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Structure of the Electromagnetic Field
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The structure of a curved space-time in which a source-free electromagnetic 6eld is present is studied
according to the "already unified 6eld theory" of Misner and Wheeler, and the geometrical meaning of the
di6erential conditions imposed on the Ricci tensor is established. Four independent equations equivalent
to the algebraic conditions are stated, and the case of a null electromagnetic fiel is also clari6ed.

1. INTRODUCTION

HE wealth and the physical possibilities which a
Riemannian geometry can allow have been once

more stressed in a recent paper by Misner and
UVheeler' 2: They showed that electromagnetism is

contained in, and can be deduced from, the geometry
itself of a particular kind of Riemannian manifold. The
charge can in fact be fully understood in terms of a
topology of space-time diferent from the usual one;
while the electromagnetic 6eld can be extracted —and
computed —from the metric. The conditions required
for this involve the fundamental tensor only and fall
naturally into two groups. If3

both vanish; but then Eq. (4) loses its meaning. The
null case is not completely understood so far.

It is of great importance to assess the structure of
this type of Riemannian manifold and to understand
it in terms of simpler and fewer concepts which in some
way reduce the number of choices necessary to arrive
at it. We propose in this paper (a) to add a small
contribution to our knowledge of the algebraic equations
by expressing them in a form in which they are inde-
pendent from one another; (b) to find a simple geo-
metrical interpretation of the curl condition (5) in
terms of a Pfaff's problem; (c) to clarify the case of a
null 6eld.

2. ALGEBRAIC CONDITIONS

is the Ricci tensor, the second-order conditions read

E„~=O,

4E„&Rp, =g„„Rp,EI"~0.
(2)

(3)

It is known' that the algebraic conditions (2) and
(3) are equivalent to saying that the matrix R (by
which we mean R„")has (in the non-null case) a spectral
decomposition of the type

To these we must also add a qualitative demand, that
the quadratic form

E. l'I"

be positive de6nite for any time-like l&. The fourth-order
conditions demand just that the vector de6ned by

R=p(p V) p»o—

where p and q are the projection operators on the two
orthogonal "blades" into which the electromagnetic
field can be decomposed (and p is a scalar). They
satisfy

ct —= (—g)'e R"'&R '/R tR«

should be the gradient of a scalar n, namely

0!p,v Qv, p, =0.

p'=p; q'=0; ptI=O; p+tI=1.

In the null case we have, instead,

(10)

For any such manifold a bivector ffeld f„„can be
determined uniquely (up to a constant of integration)
which satisfies the source-free Maxwell's equations. The
case

P» being the projection operator on a null vector g. We
want to find the independent conditions required for a
matrix E to fall into one of these two types. First of all,
in order that its eigenvalues be (p, p, —p, —p) (with
p=0 in the null case), it is necessary and sufficient that
its secular equation be of the form

E„„EI""=0

corresponds to a null electromagnetic 6eld, for which
the two invariants,

(Xs—p')'=0I,(y) =E'—H'

Is(f)=E H, By means of standard formulas of matrix theory' it
can be easily shown that this is the case when the fol-' C. W. Misner and J. A. Wheeler, Ann Phys. 2, 525 (1957).' Compare also G. Y. Rainich, Trans. Am. Math. Soc. 27, 106

{j.925).
3 Greek indices p, v, p, a, etc. range from 0 to 3. e„„p is the alter-

nating tensor whose components are 0 and ~1. A comma and
stroke signify, respectively, ordinary and covariant differentiation.
rtI'" is the tlat-space metric, of the type (1, —1, —1, —1).

4 As far as the structure of the electromagnetic Geld at one point
is concerned, compare J. L. Synge, Relativity: The Specia/ Theory

a (¹rth-Holland Publishing Company, Amsterdam, 1956), p. 326.' The quickest way is to follow the method proposed by H. E.
Fettis, Quart Appl. Math. . 8, 206 (1950).
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lowing conditions are fulfilled:

Tr R= Tr R'=0,
Tr E4=-', (Tr R')' (=4p'). (12)

But this is not enough; we must consider the possibility
of a degenerate matrix in which the eigenvectors do
not span the entire space. Let us envisage first the
non-null case and suppose that, starting from a general
matrix Q (with Q„„=Q„„)with distinct eigenvalues, we

go over into R with a continuous transition. Since the
eigenvectors of Q are orthogonal (in the Minkowskian
sense), the only thing that may happen —and we want
to avoid —is that a space-like and a time-like eigen-
vector collapse into a null eigenvector, always remaining
orthogonal to one another and to the other two. In a
particular frame of reference we must therefore exclude
the case in which there are oely three eigenvectors, say
(1,1,0,0), (0,0,1,0), and (0,0,0,1), with respective
eigenvalues p, —p and —p. It can be seen by a direct
computation that this amounts to having

the differential operators

8 =0&& V':

$8.,8pj=g&'c&.pB)
(19)

FxG. 1. The two-blade structure of the electromagnetic field.

0
0

p —o 0 0
2p —0 0 0

0 —p 0
0 0 —p

with 0-&p. Hence we must demand instead

N0 =C028) 82= C210)

N1= C123& 83=C310 &

(20)

It is interesting to remark that out of the 24 scalars

(13) c p~ only folr enter in our equation, namely

In the null case we do allow coalescing eigenvectors,
but we require at the same time p=0. Thus, in general
the condition

p(p —0.) =0,

together with (12) suKce to insure (9). Although (15)
has been deduced with a particular choice of the basis
vectors, its meaning is patently invariant.

3. CURL CONDITION

The fourth-order conditions (5) can be written in a
much simpler way' if the metric tensor is expressed
through four orthogonal unit vectors 2' & ~ lying in the
two blades determined by the Ricci tensor R„„(see
Fig. 1):

g„„=q p)& &„)(»„

RX& '= ap0 ( ~.

The essential quantities one has to deal with are the
structure coefficients

c.p,
——LX~ &„,,—X'&„,,jX~»9.'»"= —c.,p,

which determine the commutation relations between

'G. Rosen, Phys. Rev. 114, 1179 (1959). The geometrical
meaning of the condition a=const was partially illustrated by
E. T. Whittaker, Proc. Roy. Soc. Edinburgh 42, 1 (1921}.

'The first letters of the Greek alphabet (o., p, p .) only
number the "legs" of the "vierbein. "

0!0= —N1) A2 = —'V3)

(21)
O.1=—Sp, n3 = 'V2.

To find the geometrical meaning of these equations,
let us forget for the moment the orthogonality properties
of the X's and think of the agee properties of our two-
bladed structure. The most important quantities one
can construct when considering a set of blades Lthe-
blades, say, spanned by all vectors orthogonal to ~('&

and 2&'&j are the scalar densities

(22)

Their vanishing is the necessary and sufhcient condition
in order that the —blades be integrable'; i.e., that,
when connected, they form a family of two-dimensional

surfaces. In general gp and u1 describe how, so to speak,
the blade rotates around itself on going from one point

to another. It can be easily proved by direct substitution

that when the basis vectors 0'p~ and 2('& are replaced

by a linear combination thereof,

rl, '&'& = a3 &'&+M,o&,

X'&'& = cX&'&+dX&" (D= ad —bc' 0)

Compare, e.g., E. Cartan, I.es systemes digerentielles exterieurs
et leurs applications geometriqles (Paris, 1945), Chap. III.

the intrinsic components of the vector n„are just, in
fact,
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(23)

define (up to a factor) on the —blade a controvariant
vector v through its intrinsic components

w =v 2&"&~ (0,0,b2, b3).

We are then led naturally to consider another blade,
the one defined by u and v (0-blade) and to look for its
integrability conditions. It turns out that, as a con-
sequence of Eqs. (20), the 0-blades fulfill a PfafPs
condition /ess restrictive than the full integrability: if
we go from one event to another following the O-blade,
we always stay on a three-dimensional hypersurface,
on which n is constant.

Let us erst notice that

alld

ii&2)up&3)v l &2) v/&3)u —( g) vguv pvg&0) —/&1) (24)

X&'iud&'&" —X&'& "X&nu= —(—g)
—4uv p9, &'& X'@, (25)

as one can check easily in the frame of reference in which
the matrix ~~X& &u~~ is diagonal at a given point. Hence
we can write, completing the definition of the scalars
I and w consistently with (20) and (18),

Uo= (—g) *233, t)O
——(—g) ~23,

Ui= (—g) ~ui, bi ——(—g) &v,.
(26)

Our Eqs. (20) can then be written in a more concise
form as follows:

W p ~+pR+ I+&~
(27)

Q p=6 p&'g ~ 8 g.

The suffixes + and —indicate that only the components
in the corresponding blade are taken into account;
3+3~ and e 3~ are the Levi-Civita symbols (values &1
and 0) in two dimensions.

The meaning of (27) can now be read directly: To
get the vector grade, one must rotate in each blade the
two vectors u and v by a right angle (a hyperbolic
right angle for the time-like blade); grade, aside from
a constant factor, is the sum of the vectors obtained
in this way. It is therefore clear that grade is orthogonal
to both u and v and hence to any linear combination
thereof, which is just the same as saying that the
0-blade is contained in the hypersurface +=const.
Equations (27) imply therefore a property which has

the u's undergo the transformation

Up ~ Up =D(&3Up+bUi)v

Ui ~ Ui =D(t:Up+&EUi).

For this reason uo and g~ determine a direction on the
+ blade; if in fact for a definite choice of 2"& and 2&'&

we define the vector u by taking its intrinsic componentsI =U X' & to be proportional to (U3,ui, 0,0), the same
proportionality will hold for any other choice. In the
same way the two scalar densities,

nothing to do with the fact that the 2's in each blade
are orthogonal: it is an &3@23e property of the two-blade
structure. But this alone is not sufhcient to determine
the vector grader, it says only that it must be orthogonal
to the O-blade, leaving ~2 free choices: Eqs. (27)
supply also the missing identification.

for the field

fuv, p+fpu, v+fvp, u
= Ov

f"=4n h.~u—

(2g)

(29)

(where ju and pu are any two vector fields), implies in
fact that

~ fu, , pe"" '=$ $ g 3 " '=0
& fu, p3'""=au, pk.n.3"""=0 (30)

which are the integrability conditions for the (-gblade
Lsee (22)$. The other quadruplet yields the same con-
dition for the other blade.

The null case occurs when the two orthogonal blades
have a null vector —say $u

—in common and lie there-
fore in a hyperplane tangent to the light-cone. The
conservation law for the energy-momentum tensor,
now of the form

(P(„=0) (31)

means simply that $u is a field of null geodesic lines, "
for which the vector P~„$" is parallel to P. Moreover
the fourth-order condition (5) becomes empty in this
case. The definition (4) of nu is in fact equivalent to
Eq. (74) of reference 1 which, not containing any
reference to o., can be established even in the null case;
but from (31) it is easily confirmed to amount to 0=0.
The energy-momentum tensor bears no trace left of the
position of the blades, except for the null vector $u
about which they "swivel;" but Maxwell's equations
contain more than that. In the null case, therefore, the
Geld cannot be recovered from the Ricci tensor, except
when the Geld is not everywhere null in a neighborhood
of the point we are considering, since then continuity
arguments complete uniquely the solution.

9 For the de6nition and properties of simple bivectors, compare
J. A. Schouten, Ricci-Calcllls I',Springer-Verlag, Berlin, 1954),
p. 35.' See also l.. Mariot, Compt. rend. 238, 2055 {j.954).

4. NULL FIELD

A null field is a particular case of the simple' field
("extremal, " or "essentially electric" according to
Misner's terminology' ), in which only the invariant
E.H vanishes. A simple field defines at any point two
orthogonal integrable blades, as one can see by noticing
that this corresponds to a constant n (0 or 2r/2). This
statement holds even for the null case, albeit then o. is
not defined. The first quadruplet of Maxwell's
equations,
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It is therefore of importance to study the permanenc~.
properties of the null Geld, that is, to find under which
conditions Maxwel1's equations will keep null a field
initially null on a space-like hypersurface. Mariot"
has in this connection proved the interesting theorem
that this is so if the g-field is integrable, i.e., if it. is
orthogonal to a family of hypersurfaces. The geometrical
meaning of the conditions imposed on the actual

"L.Mariot, thesis, Paris, 1957 (unpublishedl.

geometry by the existence of a null field is, however,
not yet c1ear.'"
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The consequences for the electromagnetic interactions of strange particles of some proposed symmetries
of the strong interactions are discussed, A minimal electromagnetic coupling is assumed. It is shown that
if the interactions with both m and E mesons of the nucleon and cascade particle are identical, if one neglects
the n — mass difference, and if charge independence is satisled, then the electromagnetic form factors of
the &0 and 50, and in particular their magnetic moments, vanish. This is independent of any assumed relation
between the A and Z interactions, such as global symmetry. It is also shown that the same conditions,
together with charge conjugation invariance, imply a generalized form of the Pais-Jost-Pugh theorem about
processes involving only meson or photon external lines. If there is still more symmetry for the strong inter-
actions, as in the case where the x interactions are globally symmetric and the IC interactions also have this
doublet structure, it is shov n that the E.' acts as a completely neutral particle insofar as electromagnetic
interactions are concerned.

I. INTRODUCTION

'HERE have been a number of proposals that the
strong interactions of baryons with m. mesons

and E mesons possess more internal symmetry than is
implied by invariance under conventional isotopic spin
rotations. ' ' In this paper we will examine some of the
consequences of these proposed new symmetries for
the interaction of these particles with electromagnetic
fields. Some of these results have been stated before
under more restrictive assumptions than we will make
here, and part of our purpose is to indicate how strong
the symmetry required to derive a given result may be.

Ke shall assume the "principle of minimal electro-
magnetic coupling, '" i.e., that the fundamental inter-
action of the electromagnetic 6eld is only with the
current 4-vector of the charged particles. All other
interactions of the electromagnetic Geld are assumed to
arise through the combined ejII'ects of the strong inter-
actions and these minimal interactions. There is some

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' M. Gell-Mann, Phys. Rev. 106, 1296 (1957); A. Pais, Phys,
Rev. 110, 574 (1958);J. Schwinger, Ann. Phys. 2, 407 (1957).

'G. Feinberg and F. Gursey, Phys. Rev. 114, 1153 (1959).
This paper will be referred to as I. J. Sakurai, Phys. Rev. 113,
1679 (1959).

~ M. Gell-Mann, P'roceedings of the Six/h Annuu/ Rochester
Conference on High-Energy Physics (Interscience Publishers, Inc. ,
New York, 1956); A. Pais, Phys. Rev. 86, 663 (1952).

evidence for this assumption in m-nucleon physics,
where the program of calculating the nucleon magnetic
moments and form factors without introducing non-
minimal terms has been moderately successful. ' In
strange-particle physics, there is very little evidence
about this, as the electromagnetic properties of the
strange particles, other than their charges, have not
been measured. There is, however, the original argu-
ment of G-ell-Mann and Pais' that the minimal prin-
ciple is su1Ticient to eliminate strangeness-violating
electromagnetic decays like A' —+n+y In this .paper
we use the minimal expression for the electromagnetic
interaction to determine the transformation properties
of the electromagnetic interaction under certain
permutations of the baryons and mesons. Any terms
which transform the same way could be added to the
minimal interaction without changing the conclusions,

In Sec. II of the paper, we discuss the electromagnetic
vertex operators, and in particular the magnetic
moments, of the baryons. In Sec. III, a theorem proven
by Pugh' is generalized and proven under diGerent
hypotheses than he used. In Sec. IV the electromagnetic
vertex of the neutral E mesons is discussed.

4 Federbush, Goldberger, and Treiman, Phys. Rev. 112, 642
(1958).' R. Pugh, Phys. Rev. 109, 989 (1958).


