can be defined. By an application of perturba-
tion theory to this system it can be proved, under
appropriate su%cient conditions, that the second adi-
abatic invariant is also constant to all orders. Such a
second adiabatic invariant has been considered for the
case of the particle in a double-mirror Q.eld, adiabatically
trapped on a line of force between two maxima of B.'
Where a second adiabatic invariant exists, by perturba-
tion theory we can reduce the system to one having
owe degree of freedom.

To indicate how this second adiabatic invariant may

7 H. Alfven, Cosmical Electrodynamics (Clarendon Press, Oxford,
i950), Chap. II.

Chew, Goldberger, and Low, Proc. Roy. Soc. (London) A236,
ii2 (1956).

be treated according to the methods of the present
paper, let us assume that (1) time variations are
extremely slow —so that we may suppose that E, B
depend on p't, and (2) the component of E perpendicular
to B (as well as the component parallel to B) is O(p).
Then the guiding-center Hamiltonian is

~p
II= Pp'+—pB+2 +o—. +0(p).

2 6 8(E't)

Here use has been made of (8). The coeKcients are
evaluated at

c= pPi& P= pqi) S= pqp.

The above Hamiltonian depends more slowly on t and
on qi and pi than it does on qp and pp. If n, p, and t are
fixed, we see that the Hamiltonian would describe the
one-dimensional motion of a particle of unit mass in a
force field with potential

If this potential rises enough as S increases or decreases,
that is, as one goes either way along a line of force
(fixing n, P determines a line of force) at a fixed time,
the particle is trapped. The level lines of II in the qpp2

plane will then be nested closed curves. The perturba-
tion treatment we have described may then be used to
construct an integral I given by a series

I=Ip+ pIi+ p'I p+. . . ,

which is constant to all orders in e, and to lowest order
we have

Ip= gpzdqp,

where the path of integration is a curve H =constant in
the q&p& plane, where u, p, t are given fixed values.
This is the second adiabatic invariant as usually defined.


