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An E-body Bose-Einstein system of particles with long-range attraction and hard-sphere repulsion
between particles is considered. It is shown that if the constants of the interaction have values within a
certain range it is possible to calculate the ground-state energy of the system as a function of 0/N, where 0
is the volume of the box containing the system, in the limit ftf -+ ao, 0 ~ ao, with flf/0= p fixed. The results
show that the system can possess an E-body bound state, which has an equilibrium density and negative
energy, and that the interactions can be saturating. Excited states are also considered. It is shown that
low-lying excitations consist purely of phonons, whose velocity agrees @6th that computed from the macro-
scopic compressibility, furnished by the ground-state energy. The formula for the general excited energy
levels suggests that thermodynamically the system may have a "gas" phase and two "liquid" phases, the
transition between the two "liquid" phases being the analog of the Bose-Einstein condensation of the ideal
gas. Thermodynamic considerations are, however, not contained in this paper.

I. INTRODUCTION

HK present investigation concerns a system of a
large number N of interacting Bose-Einstein

particles, enclosed in a box of very large volume 0,
which is externally fixed. Eventually we let N —+ ~,
0~ ~, with the ratio iV/0 fixed. The two-body inter-
action contains a hard-sphere repulsion of diameter a,
plus a long-range attraction. The attraction shall be so
weak that it may not be sufficient to cause a two-body
bound state, but strong enough to cause an N-body
bound state. That is, the N-body system may possess
an equilibrium density, at which the total energy is
negative. If this total energy is of the form Nf(N/0),
we say that the interaction is saturating.

The possible existence of an N-body bound state
makes the present problem qualitatively different from
one in which the interactions are purely repulsive. It is
physically clear where the difference lies. In the case of
purely repulsive interactions, it is imperative that, by
external means, we fix the volume 0 at some 6nite
value, if we wish the system to have a nonzero energy
in the ground state. For, if there were no containing
box, the system would expand in space indefinitely„

* This work is supported in part by funds provided by the U. S.
Atomic Energy Commission, the Office of Naval Research, and
the Air Force Once of Scientific Research.

approaching an infinitely rarefied ideal gas. This is no
longer true when there are attractive interactions which
are capable of producing an N-body bound state with
an equilibrium density po. If the volume 0 is fixed at
such a value that N/0) pe, the system would first tend
to expand when 0 is increased from this value, just as
in the former case. However, when 0 is made to increase
further, until N/0= pe, the presence of the box becomes
immaterial (apart from the trivial limitation the box
places on the center-of-mass motion of the system).
Any further increase of 0 beyond this point leaves the
energy and the density po of the system unaffected. We
may illustrate the difference between the two cases
discussed by the qualitative plot of energy per particle
8/N as a function of 0/N in Fig. 1. At a point such as
P. on the diagram, the system exists in the same internal
state as at O. The only diGerence is that at P the center
of mass of the system has more space to move in. For a
sufficiently large system (N ~ ~, 0 —+ ~) the energy'
at P is the same as at O. It might also be noted in
passing that at the point P, because of the center-of-
mass motion of the entire system, the probability of
finding any ore particle at any position inside the box
should be a constant throughout the box, apart from

boundary sects, which become negligible as X —+ ~,
Q —+ oo.
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II. DEFINITION OF THE MODEL

1. Two-Body Potential

In our problem the two-body interaction between the
particles of the system is represented by a central
potential n(r), where r is the interparticle distance. It
is infinite for r ~& a. For r&a it is negative, characterized
by a range parameter ro and a depth parameter vo. We
require that4

vo a((1.
Since eo: is of the order of the average wave number of a
particle inside the attractive well, condition (1) allows
the representation of the hard-sphere part of the inter-
action by a pseudopotential, as discussed in reference 1.
We write, accordingly,

8
v(r) =87rab(r) r+w(r)—, (2)

FiG. 1. Qualitative behavior of the energy per particle of an
E-body system as a function of available volume per particle, as
expected on a physical basis.

The foregoing discussion suggests that it is sufficient
to calculate the energy of the system for 1V/0&~ po. In
other words, we must approach the density po from the
high-density side. The present calculation follows this
suggestion, and is an extension of previous calculations
concerning the E-body Bose-Einstein system with
hard-sphere interactions. ' ' It is recalled that these
calculations are based on the smallness of the parameter
(pa')', where p=E/Q. In order to make use of similar
methods for the present case, it is necessary that the
additional attractive interactions are such as to make
the equilibrium density po satisfy the condition
(p,a')-'*«1. It is not intuitively obvious whether it is at
all possible to choose the parameters of the attractive
interaction to satisfy this condition; that it is possible
is the main result of this paper.

The present paper represents an initial effort which
aims to answer the following questions:

(a) Is there a range of values of the parameters of a
saturating potential, within which one can calculate
the energy levels, in particular bound states, of the
system in a well-de6ned scheme of approximations?

(b) Does the system under consideration possess
properties that are qualitatively similar to some of the
properties of liquid helium, in particular, the property
that there exist the thermodynamic phases: gas, liquid
I, and liquid II?
The erst question is answered in the afhrmative by the
following calculations. To answer the second question
completely requires a knowledge of the thermodynamic
properties of the system, which has not been included
in this paper. The results of this paper, however, do
indicate that the answer would also be yes.

' K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).' I.ee, Huang, and Yang, Phys. Rev. 106, 1135 (1957).' T. D. Lee and C.¹Yang, Phys. Rev. 112, 1419 (1958).

where w(r) is the attractive part of the interaction and
the meaning of the differential operator (8/Br)r has been
explained in references 1 and 2. To simplify calculations
we choose w(r) such that its Fourier transform is a step
function:

wg=— dr e'" "w(r) =
—S~(a+f) if )1~&k,

(3)
0 if )k[&k,.

r0=4.5/kp. (5)

At large distances the potential oscillates about zero,
as a result of the sharp cutoff in momentum space. The
oscillations are however quite small, and unlikely to
produce spurious effects.

In terms of ko, b, and a, the requirement (1) may be
re-expressed as follows:

kpaL1+ (b/a) )l((1.
The potential binds a two-body system when the range
is larger than a quarter wavelength of the relative
motion in the lowest 5 state. This means that (ko/4. 5)
&4wo', or ko(a+3) & (1/54m').

2. N-Body Hamiltonian

Let u&~, ak be, respectively, the usual creation and
annihilation operators for plane wave states, with

4 We choose units so that A= I, 2m=1, m being the mass of a
particle.

The number a+b may be interpreted to be the zero-
energy scattering length of the attractive part of the
potential. This choice of the Fourier transform leads
to the following potential in ordinary space:

~(r) = —r 0/3 j&(kor)/kore, vo =—(32vr'/3) (a+&)ko (4)

where j& is a spherical Bessel function. The total po-
tential is this plus a hard core of diameter a. A plot of
it is given in Fig. 2. The range parameter may be defined
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commutator

As usual let

La&)ai ]=~&i ~

P(r) =—0—' Pi, e'i"ai,

(7)

where the sum extends over all vectors k whose com-
ponents are 2~0 & times an integer (positive, negative,
or zero). The plane wave single-particle states therefore
obey periodic boundary conditions with respect to the
box of volume Q. The S-body Hamiltonian is

H= dr(Vpt) (V'P)

7.75
ko

+ drldr2 4 '(ri)4'(r2)i'(rn)4 (ri)0(r2), (9)
0

where r~2=1 ~ ~l. In terms of aI and al, we may Fn. 2. The two-body potential used in the present calculation.
write

where

1
P a +„~a „taa (10) Problem are four:

k 2Q k pq a, b, kp, p.

The summation over k in (10), indicated by a prime,
includes a limiting process that takes into account the
effects of the differential operator (8/Br)r in the pseudo-
potential. It is defined in the following way: If f(k) is
a matrix element arising from (10), then

Q' f(k)—:lim [r P ei ~f(k)]. —
k " 'Br

(12)

Suppose that f(k) ~2k '+g(k) for k~ a&, where

g(k) vanishes more rapidly than k '; then it follows
from (12) that

Pi, ' f(k) =Pi, [f(k)—Ak-']. (13)

For such f(k) the delnition (12) is equivalent to a
simple subtraction procedure. It is sufficient to consider
those f(k) having the property postulated, for we shall
not encounter any other case. We may therefore take
(13) as the definition of the operation P'.

The model having been defined, our task is to
diagonalize (10), requiring that all states be eigenstates
of P ai,tai, belonging to the eigenvalue 1V, in the limit

E—+ ~, 0 —& ~, with X/0= p fixed. (14)

3. Orders of Magnitudes

We summarize here the range of values of the
parameters of the problem within which the calculation
is to be carried out. The parameters occuring in the

vi, —= dr e"'$87ra5(r)+ie(r)]

g~a if ~k~)k,
(11)

(pa')'
Parameters: q kpa/(pa')' koa

(6/a)/(koa) fi/a
(15)

Second- and higher-order quantities are given by
products of powers of the lower-order quantities. It is
therefore not necessary to list them explicitly.

It may be instructive to re-express the assignment

(15) in terms of the lengths of the problems. There are
four independent lengths:

a= scattering length of hard sphere,

b= total scattering length at zero energy,
(16)

ro= range of attraction ko ',

r„=average interparticle distance p &.

To these one might add a 6fth, which is not independent
of the ones above, but convenient to introduce:

r,= (ap) &= correlation length of hard-sphere

repulsion. (17)

It is recalled that in reference 3, this length emerges
as the approximate distance from a particle, beyond
which the probability of finding another particle be-
comes unaffected by the hard-sphere interaction. (i.e.,
in the case of pure hard-sphere interactions, the pair
correlation function is essentially unity for distances
larger than r, .) In terms of these lengths, the orders of
magnitudes set down by (15) may be illustrated by the
scale in Fig. 3, which is self-explanatory.

We shall define orders of magnitudes of dimensionless
combinations of these parameters by the following
table:

Order:
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I I I

Length

c "p

FIG. 3. Scale of lengths in the present problem. These lengths
are de6ned in Eq. (16).

The following calculations are carried out up to and
including the first order, unless the first-order calcu-
lation gives a vanishing result. In the latter case the
calculation is carried out to the lowest nonvanishing
order.

The consistency of the assignment of orders of
magnitude shall be demonstrated by calculation. The
motivation for such an assignment is given in the next
section.

&p 128—= (4map)+(4irap)
I I

(hard spheres). (18)
g 15 47r)

The first term is simply the diagonal matrix element of
the interaction Hamiltonian, taken in the unperturbed
ground state. The second term is the result of summing
selected terms from. every order of perturbation theory.

Let us now perform the following calculation: Take
as unperturbed states the eigenfunctions in the case of
purely hard-sphere interactions. Treat the attraction
as a perturbation and calculate the energy in first-order
perturbation theory. The energy shift is thus 4~p times
the zero-energy scattering length of the attractive
potential, i.e., 4m(a+b)p —Adding thi. s to the un-
perturbed energy, which is (18), we obtain

gp 128—= —(4vrbp)+ (47rap)S 15 her]
(19)

III. A SIMPLE CALCULATION

This section is not logically necessary. It is here only
for the sake of clarity, as it provides a physical moti-
vation for the way the calculation is to be made, and it
points out some of the difhculties that have to be over-
come. Let us recall that for the case of purely hard-
sphere interactions, the ground-state energy per
particle is'

Since the hard-sphere calculation is valid only if
(pa')l((1, the formula (20) is valid only if b/a((1. If
we require b/a (pa') '«1, then the calculation is
consistent in the neighborhood of p= pp.

The portion of the curve for p(pp must be discarded.
Take the point I", for example. It obviously does not
represent the lowest state of the system, for point I'
has a lower energy, and does represent a state of the
system. Namely, it is the state 0, except that it does
not completely fill the box containing the system. This
is possible because at 0 the curve of E/1V has zero slope
with respect to p. The state 0 cart therefore exist without
externat pressure. We conclude that the energy per
particle as a function of p

' follows the curve QOI' in
Fig. 4. An E-body bound state is formed at the point
0. The equilibrium density is given by pe of (20), and
the binding energy per particle, ee of (21). The inter-
action saturat, es.

Except for minor modifications, the results above are
in fact correct, as a more exact calculation later shows.

It is however instructive to ask: What is wrong with
the foregoing consideration? Some criticisms are given
below. They serve the purpose of pointing out some of
the difFiculties that have to be overcome in a better
calculation: (a) One notes that (20) and (21) are
independent of kp. This cannot be accurate because one
should expect the binding energy to decrease when the
range of the attraction is decreased. (b) If one wants
to do better than the results (20) and (21), and go to
the second order in perturbation theory, the result
diverges. Furthermore, a summation of selected terms
from every order of perturbation theory also fails, if
one selects the same type of terms which in the hard-
sphere calculation led to the order (pa')'.

The last-mentioned difhculty may be seen as follows.
If we recall that the calculation which led to the (pa')l
term in (18) consists of diagonalizing the operator

(k'+8irap)aq aq+4~ap(av a z +aga v)&

then it is immediately obvious that applying the same
method to the attractive part of the interaction requires
the diagonalization of

(k' 87rbp)ai, tai 4—~bp(a~ta ~1+—a„a~),

t'pea')
-*

5 b

Em) 64a
(20)

at which density the energy per particle is

eo = —(4m-/3) peb. (21)

If one makes a plot of this as a function of p ', one gets
a curve. shown in Fig. 4. The fine dotted lines represent,
respectively, the two terms in (19), and their sum is the
solid curve. There is a minimum at pp, which has the
value given by

where
~

k
I
(ke. As long as 87rbp is finite, no matter how

small, there exists a k such that k' —Sxbp(0. For such
a k the above operator can be shown to possess no real
eigenvalue that belongs to a normalizable wave
function.

The foregoing discussion has served the purpose of
illustrating the central idea behind the calculation that
is to follow, and pointed out the difFiculties of the
problem. We shall show in the following sections that
these difhculties can be overcome, and that the result,
of a better calculation turns out to be not materially
diGerent from what has been obtained here.
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IV. SYSTEMATIC CALCULATIONS

1. Reduction of the Harniltonian

The notation employed in the following is, whenever

consider an unperturbed state which is specified by the
occupation numbers {nzs} of the single-particle levels,
with the requirements that

Ep
i4

N

(a) The level k=0 is occupied by (iV particles

(b) No other level may be occupied by a finite

fraction of all the particles.

Since the total number of particles is lV, we have

(22)
N

Q ms= (1—$)N.
k&0

(23)

For brevity we shall call a level "macroscopicalloscoplca
rac ion

a l the particles. The unperturbed states which we
consider have the property that no level other than
k =0 may be macroscopically occupied. Obviously this

erminology has meaning only in the limit N —+ ~.
The unperturbed state {ms} is connected by matrix

elements of the Hamiltonian (10) to other unperturbed
states through repeated interactions. The most general
state which is reachable from {riess} through repeated

Bzlr+Bk. More explicitly the occupation numbers are
listed in the following table:

Level

k (k& 0)

Occupation number

$N Q 5s-
k~o

ms+8s

(24)

To excite 8s particles into the state k the in
as o e app ied bk times. It is shown in reference 2

that the expectation value of P bs with respect to the
pertlrbed state is of order N(pa')l for the case of hard
sp ere interactions. It is therefore a small number
compared to E. In the present case it will be later
s own that

0
/

/
/

/
/

/
/

FrG. 4.. &round-state energy per article a
available volume p t I .Th
o trib t'o fo th h d h

er par ic e. e up er dotted

otted curve, from the attraction. The su
e ar -sp ere interaction and

QOP' Th t ht h de stra~g t heavy dotted line OP, however, rep-
s s a es o system at an energy lower than those on OP'.

'O th
pressure t' ""tain 't' den"tain i s ensity pz, since BE/~8p=o at this point.

y
'

herefore represented by thee owes state of the s stem is t

space 5, and later show the consistenc of this
restriction.

cy o is

an" Ns—=ms jets (obviously
ass ——astas and ass ——aortas). The diagonal matrix element
of the Hamiltonian (10) with respect to a state in S is

ksns+svopN+esQ i P risss+isQ i g .Nsn&vs»
kM kgp

. k,p&0

which can be rewritten as follows:

(diagonal matrix element)

=C+ 2 (&'+5p&s+vs)res+ l'o', (26)

where C and p& are numbers depending only on {tN&}:

the ertur
where the expectation values ar t k

'
he a en wit respect to

t e pertur e state. Assuming this fact now
' 1'6

e classification of terms in the Hamiltonian. The
collection of states of the type (24) t' f
23J s~j, spans a subspace 5 of the Hilbert s ace. The

consistency of (25) with the calculation means that the
interactions do not transform a stat S t
it. We sh

s a ein to one outside
it. e shall first restrict the Hamiltonian to the sub-

C=— 4s.bpN+(1 g)p —P nsms—

ps=—Q ' P (ss s —s,)ms,
p&0, k

—-', Q ' Q nzsmsss „(27)
k~p

k,p&0
(28)

while V0 depends on the state in which the diagonal
element is taken (it is therefore an operator .

Vs' —=-', Q ' Q 8s8sws k
—Q '( Q 5s)( Q ss5s). (29)

p, k &0
k/0 pg0
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We now turn to the nondiagonal matrix elements of
B in the subspace S. These matrix elements naturally
fall into three classes, exactly as in reference 2: namely
those that create or annihilate (i) two particles of k=0,
(ii) one particle of k=O, and (iii) no particle of k=O.
They are, respectively, proportional to $N, ($N)', and
1. The interaction Hamiltonian is accordingly decom-
posed into three terms, Vi+ Vo+ Vp, in an obvious way:

It is convenient to further decompose V Lwith the
replacement (33)], in the following manner:

Ul onoQ Q vk(ak a k—+aka-k)
kxp

=-:(p&—O-' Z b,) E' "( ta t+".-.) —= V,+V,',
pgp kgp

where

Z»(ak a—k aoao+aku —kaotaot),
kdp

(30) Vi =—4~up(P —N ' Q m, ) P'(ak"a kt+aka k)
0&@&kp k&kp

Vp 20 2 'k +3 ap kaq~—k apaq~
kW

(32)

Vo ——0-'P' vk P (ao k ak aoao+ap'ao'akao k), (31)
k/0 y&0, k

—4n.an-'( P no) P' (akta kt+aka k)
0&y&kp k&kp

~bp( p ( a'kakt+aaa k), (3-4)
p&k&kp

where the sum Pp is a sum over y and q, subject to the
condition y/0, k, and q&0, —k.

In Vi there appears apap and aptapt whose matrix
elements in the subspace S are, respectively,

L(no —1)no)l= np+0(1/$N),

L(np+2) (np+1)]' =no+0(1/$N).

Vi' =8nbpN —'(Qbk) Q (akta kt+aka k)
k&0 0&k&kp

—4zapN i(P 8k) P' (ak'a kt+a«a k). (35)
k&kp k&kp

Let us introduce a new quantum number x for the
unperturbed state, defined by

In V2 there appear ap and apt, whose matrix elements
in the subspace S are, respectively,

no', (no+1) '= no**+0(1/$N).

N ' Q mk
—=(1—$)x, (0&~x&~1)

0&k&kp

and define

(36)

Therefore if in Vi and V2 we replace all ap and a,p~ by
np', their matrix elements are not a6ected in the limit
N —& ~, except when )=0.But if )=0, Vi and Vo both
vanish anyway. Accordingly we prescribe the
replacement

I
Gpt, Qp ~ Ã0'. (33)

This does not mean that the interaction no longer
. conserves the number of particles, because we make
this replacement only when we are restricted to the
subspace S. The number of particles of the system is
necessarily constant and equal to S, for this is a
property explicitly imposed on all states in S by the
relation (23).

f($,x) =$+ (1—$)x—. (36')

N'(ko) ko' koa (koa)'
)

X 6m'p 6m' pa'
(37)

which, according to the classification of (15), is a, small

quantity of the 6rst order. 'The unperturbed states
with )&1 and x~0 means that a finite fraction of all

the particles are jammed into the small sphere k(kp.
However, this can still be consistent with the require-
ment that no single level other than k =0 is macro-
scopically occupied.

We now rewrite the Hamiltonian (10) as follows:

The number x is the fraction of excited particles Li.e.,
the fraction of (1—$)N) that occupies levels with

0(k (kp. It is to be noted that the number of mo-
mentum states with 0&k &kp, denoted by N'(ko), is a
small fraction of E. In fact,

H= C+ Q' t-(k'+8m. apg+yk)nk
k&kp

y4~apf(], x) (akta «"+a«a k))+ V, (38)

1

l6
l5

FIG. 5. Plot of the function F (s '), which appears in Eq. (41).

where C, yk, f($,x) are, respectively, defined by (27),
(28), and (36), and

V—= P f Lk'+yk —8mbpg —4vraQ
—' g' (a,ta,"

0&k &kp

+aoa o))nk 4nbpP(a«ta kt+—aka-k))

+Vo'+ Ui'+ Vo+ Vo, (39)
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ppoa'~ ' 5 b

64 a

&Eq ~sq 4 b

(X) p=po (64) 3a a

where Vo', Vi', V2, V3 are defined, respectively, by results as (20) and (21):
(29), (30), (31), and (32). The procedure of calculation
is to regard the term V in (38) as a perturbation. Its
contributions to the energy levels are of order higher
than first order Las defined by (15)$. It is therefore
important only for quantities which have no 6rst-order
term. That this is true is shown in subsection 4 of this
section.

(45)

2. Properties Near Ground States

By ground states we mean the state specihed by
)=1. This is the state which is obtained from the free-
particle ground state by adiabatically "turning on"
the interactions. The Hamiltonian (38) now reads

H= 4vrbpX—+ Q' $(k'+8m. ap)iig
k) kp

+4~ap(a~'a-~'+a~a-~) j+V (40)

Neglecting V, we can immediately write down the
lowest eigenvalue of the above, since the answer has
already been given in reference 2. Call the lowest
eigenvalue Ep. Then

gp 128 (pa'~ '—= —4n.bp+ (4map) I I &(i),
15 &

where i —=ko/(16map)'*, and
E —E= k(e+ 16~ap) if Ikl &ko

[I I &k„
(46)

The more accurate results from (43) give slightly
smaller values for pp and —Ep. Everything we have
said about (19) may be said here again, in particular
the statements that (a) the calculation is consistent in
the neighborhood of p= po, and (b) the lowest energy is
represented by the curve QOP of Fig. 4. For (b) to be
true, it must be shown that for p& pp no other state has
a lower energy than Eo(p), and that for p&po no state
has a lower energy than Eo(po). It will be shown in the
next section that this is so, if ko))(bp)&, (as we have
assumed), while for values of ko that are too small,
this may not be so.

From (40) we can also find the energies of very low-

lying excites states. The excitation spectrum, which
corresponds to the phonon spectrum in the hard-sphere
calculation (2), is easily found to be Lthis is derived in

(&3)j

15
F (~) =—I:3(1+")' —k(1+~') '+6~'+5 "] (42)

2

Figure 5 shows a graph of F(i). The formula (41) for
Eo/N differs from the result (19) of a more simple-

minded calculation only by the presence of the factor
F(v), which does not make any qualitative difference.
As a function of p '=0/cV, Eo/1V has the same shape
as that shown in Fig. 4 if koa/m. (b/a. Otherwise the
curve is everywhere positive and the system does not
bind. The conditions for binding is therefore b&0 and
koa/x&b/a, which we assume. The minimum of the
curve occurs at p= pp, where pp is now the root of the
transcendental equation (with s = k02/16irap):

where the state corresponding to the eigenvalue E~
has a total momentum k. For lkl (ko, (46) implies
that the excitation energy is of an order higher than
that which has been calculated. To calculate it requires
taking V into account in (40). This will be done in
subsection 4 of this section. However, we can deduce
what the answer must be in the limit lkl ~0, by
noting that there must exist long-wavelength density
fluctuations of the system (phonons), whose energy is
kc where c is the sound velocity. Remembering that
the mass of a particle is —,', we have

c= (—2M'/cjp)'*,

where P is the pressure of the system at absolute zero:

5' b
(1+& ') '*(1—ks+s') —s'= ——

16 8 kpQ
(43)

8 (Ep)
P 2

cjp (E) (47)

which may be solved graphically. The result is not
qualitatively diferent from that obtained by approxi-
mating F (u) by the heavy dotted curve of Fig. 5, which

means that for the range of parameters we are interested
in (i.e., the case of binding) we may take

Combining the above yields

c2 (8 82 )Eo—=
I

—+-:p
4p hap Bp'j X

F(i)=1.
We shall use this approximation, for it avoids clumsy
graphical solutions. With (44) one obtains the same c= (16m.a'p) ', (49)

(44) and performing the indicated operations on (41) gives
indeed a number of higher order:
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where
a'/a = 16(pa'/~) lG(r ) —(b/a),

G(p) = sf(1+v')'+(1+v") *g

(50)

S(k)

which is a positive-definite function. It is obvious from
(48) and Fig. 4 that for p&~ ps, c is real and positive. At
p=ps we have, using the approximate formula (45),

c= (4rrppb) l

What is not known through these considerations is
whether at low k, sound waves are the oui'y excitations.
That such is the case will be shown by explicit higher-
order calculation, which of course verifies (49).

It is not hard, at this point, to guess that a higher-
order calculation must yield for the excitation spectrum
the following:

k(k"-+16z-ap)
'*if

~

k
~
)ks

k(k'+16tra'p)' if
~
k~ &kp.

(52)
FIG. 6. Fourier transform of the pair correlation function at

absolute zero. The number a' is de6ned in (SO).

3. Excited States
This enables us to find the pair correlation function
D(r) of the system at absolute zero by using Feynman's
formula, '

S(k) =k'/(Eg —Ep), (53)

where S(k) is the Fourier transform of the pair cor-
relation function. We obtain from (52)

k(k +167rap) ' if
~
k~ )ks

k(k'+16za'p) ' if ~k~ &ks.
(54)

A qualitative plot of S(k) is shown in Fig. 6. The
behavior of D(r) at small distances is determined by
the behavior of S(k) for large k. From (54) it is seen
that at small distances D(r) is the same as that of the
hard-sphere gas, discussed in. reference 2. Namely:

(
D(r) ~

(
1——[.

r)

5 R. P. Feynman, Phys. Rev. 94, 262 (1954). The justihcation
for using Feynman's formula is given in reference 2.

At large distances the behavior of D(r) is governed by
the behavior of S(k) for small k, in which the attractive
part of the interaction plays an important role. A
qualitative sketch of D(r) is shown in Fig. '7. At r)r„
the correlation length of the hard-sphere interaction,
the function rapidly approaches unity. At r)ro, the
range of the attractive interaction, the function oscil-
lates about a constant value, which by proper nor-
malization may be made unity. It qualitatively
possesses the form one expects of a system with short-
range repulsive and long-range attractive interactions.
The correctness of (54), being a guess at the present
moment, will be proved later by higher-order
calculations.

Neglecting V, we can again diagonalize the Hamil-
tonian (38). For a given set of {nzs} we are to calculate
that eigenvalue of (38) which reduces to Pk'nss in the
absence of interactions. We are therefore calculating
the energy of that perturbed state which arises from
the free-particle state specified by {m&), when the
interactions are adiabatically "turned on."The general
answer can be immediately written down; but it is too
complicated to be of interest, because the quantity p&,
defined in (28), in general depends on the details of the
set of integers {m,s). We shall first introduce a
simplification.

We shall not consider the most general set of occu-
pation numbers {ms}satisfying the requirements (22);
but we consider more restrictive sets. Namely, we

impose these further restrictions on {ms}:

(a) The occupation of levels k for 0&
~

k
~
&ks is

essentially uniform. That is,

m, -6~'p(1 —()x/k, s if 0& ~1
~
&k,. (55)

(b) The occupation number ms for ~k~ )ks, considered
as a function of k, changes by a negligible a,mount
when ~k~ changes by ks.

The motivation of this restriction is (37), which shows

that the sphere of radius ko contains a very small

number of levels, compared to E. States not satisfying
these restrictions may be expected to be of little im-

portance for the thermodynamic properties of the
system to the accuracy of the present calculation,
because they describe spatial correlation eGects over
distances longer than the range of the attraction. With
these restrictions, both 7~ and C become greatly
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answer, derived in the next section, is

(contribution from V) =IV ' P k'(k'+16mpe')'nsi,
p&k&k0

(for (—1), (59)

where a' is defined in (50). For general $, the calculation
becomes too dificult. It is sufficient for the present
purpose to take the zero-order answer:

(contribution from V)—Ã ' P k'mi,
P&k&kp

= —,'(1—
g) xko'. (60)

The last expression results from the assumptions (55).
This formula is in conformity with (59), since
16+pa'(&kp'.

For given values of t, x, we have the inequality

FIG. 7. Qualitative sketch of the pair correlation function at
absolute zero. The lengths ro, r, are defined in (16).

where

X 'A{ms}&~or, (p), (61)

simpli6ed, as shown in the Appendix:

They depend on the occupation numbers {nzi,} only
through the two parameters P and x, which are defined

by (23) and (36).
With (56) and the neglect of V, the Hamiltonian is

t."+P' {[k'+8«pf(g,x)]ni,
k)ko

+4irapf(g, x)(azta it+asa r)}.

The eigenvalue corresponding to the free-particle state
{mi,}is

128 (pu')"
4trbp+4«p g(—p,x)+ i i P(p)

1S& )

X[f(g,x)]'*+—P k[k'+16 apf($, x) jhow„g k&k0

+ (contribution from V), (57)

where F (v) is defined in (42), f($,x) in (36), and

b~ b

g(t-,x)—= (1—k)'
I

1+- ~(1—*)'—.
u 8

(58)

The formula (57) formally reduces to that given in
reference 3 for the hard-sphere gas, if we put kp=O,
x=0, and b= —u.

In (57) the contribution from V can be calculated
only for states very near the ground state ($—1). The

C by b
4zbp+4«—p(1 —$)s

~
1+—

~ (1—x)s——,
S a) g'

(s6)
8«p(1 —()x if ~k~ )ko

0 if il i
&ko.

128 (pa') '*

ei,.(p) = 47rbp+4z—ap g(P,x)+
~ ~ P(i)

1s&~&

X[f($,x)]' +ko[kos+16«p f($,x)j'*(1—$) (1—x)

+-,'(1—$)xkos. (62)

When j=1, denote it by ei(p). The function ei(p) is
independent of x. In fact et(p) =So/cV. For fixed g, x,
the quantity er, ,(p) as a function of p is an envelope of
all energy levels belonging to given values of P,x. In
order to investigate whether any 8{m&}can be smaller
than Eo, it is su%cient to ask whether er, ,(p) can be
smaller than ei(p).

Let us first look at some limiting cases:

For $= 1 (no particle excited):

b 128 t' pa') -'*

et(p)=4«p ——+ i

—
i P(i) .

u 15&~&

~p2 ~p2 a————&)1
6p Qp f)

(63)

For t =0, x=0 (all Ã particles excited to levels above k„)

eo, o(p) =4«p[1—(b/~) j+ko'=4«p+ko'.

For )=0, x=1 (all V particles excited to levels below
ko):

128 (pa' ) '*

o, (.) = —8 b.+(4;)
~ ~

~(.)+;k. . -
)

The function ei has a minimum at po given by (45).
The function 6p, p is a monotonically increasing function
of p, which is everywhere greater than e&. The function
Ep, y has a minimum at pQpp, but it is everywhere much
larger than ei if ko'/(ap)'* 1 as we assume, for then
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Ei't—
N

letter 2 a momentum of magnitude greater than 0 but
less than ko..

K: fKf&kp,

X: 0& fZf&k, .
(64)

A matrix element of V may be specified by giving all
four of the initial and final momenta involved in the
scattering process described. The sum of these momenta
must be zero. If we use the conditions (25), it is straight-
forward to show that to calculate the energies to the
next order, it is sufhcient to take into account the
following types of matrix elements:

FIG. 8. Qualitative plot of some perturbed energy levels of the
system, as a function of available volume per particle. The quantum
numbers $, x refer to the unperturbed state from which the per-
turbed state arises, as the interaction is adiabatically turned on.
$ is the fraction of particles in the level k=0. x is the fraction of
excited particles in the levels k, with 0&

f
it f &kp.

(1) Ki, Ks, Kp, 0,

(2) Ki, Ks, Kp, K4,

(3) Ki, Ks, 2, 0,

(4) Ki, Ks, Xt, Xs,

(5) Xi, Xs, 0, 0.

(65)

For t—1 (very few particles excited), let (=1—A.

It is easily verified, keeping (63) in mind, that

e(,.(p) —et(p) = kp(kp +16prap)'(1 —x)+skp'x

b 64

gpss'~

'*

+4 a ——
f f

~&O.
a 5&~&

For 0&)&1 the formulas become more complicated,
but these conclusions are maintained. We illustrate the
qualitative behavior of the energy levels of the system

by the graph of Fig. 8.

4. Higher-Order Calculations

We now come to an important part of the calcu-

lation, important not because the results here will

alter any of the formulas used previously; but because

they show that the opposite is true. The main result of
this section is a verification of the formulas (25), (52),
and (54).

The following calculation is to be carried out: Take
into account the term V in the Hamiltonian (38), and

calculate the corrections to energy levels in the neigh-

borhood of the ground state (i.e., for /=1). V is defined

by (39). In terms of free-particle states, every term of
V describes a scattering between two particles. If the
momentum transfer in the scattering is greater than

ko the matrix element is of order a; and if less than ko,

of order b. Let us for convenience denote by a capital
boldface Latin letter K a momentum of magnitude

greater than ko, and by a lower case boldface Greek

and

+~(P K ~)~,—tax—a,)+H C , (66). .

Vp=4rQQ P g (GK 8 K can i,+GKG—rciii, ii y ). (67)

In the above, the convention (64) is adhered to. The

8 functions in U2 are Kronecker symbols. The Hamil-

All other give contributions to a still higher order, by
virtue of b/a«1 or kpa«1. Among the matrix elements

described by (65), types 1 and 2 contribute to the
ground-state energy, and to the excitation spectrum
for k&ko. In both cases their treatment is, except for
trivial modifications, identical with the higher-order
corrections to the hard-sphere Bose gas, as discussed in

reference 2. It is shown there that they give rise to
corrections in higher powers of (pcs)'*, and hence can be

neglected. We shall not repeat these discussions here.
It is sufficient, therefore, to consider matrix elements

of the types 3, 4, and 5 of (65). They may be charac-
terized by the fact that they all describe scattering
processes in which two momenta are smaller than ko,

and two greater. They cannot be treated in ordinary
perturbation theory by calculating to any finite order;
but one must again in essence perform infinite sums,

just as in the calculations of the previous sections.
If we retain in U only those matrix elements of types

3, 4, and 5 of (65), it is easily shown that we may
neglect Vo' and V&' altogether, while V2, V3 may be

replaced, respectively, by
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tonian to be diagonalized is now

a= 4~—bpX+Q'DE'+S~ap)nK

+4ilap(aK a—K +aKa—K)]+2{@' 87rbp

all we shall retain. It is easily shown that further
diagonalization of V~ and V3 in the b-representation
yields only higher order terms that should be neglected.

A state
l mK) of the system in the b-representation is

specified by the occupation numbers bx~bK=—no& of
independent phonons whose energy is

—4~aQ P (aK a—K +aKa—K)j+x
K

—4mbp(a)ta ),+aia ))}+Ug+ U3 (68)

coK E(E——'+ 16vrap) '

We have, by virtue of (71),

(73)

aK= (1 «)—'pK «b——K j
aK'=(1 —«) &LbK' —«b K],

(69)

We had earlier diagonalized H, when V was com-
pletely neglected. Let us transform H into that repre-
sentation. It is simplest to express this transformation
as a linear transformation' of a~. With the substitution

bK'ImK) = (mK+1)'lmK+» (74)

bKlmK)=mK*lmK 1).

We are interested in the energy contributions of V&

and V3 in the state
l 0) (i.e., all mK =0). We have for

the contribution of Vg

«= (2&K) 'L1 —(1—4yx') *'3

y&=4n-ap(E'+sn. ap) ',
(70)

4m.a n
(ol v lo)= —2' — 2( ' -"+ -) (75)

0 K 1—o.

we thus transform to the new operators bK, bK~, which
again satisfy the commutation rules

[bK,bP'7= &KP. (71)

+Z{P S~bp 4~a~ ' E(aK'a-K+aKa-K) j&i

The transformation is therefore a canonical one, pro-
vided n&(1, which is obviously true. We shall refer to
this new representation as the b-representation. In
this representation

H=Ep+Q E(E'+16map)'*bKtbx+ V2+ V3

where we let n stand for o.K. The contribution of V2 is,
apart from a term of the form (const)E(ap)(koa)'l ko/

(pa)'j, which we drop, the following:

l(ml v, lo) l' ~8~a~

Ep —E' ( Q ) x K (1+~)2~

1
+ P' — (a),'a ~t+a),a-x), (76)

(1+n)' (o

where co stands for a&K. Substituting (75) and (76) into
(72), we obtain

(o l
a

l o)=z,+P{(x'+s~apx —s~bp) a,ta&

4mbp(agta it+—aia. ),)}, (72)

where Eo is defined in (41) and one must identify:
bKtbK ——mK. Formula (72) is strictly correct only if all
mK=0 (i.e., (=1).But we can still use it in the neigh-
borhood of (=1. In particular the excitation spectrum
can be obtained from (72) with errors of order 1V '. It
immediately gives E(E'+16map)i for the energy of a
phonon of momentum larger than ko, The corrections
to this spectrum are of higher order in (pa'): and have
been neglected from the beginning. V2 and V3 con-
tribute to the excitation spectrum only for momenta
below ko. This contribution we calculate, because it
represents the lowest nonvanishing order.

We must now transform V& and V3, given by (66)
and (67), into the b-representation. This transformation
aGects only aK and aK~. The operators u)„an't, since
they commute with the former, may be looked upon as
c-numbers during this transformation. In the b-

representation V~ has no diagonal matrix elements. It
will be diagonalized by second-order perturbation
theory. V3 has diagonal matrix elements and that is

' N. N. Bogo1iubov, J. Phys. U.S.S.R. 2, 23 (1947).

where
+ (4m.apX —4n.bp) (aita ) t+aia ))}, (77)

4wap (1—nl ' 1

(olalo)=z, +p ~(v+16 a'p):m„ (79)

apart from a correction to Eo of the form (const)E(ap)
)& (koa)'Lko/(pa) lj, which we drop. In (79), a' is exactly
that given by (50). This verifies the formula (52), and

After taking into account the subtraction precedure
required by Q', as explained by (13), and performing
some elementary integrals, we find

X= 16(pa'/~) l-', L (1+v') l+ (1+v')—'*$

v=—kp/(16~ap) **. (78)

Now (0lH
l
0) still has to be diagonalized with respect

to a)„aq. This task is trivial, since the mathematical
problem is identical with that solved by the trans-
formations (69). We obtain immediately
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the sound velocity (49) computed from the compressi-
bility of the system. Furthermore, this derivation shows
that for small 2 there are eo other exc~tatioes. If one is
familiar with the results of reference 2 the following
statements are now obvious:

1. The conditions (25) are correct:.
2. The wave function of the system is the same as

that for the hard-sphere gas, except that in all Fourier
components with k(kp we replace u by a'. This justifies
the formulas (54).

Perhaps, to make statement 2 more explicit, we

should write down the ground-state wave function
of the system. Let the ground-state wave function 'kp

be expanded in terms of free-particle wave functions.
The only free-particle wave functions C that enter into
this expansion are those in which particles are excited
in pairs of total momentum zero. That is, if lk is the
occupation number of the level k, then lq= Lq '.

[Cii(ki)Ci2(k, ) .]4 (ti, l), ); (SO)
iI=0 l2=0

a,nd up to a normalization constant,

where nz is defined by (70), a,nd nx' is forma, lly the
same as (70) except that u' replaces a everywhere. The
wave function for a state with one phonon is, up to a
normalization constant,

N
~ik x;@

j'=1
(82)

which is the form of the wave function that leads to
Feynman's formula (53).

V. DISCUSSIONS

The mathematical method employed in the present
investigation is similar to those used in reference 2.
The discussions there concerning the validity of the
mathematical methods and the application to liquid
He4 also apply to the present case. In this section we
discuss only those questions which are particular to the
present model.

By showing the consistency of the conditions (25),
the calculations in the last section verify the con-
sistency of the assumption that if a level is macro-
scopically occupied, this fact is not changed by the
interactions. This assumption leads to an expansion
of the energy in powers of (pu') l. It may be formulated
physically by saying that a macroscopically occupied
level represents a, "sea" of inexhaustible particles,
which have complete order in momentum space. This
order is not destroyed by the interactions. But con-
sistency does not necessarily guarantee correctness.
The correctness of this assumption has not been proved,

either in the case of t,he hard-sphere Hose gas or in the
present model. While in the former case one may on
physical grounds believe it to be correct, one might
not accept it so readily in the present case. An argument
in favor of its correctness in the present case, even if
only a physical one, is called for.

The mathematical expression of the assumption
mentioned above is the exclusion from our consideration
states of the system outside the subspace S spanned by
states defined by (22). This exclusion is motivated by
the fact that it takes of the order of iV interactions to
take a state in S outside of it. As iV approaches in'. nity
the probability for this to happen is very sma, ll. The
calculation, under this assumption, shows that the
smallness of this probability is measured by (pa~)'.
However, by this assumption we have obviously failed
to obtain, from direct calculation„states like that
represented by point P of Fig. 4. Rather, at that
density we obtain the state P', and the existence of P
is deduced by an argument. We would like to give
physical explanations as to

(i) why we failed to obtain the state P by direct
calculation,

(ii) why we can still believe the results for p~&po, »d
(iii) what meaning can be attached to the state P'.

The notation above refers to Fig. 4.
In answer to (i), it is obvious why we failed to obtain

P directly. The state P, as the discussion earlier shows,
is a state in which the system does not occupy the whole
volume Q. It is therefore possible for the system there
to break up into turbo or more macroscopic clusters of
particles, each having their own surfaces. Now the
unperturbed free-particle state uniformly fills the
entire volume. In order to break it up into clusters,
each containing of the order of iY particles, it is clearly
necessary for the interaction to a,ct of the order of iV

times. Since we have "shut off" such channels of inter-
action, our failure is not surprising. As long as we
restrict ourselves to subspace S, we should not be able
to calculate these clustering states, even if we could
solve the restricted problem exactly.

If we believe in the validity of conclusions indicated
by theories of condensation, we would believe that
these macroscopic clusters come into existence abruptly
at p= pp, and therefore they are ignorable for all densi-
ties p) pp. A knowledge of the system for densities p) pp

is, a,ccording to this view, sufhcient to determine the
energy for all lower densities. The states outside of the
subspace S that we have excluded, if taken into account,
would of course give us more information. They would
also yield the combinatorial information of how the
system may break up into clusters of varying sizes. But
in the latter we are not interested. This answers (ii).

What significance can we attach to the states like E'
of Fig. 4, which is obtained by analytic continuation of
the function E(p) to p(po? It seems plausible that they
represent true states of the system if the channels
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leading to the formation of macroscopic clusters were
artifically "shut off"; but that they must be unstable
when these channels are "open. " In the absence of
surface effects, these states would decay into cluster
states in the order of a collision time of the system; but
with surface effects, they could be metastable. This is
the answer to (iii).

Let us now turn to another physical discussion,
concerning what might be expected of the thermo-
dynamic properties of the present model. It is to be
emphasized that the value of the following discussion
is purely heuristic.

Let us first recall the thermodynamic properties of
the hard-sphere Bose gas, as discussed by reference 3.
It is there shown that even in the presence of inter-
particle interaction, the Bose-Einstein condensation
remains. The system may exist in two phases, the gas
phase and the degenerate phase. In the latter phase the
important states of the system are those in which P)0,
that is, those in which a "sea" of particles exist, whereas
in the gas phase only the set of states with (=0 is

important. The transition from the gas to the degenerate
phase is a transition from states that have no mo-
mentum-space order, to ones that have. It is clearly the
analog of the Bose-Einstein condensation of the ideal
gas.

In the present model, there are states possessing a
"sea" of particles ($)0, @=0).This "sea" represents a
complete order in momentum space, and has a direct
counterpart in the hard-sphere case. There are also
states that possess no order in momentum space,
namely those labeled by /=0, @=0.However, we have
a new parameter x, which is a macroscopic parameter.
The states for which x)0, $W1 represent states in which
a finite fraction of the particles are partially ordered in
momentum space, their momenta differing from one
another by not more than 2kp. This means that in
ordinary space they should have a correlation over
distances of the order of rp, the range of the attractive
potential. It is plausible that the states with x)0, $/1
form new phases, which might be called "liquid"
phases, the difference between these new phases being
)=0, or $/0. They might be called respectively an
"ordinary liquid" and a "degenerate liquid. " The
transition between them, if it exists, would be the

analog of the Bose-Einstein condensation of the ideal
gas. In addition to these, of course, we would still have
the gas phase, in which the states )=0, x=0 are
important.

It is probable that the above discussion is over-
simplying; but it might be qualitatively correct, The
present model therefore offers hope that the qualitative
thermodynamic properties of liquid He4, in particular
the existence of liquids I and II, might be reproducible
in a relatively simple way.

APPENDIX

We shall briefly indicate how the simplified forms for
C and y&, given by (27) and (28), are arrived at. The
exact formula for yq, given in (28), may be rewritten
as follows

t' b l garb
vk=gn'op(1 —

k) I
1+- I*— 2 ~p+k (A1)

g) fl o«s

The sum P m~+q in the last term, as a function of k, is
bounded between 1V(1—P)x and zero. If we use the
assumptions (55) about (nzk), it is easily seen that this
sum becomes equal to the negligible value (Pko /6n )m
for

~

k
~
)240 and is equal to 1V (1—$)x for k =0. Between

k=0 and
~

k
~

=2ko it is between these values. Since the
assumption about (nz&) is only a qualitative one, it is
in the spirit of this assumption to take the sum P m~+z
to be a step function:

0 if )k~)k, .
(A2)

Substituting this into (Ai) yields the expression given
in (56) for yg.

To evaluate C, we neglect terms of the form P ngq'

as compared to (p m~)'. This is in accordance with the
basic assumption that no level other than k=0 js
macroscopically occupied. Having made this neglect,
we make use of (A2) to obtain the formula (56) for C.
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