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Moment of Inertia of Interacting Many-Body Fermion Systems*
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It is shown that the moment of inertia of a noninteracting many-body fermion system moving under
periodic boundary conditions has the classical or rigid value when calculated on the "cranking" model of
Inglis. By investigating the analogous "pushing" case for the inertial mass we show that the rigid moment
can be associated with rigid rotation in spite of apparent surface currents. The effect of particle-particle
forces is investigated in the lowest order of perturbation theory. The terms corresponding to a level shift
or effective mass are just compensated by other terms and there is no change in the moment of inertia. The
possible general validity of these results and their consequence is discussed.

I. INTRODUCTION

'HE experimental determination of the moment of
inertia of large nuclei' has in the past few years

excited a variety of theoretical attempts to account for
the magnitude of the moment. ' It was first suggested

by Teller and Wheeler' that the identity of the nuclear
particles would tend to prevent rotation in states with
small rotational quantum number. This would lead to
large rotational excitation energies and hence to small

effective moments of inertia. An alternative version of
this view was given by Bohr and Mottelson4 who

argued that shell structure and particle indistinguish-

ability would lead to irrotational Row. On this view one

expects that

where 8„g;dis the moment of inertia for rigid rotation
and P is a distortion parameter measuring the de-

parture from sphericity. Predictions based on Eq. (1)
give much too small moments of inertia, showing that
the picture of irrotational Row is incorrect.

Inglis' put forward an alternative approach based on
the very reasonable "cranking" model, in which the
nucleus is constrained to rotate in an external field

with fixed angular rnomenturn and its rotational energy
then determined. Inglis found there markable result
that for particles moving independently in a harmonic
oscillator potential one obtains the irrotational fiow

value for a nonspherical nucleus with closed-shell

occupation numbers, but that if only one or more

particles are added in the unfilled shell, one obtains the

rigid moment. ' It has been suggested that any large

*Supported in part by the National Science Foundation.
' See Alder, Bohr, Huus, Mottelson, and Winter, Revs. Modern

Phys. 28, 432 (1956).' A full list of references is given in the recent review articles:
F. Villars, Annual Review@ of Nuclear Science (Annual Reviews,
Inc. , Palo Alto, 1957), Vol. 7, p. 185; S. A. Moszkowski, Ency-
clopeCia of Physics (Springer-Verlag, Berlin, 1957), Vol. 39.

'E. Teller and J. A. Wheeler, Phys. Rev. 53, 778 (1938).
4A. Bohr, Rotational States of Atomic 37uclez, Doctoral thesis

(Ejnar Munksgaard Forlag. Copenhagen, 1954);A. Bohr and B.R.
Mottelson, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 27,
No. 16 (1954).' D. R. Inglis, Phys. Rev. 96, 1059 (1954); 103, 1786 (1956).

~ This result was also obtained by Bohr and Mottelson I A. Bohr
and B. R. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 30, No. 1 (1955).

independent-particle system should yield the rigid
moment of inertia on the "cranking" model, inde-
pendent of the potential form. ' In Sec. II we show that
this is the case for free ferrnions in a periodic box, but
we know of no general proof.

Many attempts have been made to determine the
e6ects of interactions on the rigid moment. In particular
Blin-Stoyle' has suggested that the change in nuclear
level density due to interactions may replace the
nucleon mass, M, by an effective mass, M*, thereby
decreasing the moment of inertia to roughly 0.68„-„;d,
in better agreement with experiment. The procedure
leads, however, to a similar reduction in the trans-
lational or inertial mass of the nucleus —hardly in
agreement with experiment. Recently Belyaev and
Migdal' have considered interaction effects associated
with the abnorma, l level structure in a Fermi gas with
weak attractive interactions, the anomaly being similar
to the change in electron level density in a super-
conductor. "

We wish in this paper to consider interaction effects
and in particular to determine the effects of changes in
level density. In the interest of clarity we shall discuss
in parallel the "cranking" and "pushing" models to
insure that our methods give the correct results for the
translation case. In Sec. II we obtain the rigid moment
for a free Fermi gas. We also discuss the physical inter-
pretation of the motion and show that in both rotation
and translation the motion is indeed rigid. In Sec. III
the eGects on the moment of inertia of a large system of
an interaction in lowest perturbation order are inves-
tigated. It is shown that those terms corresponding to
a level shift —that is, to an effective mass —are just
compensated by other terms so that there is eo chaege
in the moment of inertia.

II. ROTATION AND TRANSLATION IN THE
NONINTERACTING SYSTEM

We first consider the problem without interactions.
The calculation is elementary and gives useful insight

R. J. Blin-Stoyle, Nuclear Phys. 2, 169 (1956—57).' V. I. Belyaev, Nuclear Phys. (to be published).' A. B. Migdal (private communication).' Bardeen, Cooper and Schrieffer, Phys. Rev. 108, 1175 (1957).
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+=+p —coLz, (2)

where L, is the operator for the angular momentum
about the s axis. The moment of inertia of the system
in the state "0"is

a= —2P
ngO

(3)

into the wave function of the rotating or translating
system.

In the case of rotation we choose as unperturbed wave
functions plane waves, periodic in a cubic box of side L.
The "cranking" model instructs us to find the energy
required to "crank" the boundary on which the wave
function is periodic. For rotation about the s axis with
angular frequency ~, the Hamiltonian in the rotating
coordinate system becomes'

negative and positive /, we find for Eq. (7)

23EL' m

m, n g q=l l=A—q g3

oo A ] oo

q=l l=A—q q3 q 1~2 6
(12)

The remaining sums in Eq. (11) may be done as in-
tegrals. The result is

p %max

p ms p —=-'~Fs=-'X
m—J' m=nmfn A

(13)

The sum over I and q can now be reduced to a zeta
function,

0=ME(L'/6), (14)

where X is the total number of particles. Thus com-
A single-particle plane wave state in the box, labeled bining Eqs. (11), (12), and (13), we find

by the positive or negative integers l,m, m is

2%i
llmzz) =—exp —(lx+my+Ns) .

L' L
(4)

The energy of such a state is

(1/2M) (2zrA/L) '(l'+ zrz'+ zz')

The matrix elements of L, then are

(tzmzz l L, l
l'm'I')

(5)

(—1)" "'~i. i (1—&-,-) (6)
m' —m

Substituting into Eq. (3) and using the symmetry of
the m, l sums, we have for the moment of inertia

2MP m2

m, n, i lgi' (P —&)'(O' —P)
(7)

Making use of the symmetry of contributions fx'DID

The sums in Eq. (7) are greatly simplified if we note
that the major contribution comes from l' very close
to /. Due to the exclusion principle this can occur only
when lIl and ll'l are close to the maximum value of

ill, which is

A = (F'—zzz' —zz') i,

F being the magnitude of (P+zrz'+&z')i at the Fermi
surface. For a large system A will be large, so we may
write

(9)

and also introduce the new summation variable

&0—&n
(15)

where P, is the linear momentum operator. Equation
(15) can be evaluated formally using the relation
between P, and the commutator of s with H," but we

"This analog has also been considered by Inglis LD. R. Inglis,
Nuclear Phys. 8, 125 (1958)j.

"A similar formal approach is lacking in the rotational case
since there is no operator whose commutator with H is I,. It
mjght be possible to 6nd an operator whose commutator with H
is approximately I, but care must be taken that this operator be
proper, For example, the angular coordinate conjugate to J, is
not a proper operator since it is not periodic jn itself.

which is the rigid moment or classical value. It is
interesting to note that the same result can be obtained
if the exclusion principle is ignored in the intermediate
states, since the symmetry of the sums in / and /' is
such as to cancel all terms in which the excited state
lies within the Fermi sea. A similar circumstance occurs
in the work of Inglis for the harmonic oscillator. 5

The fact that the moment of inertia turns out to
have the rigid value is a little surprising, as Inglis has
already emphasized, since in his calculation and again
in ours, the rotational energy appears to be carried
entirely by particles moving in a few states very near the
Fermi surface. It is to be emphasized, however, that
because the particles are identical every particle par-
ticipates in these few states and a rigid rotation of the
system can be completely equivalent to motion in which

only a small fraction of the particles appear to be
changing their state.

To clarify better the significance of the apparent
surface Row in the rotation, we next carry out an
evaluation of the translational, inertial mass using a
method exactly paralleling the rotational calculation. "
For this we use the "pushing" model, which gives for
the inertial mass
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The energy of a single particle state is

A2ir2

E .i= (m'+rP+P).
2&I.2

(17)

Substituting into Eq. (15) we find

16iV (ll')'I 1—(—1) '—']-'

(pp p)p
(18)

The principal contribution to the sums comes from /

and I' close to the maximum value of / which is

(19)

Thus we again write

l"—P= 2A(l' —l) = 2Aq.

.Equation (18) now becomes

(20)

83f oo A ]
Q A.

2 m, n q(odd)=1 l=A—q q3

.The sum over q and 1 again gives a zeta function,

(21)

oo g ] oo

8 7l

q(odd)=1 l=A—q g3 q(odd)=1 g2
(22)

and the sums over m and e give the number of particles,
31. Thus we obtain the expected result

(23)

We see again that the translation energy comes from

carry out a direct evaluation since the comparison with
the "cranking" model is illuminating.

As basic wave functions for the "pushing" case we
cannot use plane waves since these are eigenfunctions
of -I',. An appropriate choice is standing waves in a
box of side L. The matrix element of P, between single-
particle states in the box is

2/l'ki
&mwllE, lm'n'1'&=fi, f'„,i„ I1—(—1)'—']. (16)

(l" P)—L

small values of g Lsee Eq. (21)] or from states very
near the Fermi surface. In this case, however, it is clear
that this description is simply an alternative way of
describing the full, rigid mass translation. The trans-
lation of the Fermion system is represented in mo-
mentum space by a simple displacement of the entire
Fermi sphere; clearly this may be achieved by moving
all the states, or by taking a few from one side of the
sphere and putting them over on the other.

The perturbation approach corresponds to the second
of these equivalent descriptions. The wave function for
translation of a system with velocity v is the internal
state multiplied by plane wave for center-of-mass
motion exp( i3—AQ;s;/fi). Using the formal com-
mutator method mentioned above, it can be shown that
the perturbation series for the wave function in the
"pushing" model gives just the series expansion in
powers of the velocity of this center-of-mass plane wave,
and hence corresponds to rigid translation in spite of
the apparent surface Row.

ii=-,'P i(lr; —r;I). (24)

The Inatrix elements of v for a large system do not
strictly conserve total momentum; we can, however,
to first order in the size of the system, neglect the
matrix elements nondiagonal in the total momentum.
To erst order in the interaction, the shift in energy of
the system due to rotation may be written

III. ROTATION IN THE INTERACTING SYSTEM

In this section we shall prove that the rigid moment
of inertia obtained in the previous section is not altered
by an interparticle interaction to erst order in the
interaction strength. The proof is straightforward if
tedious but unfortunately we have found no way of
making it more elegant or of generalizing it to higher
orders, if indeed this is possible. First order is sufhcient,
however, to show that the result holds even if the level
density of the system is altered by the interaction, i.e.,
if an effective mass M* must be used to characterize
the energy levels. "

We now include in the Hamiltonian, Eq. (2), a per-
turbation

I&+plL lf-&I' QpfL I+-&(8-l~l&-&—Qpf~lA»-. -)&4-I~ IA&AE= ——',dppP=pl P +P
fl, po —p~~ R, m (Ep —E,)(Ep-E )

&Poll- lf-&&&-ll- I&-&&+-l~lko&+2Z-
(Ep —E.)(Ep-E )

(25)

The first term gives just the rigid moment, as we have seen, and thus we may write'4

&AIL lk-&(8-I~IN-& —Qol~lko»-, -)&|l-l~ lko& QoIL I&.&&&-IL lk-&&|l-l~lk &
&rigid= 2 2 4 Q — —. (26)

n, m (Ep-E )(Ep—E ) (Eo—E.) (Ep —E..)
"K.A. Brueckner, Phys. Rev. 97, 1353 (1955)."Using the formal commutation relations, one can easily show that Eq. (26) gives zero in the "pushing" case.
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The matrix elements may be simpli6ed since for a given term in n, z» say, only the angular momentum operators
for the pair 1 and 2 give nonvanishing contributions. There are three distinct terms then, and we write
for Eq. (26)

where

d~ ———2P
1,2

Ag ———2P
1,2

1,2

s &, g,a=—~i+~2+~3,

4 IL (&)I4-&(&4-I& I|l'-&—
&Col& IA&)&k-IL (&)I4'o&

n (Ep-E„)(Ep- E,„)
QoII-.(~) lo-&Q-l»~IN-&&P-II- (2)IA&

n/m (Ep—E„)(Ep —E„)
LQOII.*(&)f4.&Q.II-.(2) I@ &++OIL.(2) I4.&Q.IL*(&)ll &3

nm (g, jv„)(g, P„)
(2'l)

These three terms may also be expressed diagramatically as shown in Fig. 1.
To evaluate Eq. (27) we use the matrix elements of L, between single-particle states as given in Eq. (6). The

matrix elements of e12 between particle states are conveniently expressed in terms of the vectors

2%k 27rA

pi = (li,mx, ei), pi' = (V,mx, Ni),
L L

(28)

and similarly for p2 and p2'. The result is

3PL4 Jt' nag q' 1
C&p~'p~ I

~
I
p~'p2& —

&p~p2I ~
I p»2&),

7I pp llml'lal~ 1 l2m2tl2 Klg lg ~ (lp lg )

3PL4 m2

7I % ~l~lel~l ~2 2tl2t2 (ly ly ) (l2 l9 ) (lp ly ) (l2 l2 )

JI/12L4 t' » i &»'»'l~lp~p2&

7l% &&~&'~&~1' 82~8&2&2' (ly ly ) . (l2 l2 ) ~lp ly l2 l2 3 lp+l2 ly l2

Each matrix element of e represents the correctly anti-
symmetrized combination, direct term minus exchange
term.

We first calculate h1. We see that as in the noninter-
acting case the important contributions to the /j and l1'
-sum come from excitations very near the Fermi surface,
where

~(pi)= 2 (pip I~lp~p2&.
l2m2ng

(33)

Since V(p&) is a function only of the magnitude of p&,

The sum over q and l, gives m'/6. The sum over l2, nz2,

and e2 in the Fermi sea gives the single-particle poten-

tial, i.e.,

l~' lP= 2q—A, = 2q (F' m, —
PN)
l— (30)

The difference of the potential matrix elements is zero
to lowest order in g and thus we write

Lg

&p& p2 I
~

I
p~'p2) —&pip2 I

~
I

pip2& I
~& =~& =~&

=q(d/«~) &p~p2I ~
I p~p2& I

~~=» (»)

Proceeding now as in Sec. II, and combining the con-
tributions from positive and negative values of /1 and
l1, we And Lg Lg Lg

M2L4

l1=h i

X Q Q —. (32)
ii=0 g=~1—l&+1 &

—3

m]
)

—2 &»»l~lpip2&
2x'A' ~tnt A1 l. d)1 l2m2n2

FlG. 1.. Diagrams representing corrections to moment of inertia,
corresponding to the definitions of Eq. (27). Lines with upward
and downward arrows represent particles and holes in the Fermi
sea. A diagram similar to A~ but with the interaction with the hole
line has not been included. It corresponds to the second term in
Dj as given in Eq. (27).
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the derivative may be expressed as feature, we 6nd

d (2m.h)' 1 (dV) M'L4 mime
V(pl) ~1 I I

—
( I, (34) ~2+~2=

dpi ll=hl ( I. ) pp (dp i y=pp 2z A m»&, ~u~s hike

where we have used the fact that at ll=Al, the momen-
tum vector lies at the Fermi surface, pl=pp. Since
(dV/dp)&=&p is constant, it may be taken out of the
sum and we are left with

M'L' 1 d V

3 ppdpp "r"1 Al
(35)

M dV

ppdpp
(36)

where d„„.d is the rigid moment of inertia, Eq. (14).
The contribution hl has the form of a change in the

energy denominator of Eq. (3), and hence it should be
the erst-order effective-mass term. To see this we
combine 8„.„~and Al, giving

The sum over ml and el gives —,'X, the total number of
particles. Thus we obtain for Al the result

5$l= F cosHl, m~ =F cos8~,

221=P s11181 cospl, 222= P sin82 cos$2,

d2241d241 =F' sin81 sinpld01.

XL(plp2I2 lplp2)+(pl —P2(&~pl P2))91=82=Pp

A.y A1—l1+1 Ag

XE P P —, (43)
l=0 q=l /g=Ag —q+l q4

where once again the symmetry of the contributions
from positive and negative l has been taken into
account. The vector —

p& is the vector p9 with only its
l component reversed. This reversal arises from the
conditions of Eq. (42) which relate l'1', ll and l2', l2

with opposite sign for D~ and 63. The sum over ll, l~,
and q again gives ~2/6. The remaining sums must be
done so that the vector p lies on the positive-/ hemi-
sphere of the Fermi surface. The sums are thus most
conveniently done as surface integrals, making the
coordinate transformation

( MdV~&„„+~=&„„(1——
p, dp, &

(37) The two terms from 62 and 62 may now be combined
and the dO~ integral extended over the entire Fermi
sphere. The dQi integral may similarly be extended if

Treating the correction as a small Perturbation, we can we divide by two, since its contribution is symmetric.
also write this as The result is

MdVq
~rigid+~i=~rigid

~
1+

pp dpp)

Now using the definition of the effective mass, "
(38) JI/I'L4F 4

X(plp2~ ii
~ plp2)pl =52= pp (44)

d01)t' d02 cos81 cos82
242rgf42 4 4

1 1 1 dU=—+-
M* M pp dpp

we 6nd
d„g,d+ 61—(M*/M) d„g,d.

We next evaluate 6& and 63. 63 may be simplified
using the identity Using the relation

(39) To evaluate this integral, we use the fact that at the
Fermi surface, (plp2~ 2

~
plp2) can only depend on the

angle between pl and p~, and we make the spherical

(40) harmonic decomposition

(PlP2 I
2

I plp2) El "i(p.,p2)&i(cos812) (43)

1 1 l 1
+

($2 )r2 $,2+) r2) $2+],2 f '2 $'2

COS812 COS81 COS82+COS$12 S11181 Sln82r

the integral for 62+62 gives

(46)

(41)
(~ ' f ') (I ' i ')

&2+~2=—
23PL4

F'V l(PP,PP).
27@2

(47)

ll' —ll= lg' —lg in ~g,

l, '—ll ——l~ —l~' in 63~ (42) 62+62= —8r;grdMPp~ ~

2n. d(cos812)
L 2~f2)

Again the momenta ll, ll' and l~, l~' must lie close to
their values at the Fermi surface. Using this simplifying X(pip2~2

~
plp2) ~

Pl= p2=pp COS812 (48)

We also impose total momentum conservation in the The result may be cast into a convenient form if we

matrix elements of 2, which leads to the conditions use the fact that pp= (2~SF/I) and the definitions of
rtll and 0„.„;g.The result is
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In the Appendix it is shown that

( I qs pl
MpF

l l
2ir d(cosgi~)

42mb)

X(pip2li l
pip2)91=@2=pF cos~12

M fdVi
(49)

pp

(dpi�

) pl =pE

so that 6&+63 exactly cancels 6i.
This result shows that the interaction e8ects ap-

pearing through Ai LEq. (36)] as an effective-mass
correction are to first order in the particle-particle
interaction cancelled by 62 and 63. These terms may
be interpreted as giving the alteration of the matrix
elements of L, due to the interactions.

IV. DISCUSSION

We have seen in Sec. II that a noninteracting Fermi
gas of many particles in a box with periodic boundaries
has the rigid moment on the "cranking" model, and
that this may be interpreted as coming from a rigid
rotation of the system in spite of apparent surface Qow.
We feel that this result must hold for any large non-
interacting system, independent of the boundary con-
ditions, but unfortunately we know of no general proof.
It has been suggested' that this result follows simply
from van Leeuwen's theorem on the vanishing of the
magnetic susceptibility of a dynamical system, or in
particular from the absence of diamagnetism for elec-
trons. "However, these results hold only for Boltzmann
distributions, and are explicitly violated in the quantum
case. Further, it is possible that even with classical
statistics the presence of collisions, plus some constraint
like fixed angular momentum, will invalidate the general
theorem. Lastly, although the analogy between the
rotating nuclear system and the magnetic one is sug-
gestive, the exact correspondence is somewhat obscure
and thus we consider the matter of general proof as
still open.

The status of the proof in the presence of collisions,
or interactions, is even less satisfactory. Here we have
been able to show that in the large Fermi gas with
periodic boundaries, the interactions cause no shift in
the moment in first order. In this case the problem
exists both of the eGect of the boundary conditions on
the result and of investigating the higher orders in the
interaction strength. Whereas the boundaries probably
have no e8ect, it does not seem obvious what one should
expect from the higher orders in the interaction. Unfor-
tunately our method does not lend itself simply to
extension to even the next order.

Even without generalization, the result of Sec. III
is interesting since it shows that no simple change in

' J. H. Van Vleck, Theory of Electric end Magnetic Suscepti-
bilities (Oxford University Press, Oxford, 1932), pp. 94-104.

level structure that has a first-order part, like the
effective mass, can change the moment of inertia. The
apparent change from the effective mass is just cancelled
by terms which may be thought of as changes in the
angular momentum operator as a result of the inter-
action. One might then ask how to account for the
experimentally observed departures from the rigid
moment in finite nuclei. For small values of the defor-
mation these departures are quite large and are prob-
ably to be associated with failure of the adiabatic
approximation and hence to failure of the "cranking"
model. It is, of course, possible that for known defor-
mations the "cranking" model is never valid, but we
shall assume it is for large deformations. If we assume
the validity of the "cranking" model, the departures
from the rigid moment may be thought of as having
two sources. The first source is finite-size effects which
may both change the value of the noninteracting
moment and change the effect of the interactions. The
second source is effects independent of the nuclear size
such as we have investigated here. Although there is
cancellation of the interaction effects in first order, and
it has been conjectured" that this cancellation persists
to all finite orders of perturbation theory, the moment
of inertia may still be affected if perturbation theory
for the interaction does not converge, leading to
anomalous level changes of the type considered by
Migdalo and Belyaev. '

we find

s=(1 -1)/2, (A1)

V(pi)=l l
8 ' dsv(s), (A2)

(2mb) ~ (p, —28((p~

where we have written for simplicity

~(s) = (uip2 I
~ l1ip2). (A3)

The angular integral in Eq. (A2) is easily done, giving

V(pi)=l l
16~ 2 I s'dsv(s)

(2~fi)

(
k(nz+ni)

+
I

"l(yJ—P1)

( pp2 —pi2 —4s2 )
s'v(s)dsl 1+

l
. (A4)

4p,s )

The derivative of V(pi) at pi=—p~ is then

dV ( L )' p» (2s' —pp')
87K

) ss(s)dsl l. (AS)
dpp

42~A�)

0 p,2 )
'"' A. Bohr and A. B. Migdal (private communication).

APPENDIX

We wish to prove Eq. (49). To do this, first consider
the single-particle potential defined by Eq. (33). Going
to an integral over p2, and changing variable to
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Next consider the expression

1

d(cosels)(ylys l'el y1ys) l pl=rs=ro cose12

cos8rs= (pp —2$ )/pp .
(A6)

Equation (A6) now becomes

(A9)

This we evaluate by introducing the variable

(A7)

4 t &r (pp' —2$')
sds t(s)

lp~'~ o E p' ) (A f0)

so that at p, = p, =ps,

4$ds = —pp d (cosO rs),

Combining Eqs. (A10) and (AS), we obtain the desired

(A8) result.
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Proposed Direct Test of the Uncertainty Princip1e

P. R. RvAsoN
Califorrtia Research Corporation, Richmortd, Califorlia

(Received May 15, 1957: revised manuscript received April 28, 1959)

The behavior of single particles is a central issue in the interpretation of the quantum theory. Yet, the
observation of single particles under well-controlled conditions has been difficult. Field-ion and field-emission
microscopy permit the ready observation of single particles. It is proposed to test the relation AEd t =5 by
the pulsed-Beld desorption of single particles from the tip of a field-emission microscope. The conditions for
such an experiment are brieAy discussed.

~W~NE of the most frequently cited illustrat:ions of the
uncertainty principle is the simultaneous meas-

urement of position and momentum of an electron by
scattering a photon from it. There are no methods
presently available to measure the position and mo-
mentum of a single electron in separate experiments
which are sufficiently precise to evaluate the errors in
these quantities measured simultaneously. Similarly,
determinations of the wavelength and position of a
single photon are measurements not presently feasible.
The wavelength measurement in particular can prob-
ably never be suKciently accurate. The most accurate
measurements of wavelength involve interference phe-
nomena, not observable with a single photon. Suffice to
say, the observation of single particles under well-con-
trolled conditions is very difficult. Yet, the behavior of

single particles under assumed well-controlled condi-
tions is precisely the central issue in the interpretation
of the quantum theory. ' The "Gedanken" experiments
proposed do not constitute tests in that they cannot. be
performed experimentally and more often than not
multiparticle results are used to derive the uncertain-
ties in various quantities. For example, the analysis of
the photon-electron experiment uses an expression for
the uncertainty in position which assumes an interfer-
ence pattern. Such cannot occur for a single photon.
This note proposes an experiment which permits a
close approximation to the ideal one-particle experiment.

' D. Bohm, Caslality and Chance in 3IIodevn Physics (D. Van
Nostrand Company, Inc. , Princeton, New Jersey, 1957).

Muller has described the field desorption' of adsorbed
atoms from fine tungsten tips in a field-ion microscope.
It is possible to pulse the desorption field and remove
adatoms. The proposed experiment would test the
relation DEB/=k by the pulsed-field desorption of
adatoms on a metal tip at very low temperatures. The
adatom must be adsorbed as an ion, e.g. , barium on
tungsten. In brief, the experiment would involve evapo-
iating a few atoms onto the tip of the field-ion micro-
scope, demonstrating their presence by either field-ion
microscopy' ' or pulsed-field emission microscopy, ' and
then field-desorbing these adatoms in a short pulse, and
examining the tip again. The desorption field would be
a single pulse, initially of long duration to determine
the desorption energy Qo. For the test of the uncer-
tainty principle, the pulse width would be reduced to
10 " second. The applied potential would have to be
known to 1 part in 10'. One of the possible modes of
operation is indicated schematically in Fig. 1. In this
experiment, the applied potential has been reduced
slightly, resulting in a small potential barrier 3E, p If
the maximum uncertainty in the time of desorption is
10 "second, then the particle should fluctuate in energy
at least by an amount DE=6.3&(10 ' ev. The applied
potential is adjusted until DE p is equal to this value.
If the uncertainty principle holds, the particle should

2 E. W. Miiller, Phys. Rev. 102, 618 (1956).
3 E. W. Muller, J. Appl. Phys. 27, 474 (1956).
4 E. W. Muller and K. Bahadur, Phys. Rev. 102, 624 (1956).
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