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Quantum electrodynamics is transcribed into a Euclidean
metric. A review is presented of the quantum action-principle ap-
proach to quantization, with its automatic emphasis on the
dynamical variables associated with the physical degrees of
freedom. Green's functions of the radiation gauge are de6ned, and
then characterized by diGerential equations and boundary condi-
tions. These Green's functions are of direct physical significance
but involve a distinguished time-like direction. A gauge trans-
formation is then performed to eliminate this dependence, intro-
ducing thereby the Green's functions of the Lorentz gauge, which
lack immediate physical interpretation. The latter functions are
now primarily defined by differential equations and boundary
conditions, and form the basis for the analytic extension which is

the change from space-time to Euclidean metric. Some properties
of anticommuting matrices are discussed in relation to this metric
transformation. Real Euclidean Green's functions are defined by
correspondence with the Lorentz gauge functions and the ap-
propriate differential equations obtained. Invariance properties of
the Euclidean functions are discussed. The individual Euclidean
Green's functions are given an operator construction and then
combined into a generating Green's functional which is interpreted
as the wave function, in a canonical field representation, of a state
characterized by the Euclidean action operator. Differential
operator realizations and some other bene6ts of a canonical
variable description are exhibited.

INTRODUCTION
''N a recent note' the author has remarked on the
~ - possibility of establishing a correspondence between
the quantum theory of fields in space-time, and a
mathematical structure that employs a four-dimensional
Euclidean coordinate manifold. In that note the sim-
plifying fiction was adopted, for the purposes of exposi-
tion, that all 6eld components are kinematically inde-
pendent in the standard form of the action principle
that produces first order diGerential field equations.
While this is true of the only known kind of F.D.
(Fermi-Dirac) field, with spin -„ there is no B.E. (Bose-
Einstein) field of this type. Accordingly, we must supply
some assurance that the discussion applies to real
systems, and the 3&maxwell field is naturally indicated as
an example of more than routine interest. Thus the
content of this paper is the detailed transcription of
quantum electrodynamics into the Euclidean for-
mulation.

THE ACTION PRINCIPLE

We shall need to review some aspects of the develop-
ment of quantum electrodynamics from the action
principle. (Perhaps one should record at this point the
author's opinion that the currently popular indefinite-
metric quantization of the electromagnetic field is
unphysical and unnecessary. ) The Lagrange function
for the system of Maxwell and Dirac fields is

,'F~"(B„A„B.A—„)-+',F~"F„,—+gPq~B„-Q
+2inzfPP 2iePPp "ykA „, —

where symmetrized or antisymmetrized multiplication
is to be understood for B.E. and F.D. terms, respec-
tively. The electric current operator formed from the

* This paper was largely written during the summer of 1958 at
the University of Wisconsin, Madison. The hospitality of the
Department of Physics is gratefully acknowledged.' J. Schwinger, Proc. Nat. Acad. Sci. U. S. 44, 956 (1958); and
lP5h' Annual International Conference on High-Energy I'hysics at
CEEX, edited by B. Ferretti (CERN, Geneva, 1958).

while
p=i%

is a real, antisymmetrical matrix and the matrices py&

are symmetrical and imaginary. The imaginary, anti-
symmetrical charge matrix q possesses integer eigen-
values. This way of dehning the charge characteristics
of the P field is designed to emphasize that the coupling
constant e is primarily a property of the electromagnetic
field. Indeed, by a suitable scale change of the fields, e
is removed from the coupling term to reappear only in
the field strength term:

~e'Il "Ii

Kith the latter field definition, the gauge invariance of
the theory refers to the purely kinematical trans-
formation

y ~ eiqky

A„+A„+r)„X—
The application of the stationary action principle

extracts from the Lagrange function the field equations

in which the product Af is to be symmetrized, and the
in6nitesimal generator

G = d~„p F~"5A „+,'/pe—~5$]-

Hermitian field f,
j~= ie4A~Q, —

is a B.E. quantity in the latter context. The Dirac
matrices pj" have the algebraic property
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where the second form refers to the special coordinate
system that identiQes I„, the unit time-like vector
normal to the surface r, with the time axis. To facilitate
the interpretation of this generator it should be noted
that, while all components of f obey explicit equations
of motion, the only Maxwell field equations of that type
are

the remaining equations,

~I i= ~I~ t—~i~ I;, ~k~

containing no time derivatives. Thus the magnetic field
(in this coordinate system) is not an independent
dynamical quantity, and the longitudinal part of the
electric field is an explicit function of the Dirac held
through the charge density, as given by

~F'"(x)= —8") (dx') n(x —x') j'(x'),

where

—t t)'+ (NB)'$$(x —x') = O'B—o'L)(x x') =—8(x x')—

From the longitudinal component of the equation of
motion for A~, we learn that

Ao(x) = )ll(dx') X)(x—x') jo(x')+ BoA(x),

in which h. (x) must remain arbitrary to express the
freedom of gauge transformations. Hence it is only the
gauge-invariant transverse vector potential ~21„ to-
gether with the complementary variables —Ii'~, that
qualify as the independent dynamical variables of the
electromagnetic held.

Since a variation of the longitudinal part of the vector
potential is a gauge transformation

we remove from g the corresponding infinitesimal gauge
transformation

8gf = ieqbh. g,

and observe that these contributions to the infinitesimal
generator are

where the brio and bf possess the properties of com-
mutativity or anticoDUnutativity characteristic of the
Geld statistics. Only one set of complementary variables
for the Maxwell field is changed in this form and the
interpretation of the generator' appropriate to that
circumstance yields for the nonvanishing commutators

5(x'—x")—PA $(x), —8"(x')]

=~(5o'8(x—x')) = 51, 'b(x —x') —Bo&'n(x —x'),

while the treatment of all components of P on the same
footing implies that

b(x' —x")g (x),lP(x')) =b(x—x').

Various additional commutation properties which can
be derived from these fundamental ones will be stated as
they are needed.

GREEN'S FUNCTIONS

Ke now proceed to the Green's functions of the
Maxwell-Dirac system. Although the de6nitions and
relevant properties of these functions are most naturally
and compactly obtained from the device of external
sources used in conjunction with the action principle,
that procedure may not provide, for some, the convic-
tion that accompanies the following explicit considera-
tions. The Green's functions are symmetrical functions
of B.E. coordinates, $& $„, and antisymmetrical func-
tions of F.D. coordinates, x~ x2~, de6ned as vacuum
expectation values of time ordered products:

G+(»» 4. 5)

The vacuum referred to here is the lowest-energy state
of the fully interacting system' —no use is made of the
device of adiabatic decoupling. Positive or negative
time ordering is the assignment of multiplication order
in conformity with the sequence of projections on a
time-like vector e„, the positive sense of multiplication
being from right to left. The quantities

o+(xt xo.)=e (xo . xi),

are antisymmetrical functions of the F.D. coordinates
that assume the value +1 when the' time-ordered
arrangement coincides with the written order. The
symbols

Thus the generator of independent variations of the
dynamical variables at a given time is

G )t tlot rpoo6rA„+or@,+j

are used to give a compact expression to a sum of terms.

2 J. Schwinger, Phil. Mag. 44, 1171 (1953).
3 Thus there are no apparent difBculties of physical interpreta-

tion, such as P.A.M. Dirac LQuantum Mechanics (Clarendon
Press, Qxiord, 1958), fourth edition, g believes exist, which arise
from an unwarranted physical identification of states that do not
include the eGects of interaction.
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The simplest example is

Gy($1b) Pl&2 ((~ Pl($1)~ P2(b) )+)~&np+s'+($l b).
The operators A„(P) are defined, in the special coordi-
nate system when the unit time-like vector n„coincides
with the time axis, by assigning the value zero to the
arbitrary gauge function h. ($). Thus Ao is the instan-
taneous Coulomb potential of the charges, and Aq is
entirely transverse, which properties characterize the
radiatioe gulge. The property of transversality is de-
scribed more generally by

B„A&=BA =0,
ay= ap+n~n"ap)

which also applies to the symbolic quantities 2, since

e8=0.
Hence

(a)2 Gg(x/) =0, n 1 v

distinguishes the Green's functions of the radiation
gauge, G(~&.

The two classes of Green's functions are complex
conjugate,

G =6+~,
and, in the simplest case of two points, the real functions
formed by addition of G+ and G become definite
functions on removing the alternating sign factor,

G ' '(k ()+G-' '(M)=({~(6)~(b)})&o
oy(xlx2)LGy (xlx2)+G- (xlx2)] (g'(xl)pp(x2) j)

The differential equations obeyed by the Green's
functions combine the Geld equations and the commuta-
tion relations, the latter appearing to characterize the
discontinuities encountered at equal times. In applying
the Maxwell Geld equations the following commutators
are required:

8(x' x")il P&'(—x) A (x')]
= (S„&+n~n„)a(x—x')+ a~a„m(x —x')

=P,~+n~n, —a~a„(a )-']S(x—x'),
and

8 (xo—x")p'I o (x),p(x')] =—a"0(x—x') epp (x'),

which express the operator properties of the transverse
and longitudinal electric Geld, respectively. The latter
result has been derived from, and in turn implies, the
charge density commutator

a(x' —x")Lj'(x),y(x')]= —a(x—x')eye(x').

The Maxwell diGerential equations for the Green's
functions G+.&~' emerge as

(88—82) 21G+&"&(x,p)

=(1—aa(a') ')21(1/i)&(E—b)G+&" (x,b ")+. .
2A

+(a(a') ')21 2 a(h-x.)eq.G+&"(x b" )
o=1

+trloi pveqG~&"& (xl x2„$1&1,b .),

where the dots following the first right-hand term signify
the v-2 similar ones containing b(b-$ ), &2~3 ~ ~ l.
These terms are produced partly by the transverse field
commutation properties, and partly by the difkrential
operator contained in A, with the aid of the relation

(aa —a2)nn(a2) —'= —nn+ a(a —8) (a') '.

The last term of this equation is the Green's function
expression for

((4(»)" 4(x2-)J(b)~(b)" )+)~(x),
which is obtained on writing

~(x) = 2iek—(x)PVq4 (*)=«2iPV eg(x)4 (x)

=lim tr'2ipVeq(p(x)It (x'))~2+(xx').

The limiting approach of x' to x can be performed
symmetrically from the past and the future.

In consequence of the conservation, and of the opera-
tor properties, of the current vector we have

(B„)21troipV"eqG+' '( x2„$1(1,$2 ~ ).
2n

= —P 5 (b—x.)eq.G+&s& (»&2 ),

which enables the Maxwell diGerential equations for the
Green's functions to be presented as

(88—82) 21G+&~& (x,p)
= (1-»(a')-')~ L(1/')~(~ -r )G.&"&(*,~ )

+ +tr-'2pVeqG+&@( $1/1 b .)]
These equations still need to be supplemented by the
condition of transversality characteristic of the radia-
tion gauge. This requirement is explicitly satisGed in the
following form of the Maxwell equations,

(—a') 21G+&"'(»5)
= L(i—aa(a') —') (1—M(a')-')]21

x[(1/')~(b-b)G. (*,~ )
+ +«"P"veqG &-"( M,b")7"

Complex conjugation produces the analogous diGerential
equation for G ("&,

(—82)21G &~&(x,$)
=L(1—Ba(a') ') (1—aa(a')-')]pl

XL~(P —P)G "'(*,P. - )+" tr 'iPveqG '"—("-66 b"-)]
The Dirac equations for the Green's functions are

Qv(1/')a+ ~)*.G. ' (»~) (~v q) G, ' -(»* ~ ).
=b(xl —x2)G~& &(xo ~,p) —~ ~ .,

where the dots indicate the 2e—2 similar terms con-
taining (-1)'8(xl—x,), a~3 ~ 2n. Involved here are
the Dirac GeM commutation properties and the relation

a (x'-xo') Q (x),A„(x')] n„n„5)(x-x') ieqpv "f(x)
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The latter is the source of the additional terms necessary According to the resulting product
to convert

~(r)~(r')G(*,~'. ~.) =G(*,~A' ~.),
&(lf~( )A(*)N(*) ~($) ") )~( )

into the Green's function G~( )(x~ x2„,x)$) $,).
The Green's functions are also characterized by their

spectral properties. When all time coordinates are
distinct, the Green's functions assume the general form'

((X(s~)X(s2) )+)e+

where )c(s) refers either to the B.E. Geld A (g) or to the
F.D. Geld P(x). Hence G+(~) contains no negative fre-
quencies in its dependence upon the diGerences of the
consecutive time coordinates, while 6 &~& contains no
positive frequencies. The connection between the spec-
tral characteristics of the two types of Green's functions
is expressed by complex conjugation, and also by the
analytic continuation'

G (s) (s) ( 1)nG (B) ( e s(s)-

The verification of the latter involves more than the
comparison of the two time-ordered forms at distinct
times since the Green's functions also contain delta
functions of the time diGerences. The diGerential equa-
tions take account of these terms and we observe that
the operation —e ', which reverses the sign of all delta
functions, together with the factor (—1)",produces the
G differential equations from those for G+.

THE LORENTZ GAUGE

We now begin the task of subjecting the radiation-
gauge Green's functions to a gauge transformation that
is designed to remove the explicit dependence upon the
unit time-like vector m„and thereby introduce the
Green's functions of the Lorentz gauge. The preliminary
transformation,

and the symmetry of the Green's functions in B.E.
coordinates, these symbols are commutative (we are
now imitating the external source procedure). The Dirac
differential equations for the functions then appear as

(Py(1/i)8+Pm)x(G+(x, () (Py—qe) G(~( x, x((). )

+ (Pyeq() il(8') 'O', ))G+(x,g)

=S(x,—x,)G, (x, ,g) —.

which indicates the Dirac Geld gauge transformation
implied by that of the Maxwell field,

2n

G~(x, t) = g exp[ —ieq. B((l') 'Q, (x.)]G~(~)(x,&).

The utility of the 8 symbols is clearly shown in this
result which constructs the G functions by means of an
infinite series of G&~& functions, with increasing numbers
of B.E. coordinates. The new Green's functions obey the
Dirac equation

(PV (1/i) ~+~P)*~G+("(x,k) (Pveq) —~G+("(x,xib .)
=8(xg—x2)G+(~) (xg . ,P)—

and the same form applies to the complex conjugate
functions G (~)(x,P).

Before obtaining the Maxwell field diGerential equa-
tions obeyed by the G&+, which are the desired Lorentz-
gauge functions, we must notice another aspect of the
symbols Q, (f). If we compare the differential equa-
tion characterizing G~(x, g) $„) with the one for
G+(x,t( $„$)= S($)G~(x,g) $„),we recognize that

L(—~') s~, O'(5) j~hi) = —i~(E—6)

The required form of this property is

exhibits radiation-gauge functions in terms of new
functions which, in their dependence upon each variable
g, remain arbitrary to the extent of added gradients. If
the latter functions are restricted by the diGerential
equations,

(—~')st+(x, k)

=-~(~.-b)G. (*,~' )+ .

+(1—88 (8')-') s( tr-', iPyeqG+ ( $($(,b ),

the radiation-gauge diGerential equations will be repro-
duced. To present the analogous Dirac Geld equations
most conveniently, we introduce the symbol 8,($),
which is defined by

8($) (G, x& t.$,)=G(x, tg& . .$,). .

exp — (d&)X(&)()',(g) ( 8')s)—

&&exp ~ (d$)X($) S($) —(—8')s 8(())= —9 ($)),

where we choose

—i) (()=Q. eq. ll(8')-'b(g —x.).

Accordingly, the insertion of

t

G =exp ~~ (dt)X(e)e(g) G,(')

jyyto the l&Iaxwell di6ereiitial equations yields a similar
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=exp ie~ (d&)fq)»(x) —
P)

+q2»(x2 —&)5e(&) G~&i&(x)x2)

set for the G+&» that contains in the left-hand member G~&~& (xqx~)
the additional term —iX(gq)XG+&»(x, $2 ~ ). But in
view of the relation that follows directly from the Dirac
Green's function equation (in contrast with the deduc-
tion of the identical radiation gauge result from operator
properties),

(~.) t '0 -"qG+'"( M ( )
2n

= —Z ~(~.—-) q.G""(,b ),

this additional term 6nds an exact counterpart already
present, and

(-~') G. "(,~)=~'~(~.—~.)G. '(,~ . )+
~tr-,'iP~eqG, &» (x~,g„b" .)

is the desired set of Maxwell diGerential equations for
the Green's functions of the Lorentz gauge. To these
equations must be added boundary conditions that will

reproduce the spectral characteristics of the radiation-
gauge functions. We specify the Lorentz gauge com-
pletely by requiring that the G+&+ contain no negative
frequencies and the G (~) no positive frequencies in their
dependence upon the differences of consecutive time
coordinates. The two classes of Lorentz-gauge functions
are then connected by complex conjugation and by the
analytic continuation

G (L) (s) ( 1)nG (I) ( e-n i&)

Ke have now shown4 that the radiation-gauge Green's
functions, which have a direct operator de6nition and
corresponding physical interpretation, but involve a
distinguished time-like direction, can be constructed
from Lorentz-gauge Green's functions,

G~'"(x,$) = II (1—»(~') ')»-
a=1

+q,»(x —()5G &'&(x x,&)

-l" («)(d~')4»( —~)+q.»("-~)5

XLql»(xl $ )+q2~+(x2 ( )5G+ (xlx2ygg )+ ' ' '
~

The same connections between radiation™gauge and
Lorentz-gauge functions apply to the linear combi-

G~(pi$2)+G-($1)2) and &+(xlx2)LG+(xlx2)
+G (x&x2)5, the latter relations also containing the
in6nite sequence of functions

e+(xlx2)t G+ (xlx2)$1' ' '$v)+G (xlx2)$1' ' 'gp)5)
p~$2e ~ ~

The combinations of radiation-gauge functions are non-
negative, but there is no assurance that such properties
extend to the Lorentz-gauge functions. Indeed, the
general loss of the positiveness conditions that ac-
company physical realizability is made evident by the
attempt to supply a time-ordered operator construction
for the Green's functions of the Lorentz gauge.

The diGerential equations characterizing the G&+ are
satisfied by the following structure'.

G~' '(»5) = ((4'(») 4'(x2 )A (6) .A (6) )+)e+(x)

where the operators P(x) and A„($) obey

Py((1/ )8ieqA)+m5&—=0,
—82A = —2i e/ipvyp,

where the latter functions do not depend upon the time-
like vector e„but have no immediate physical signi6-
cance. The simplest examples of this construction are

The symbol ( ) signifies a linear mapping of operators
onto numbers, including the correspondence (1)=1,
which must possess the property

xp~ Mq~(~ ) 0'5*~G+ (x~&) ~ and (among others)
6~I

~(e P) L~-oA. (~),A, (&')5=g:t (~ e), -
S(e—xo'){P(x),g(x')) =S(x—*'),
~(e'-")[A(r),a( )5=o

(dkl ) (dk2 )9(kl ~1 )+~»(~1 ~1 )5
&xi x~)*=&x' xi)

and

Xp(& & ~)+.&&&(& ~ I)5G &»(~ ~& ~) inorder toreproduce the complexconjugaterelationship
of G+&~' and G &~'. The spectral requirements on the
G(~' indicate that the space-time variation of the 6elds
is represented by

4 This result was erst obtained some years ago by K. Johnson
and the author (unpublished}, using the method of external
currents.

X(x)=e '"Xe"*
(I/i) ~.x(x) =L~(x),&.5,
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where the operator P' has a non-negative eigenvalue
spectrum, and the more specific interpretation is at-
tached to ( and ) of the left and right eigenvector of P'
associated with the eigenvalue zero. The Geld operators
are self-adjoint with respect to the operation that
interchanges the left and right eigenvectors. We now
remark on the following consequence of the commuta-
tion relations,

which is to be compared with the implications of the
hypothesis that the adjoint operation is Hermitian
conjugation. The evident contradiction between the
non-negative nature of the left-hand side and the value
gpp= —1 demands a more general interpretation of the
adjoint, corresponding to the introduction of an in-
de6nite metric in the vector space. We shall not con-
tinue this approach, with its inevitable requirement that
the consistency of the various assumptions concerning
operator properties be established for the physical
situation of interacting 6elds. It is our view that the
physical operator basis used in the definition of the
radiation gauge Green's functions is entirely adequate,
the introduction of the Lorentz-gauge functions being
an application of the freedom of gauge transformations,
and not an occasion for a somewhat dubious recon-
struction of the mathematical foundation of the theory.

g+(tqt2) = W—
~

dv
2m ~

)
M P

half-plane, that yields G (t& tv) as l ~ 1 and
(-1)"G~(-t& -tv) as l'-+ —1. These analyticity
properties imply, in particular, that the values obtained
when l occupies the appropriate imaginary axis (l =+i
suKces) completely determine the Green's function, and
conversely.

A very simple illustration of these remarks may be
helpful. The functions

1
(t t ) e~us] tz—t2) ~)0

2M

obey
(82/BtP+OP)g~(tgt2) =WQ(tg —t2),

and have the frequency characteristics appropriate to
their designation. As a function of the single time
difference t=t~ —t2, 2+g+ for t)0, and 2~g for t&0,
coincide with the function e '"', which is defined for all
real t and is the value on the real axis of a function that
is regular and bounded in the lower-half t plane. The
quantities 2~g+(t&0) and 2cog (t)0) are similarly re-
lated to the function e'"t which possesses a bounded
analytic extension into the upper half plane. The
functions g+ are represented for all t by

g
—iv( t],—t2)

EUCLIDEAN GREEN'S FUNCTIONS

The Lorentz-gauge Green's functions referring to
222+ v= p space-time points involve p —1 linearly inde-
pendent coordinate differences, and these appear in p!
distinct functional forms corresponding to the various
time orderings. Each continuous function associated
with a particular time order, t("& ~ &/&», is formed
from harmonic functions of the time differences, t( '
—t( +'&, which contain only non-negative frequencies
(G~), or only nonpositive frequencies (G ). These func-
tions are also defined outside the special time domain
where they reproduce the Green's function, and can be
identified as boundary values, on the real axis, of com-
plex variable functions which are regular in various half-
planes. But the Green's function is more than the union
of its several parts. In particular„ it possesses possi-
bilities of analytic extension that are not available to the
functions' associated with a particular time order.
Thus, for distinct space-time points, but with no re-
striction on the p time variables, the Green s function
G+(t& t„) emerges as the boundary value on the
positive real axis of a function G+(l't~ t t„) which is
regular in the lower-half l plane (it is sufhcient to let
f -+ +1).If 1 approaches the limit —1 from the lower
half-plane we obtain the function (—1)"G (—tq —tv).
Similarly there exists a function of f', regular in the upper

' When the Green's function is directly connected with a vacuum
expectation value of time-ordered Geld operator products, these
functions are the unordered product expectation values that have
been discussed particularly by A. Wightman.

defines for all t an analytic function of t(=(2~) '
e ~r~~" "~j which is regular and bounded in the lower
half plane and reproduces g+ as t" ~+1,or g as f + —1. —
Similarly, the substitutions t —+ t t, v~&'v, l =pe",
+&8&0, performed in the integral representation of g

'

yields

g (l tgt2) = — dv — e
—'"&'&—"

2%2 ~ 0) 1 v

and this is a regular, bounded function of t, in the upper
half-plane, for all tL= (2~) 'e'r~~" "~].As l' approaches
+1 or —1, we obtain g or g+. The evident relation be-
tween these analytic extensions of g+ and g is such that

e &"(&i—&2&

g+ (—it2 —it2) =g (it2it2) =—
~ dv

27r v2+~2

g
—C2I) t1—t2j

2GO

where the integration contour for g+ passes below —co

and above +a&,' it is to be reflected in the real axis for
g .An analytic extension of g+ is now obtained by making
the substitutions t~tt, l =pe'e, —m &8&0, together
with v-+&'v, which gives the contour a positive
rotation. The resulting integral extended along the real
axis,

OD

g+(l td't2) =
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which is a bounded quantity for all t. In contrast, the
real functions that are analogously produced from t,+'"'
are not bounded for all values of t. It should also be
noted that

(—a'/ati0+~')g~(Wit, Wit&) =b(t, —t,),

from which we infer the formal transformation

wQ(wit) =b(t).

To facilitate the conversion of the Green's function
differential equations to the Euclidean metric, some
remarks about the structure of Dirac matrices are
needed. The matrices y& have simple algebraic prop-
erties, as determined by the metric tensor g&", while it is
the matrices Pyl' that possess the property of symmetry.
The matrix P appears here as representative of the
indefinite Lorentz (or Minkowski) metric. Accordingly,
the replacement of the latter by the Euclidean metric
will introduce matrices o.„that are symmetrical and have
the simple algebraic property

fn. n ) =24'
Ke shall inquire generally about the possibility of
constructing such matrices. It is well known that 2e
anticommuting matrices of unit square generate an
algebra with the dimensionality

1+2N+2N(2e —1)/2+ +2m+1=2'~

corresponding to the enumeration of the operator basis
formed by the independent products. The last element
of this collection is

2n+1 ~ &1' ' '&2nq

which extends by one the set of anticommuting matrices.
We now want to recognize that when these 2m+1
matrices are irreducible and possess a particular sym-
metry, 6+1of them are symmetrical, and the remaining
e are antisymmetrical.

An elementary proof employs the construction of the
algebra as the product of e independent algebras of
dimensionality 2', represented by the 2)(2 Pauli
matriCeS, 1, oi, o0, o0. The aSCent frOm 2m+1 anti-
commuting matrices n„ to 2m+3 such matrices is pro-
duced, for example, by

oi, 0.2, o0n„, a=1 ~ 2n+1.

If o.0 is symmetrical the set of 2N+1 matrices has the
same symmetry distribution as the n„, ~=1 ~ 2m+1.
The two additional matrices constitute one symmetrical
and one antisymmetrical matrix. Hence the number of
each type grows by one when n is increased by unity.
The stated result now follows from the remark that we
can begin with unity, for m=0, and it is symmetrical,
The particular construction method employed does not
inQuence the dimensionality of the two symmetry
categories.

We 6rst consider m=2, which produces the familiar

set of five anticommuting 4X4 matrices, Since there are
only three symmetrical matrices, this set is adapted to
the 3+1 Lorentz space but cannot be applied to the
four-dimensional Euclidean space. To have four sym-
metrical anticommuting matrices, we must choose e&3,
corresponding to 8&8 matrices, at least. Thus the re-
quirement of a Euclidean formulation excludes the
simplest field in space-time, the four-component Her-
mitian spin-0 field. (Majorana). In this context, a trivial
observation may be worth repeating —a four-component
Hermitian field is fully equivalent to a two-component
non-Hermitian field.

For m=3, the three symmetrical matrices iy', iy2, iy'
and the antisymmetrical matrix p are supplemented by
iysl3, iy51~, iy512, of which the first is symmetrical. The
matrices L'&12l3 are 2X2 Pauli matrices, with /3 antisym-
metrical, and we have defined
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There are a variety of unitary transformations that will

electively change the order of these seven anticom-
muting matrices and supply four symmetrical real
matrices followed by three antisymmetrical imaginary
matrices. Thus, the unitary transformation by the
matrix exp)-,'+iyoy0l05 produces the sequence: iy', iy',
iy', iy0t, ; —y', iy0ti, iy&t0 Subse. quent unitary-orthogonal
transformations will not alter this symmetry parti-
tioning. The transformation matrix exp)0imiy0), for ex-
ample, supplies the list: y'y', y'y', y'y', y'y513., —y',
p'&51&, &'&532. With n&3, we gain the possibility of
describing additional internal symmetry properties,
which appear rather differently in Lorentz or Euclidean
form, but we shall not discuss it here.

The analytic extension of the time variables to the
appropriate imaginary axis introduces the Euclidean
metric,

Gp. x' ~ +ix4.

The Green's functions also undergo additional matrix
transformations. For the vector indices related to the
Maxwell fieM the transformation is just that formally
associated with the redefinition of the coordinates, and
we shall not indicate it explicitly. With this under-
standing, g, suitable correspondence is

g (exp(W-', miyoy0t0+', ~i) ).G~&~~ (x) +-+ G&E' (x),
a=1

where, as the right side suggests, the same real Euclidean
Green's function is obtained from the two complex
Lorentz Green's functions. The eGect of this substitu-
tion on the various Dirac matrices is indicated by

p(+l ' t)(1/)0( ', ~ ', 1) p(~' ' 4)
-v"xp(~k iv'VA) h', ~i%, 1) e~(~: 6'vA)

pyopk ~0~ t

and the resulting set can be labelled consistently as n„,
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p, =1 5. The real diQ'erential equations thus obtained
are

(a8+mia~) siG&E& (x,$) e—(niq) iG&~& (x,x~P)
= a(x,—x,)G(E&(x P)—

(—a') s&G&~& (x,t)+e tr-,'aiqG&~& (xgi(&, t2 )
=~(&-&)G("( r ")+"

The accompanying regularity conditions demand the
boundedness of each G~~& (xi x2„,$i $,) when neigh-
borhoods of coincidence of the 2m+

appoints

are excluded.
The Euclidean Green's functions are invariant under

a variety of transformations, in the sense of

Four-dimensional rotational invariance is described in
the evident manner with the Dirac field spin matrices
given by ~o-„„, where each

~„,=(1/2i) La„, a, j, p, ~=1 . 4

is antisymmetrical and imaginary. If the matrix q is
invariant, the reQection of any coordinate axis implies
the corresponding vector transformation for the Max-
well field, while the Dirac Geld reQection matrices can be
chosen as

Ep, =&go!6) p, —1 ' 4

which are real, symmetrical, anticommuting matrices.
Ke also observe that the geometrical connection be-
tween reQection and rotation is correctly described,

Invariance under . the coordinate-independent trans-
formation of the Dirac field that is generated by the
imaginary antisymmetrical rotation matrix

(1/i)agar f(= tg)——,
implies the conservation of the fermionic charge repre-
sented by /. There is a similar transformation associated
with the electric charge matrix q. The two charges may
be identical, but we need not insist on this. Indeed, the
coordinate reQection transformation that we have de-
scribed is an invariance operation only when / and q are
independent. If these charges are the same (or are
coupled together) the refiection transformation must be
accompanied by an additional sign reversal of the
Maxwell field, for each E& induces a reQection of the
fermionic charge. This is a combined coordinate and
charge reQection transformation.

The matrix ee, or n7, induces a coordinate-independent
invariance transformation that also implies fermionic
charge reQection. Hence one could combine E& with
either a6 or nq, yielding in& or /n&, which describe
coordinate reQections without charge reQection. It is

interesting that the matrices now under discussion are
imaginary, and yet the reality of the Green's functions
is not disturbed since a transformation involves an even
number of such Dirac matrix factors, Let us also note
here that the algebraic sign of nz is without physical
significance since the Green's function transformation
described by the imaginary Dirac matrix n5, or —ilns

Q](xQQ3n4, has no other e6ect than to reverse this sign.
The full equivalence of all directions in the Euclidean

space makes it unnatural to relate the Green's functions
to operators ordered by coordinate projection on some
line, and one might seek to introduce an invariant
ordering parameter (proper time). We shall follow a
diGerent course, however, which also has its counterpart
in space-time where it is the formulation to which the
source techniques lead. To avoid emulation of the latter
procedure, we set down directly the following operator
construction of the Euclidean Green's functions

G(x,k)=(OI4(») 0(»-)A(k) A(~) IW)/&OIW),

where

tA (P),A„(f)j= LA (g) II'( )j= (P( ),It'(*')) =0,

throughout the four-dimensional space. The symmetry
properties of the Green's functions are thereby repro-
duced. In addition to these commutative or anticom-
mutative fields, there is a complementary set of fields,
B~(f), p(x), which are also everywhere commutative or
anticommutative, and obey

'L&.(~),A. (Y)l=~"~(~-e),
{y(x),It (x')) =S(x—x').

All other commutators vanish. The state (0~ is charac-
terized by zero -eigenvalues of the second operator set,

&Ola(g)=0, (Oly(q)=0,

while
~
W) is described by

$(aB+mia~)P(x) eiqaA (x—)P(x)+y(x)j ~
W) =0,

L-~ A«) —:~«)'q-«~)+'~(ajar W)
=0

One verifies immediately that the diGerential equations
are reproduced by these definitions. In virtue of the
complementary field commutation properties, the opera-
tor definitions of the vector

~
W) are satisfied by the

construction
iW)=e ~i0),

where

~p~ v O!p, ~p ~&a!5 —~~ p &g'O'. p )

and ~0) is the right eigenvector of 8 and Q associated
with zero eigenvalues. If these states are to exist it is
necessary that the 8 and A operators be Hermitian.
That property, together with the choice of f and P as
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mutually Hermitian conjugate operators,

4(x) =4(x)',

assures the reality of the Green's functions. We verify
the latter statement by remarking that

(&'=B'=Olt(»)" 0(» )A(b) A(5.)e ~" "'l0)

implies

G(x,~)*

O'=B'=Ol ~( ) i~(*..)A(~) A(~,)
— ~' lo)

(0
l
e—w [iy, aI

l 0)

where the factor of i associated with each F.D. field
refers to the sign reversal induced in every pair of such
field products by the adjoint operation. Since the
conversion of + to )P and the interchange of the null-
eigenvalue states is a canonical transformation, the
equivalence of the two forms, and the reality of the
Green's functions, follows.

The latter discussion shows that while the Euclidean
action operator 8' is not Hermitian, it is connected with
its Hermitian adjoint by a unitary transformation. In
contrast with this expression of reality, the Green's
function invariance properties to which we have referred
are associated with unitary transformations that leave
the action operator invariant. An example that has not
been mentioned is provided by the unitary operator

U =exp (ie),P),),

where I'I, the Euclidean total linear momentum vector,
is the Hermitian operator

P~= 'r(dx) Bp8pAy+Q Bp)p

=, (d.) A.~„B,+
eJ z

Evidently,

l A,P,]=(1/Z)B,A, PP,P,]= (I/Z)8, $,

and generally

U 'x(s) U=x(&+e)

The action operator is invariant under this transforma-
tion, and since

(OlP) =0, Pg l0)=0,

we verify that the Green's functions are translationally
invariant. We give this property another form on
replacing the coordinate variables with the comple-
mentary momentum variables. This is expressed by the

transformation

G(x, "x, ~," P)

t (dpi) (dk„)
expLi(pixi+ +k.(„)]

(2x)' (2m)'
XG(pi p2 ki' ' 'k„).

Under the related field transformation, the action
operator acquires the form

wL!t,A]=-', r(dk)A( —k)k'A. (k)

+-', i (dp)0( —p) (np+mn~))t (p)

lM J(d)—)(d)')(~&)

~(p+p'+k) A (k)0(p)V~&(p').
(2x)'

The translational invariance of G(x, g) requires that
G(p, k) contain the factor 5(pi+ P2~+ki+ +k„),
and this follows directly from the invariance of the
operator expression for G(p, k) under the transformation

U 'A (k)
—U = e"A (k)

V(P) = "'V(p)

A compact expression of the totality of Green's
functions is obtained by defining the generating
function (al)

t («i)" (d».) (db)" (d&)
G[y'B'] = I++

(2e)! v!

X-B(S)' "-B(r,)'~("-)' "~( )'

XG(xi" .x,„,(, $„).

Here the B) (()' are a continuous set of arbitrary real
numbers, while the p(x)' are completely anticommuting
symbols formed from an algebra external to that of the
F.D. fields and thus are commutative with the latter.
We shall also use the notation P(x)' for reference to
symbols that are anticommutative with the operator
fields )P(x), P(x). The connection between the two sets is
produced by the operator that generates the canonical
transformation of sign reversal of all F.D. fields, under
which the action operator is invariant, namely

p= exp xi (dx)$(x))P(x) =exp —xi (dx))P(x)p(x)
J

The equivalence of these two forms depends explicitly
on the even number of components possessed by the
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F,D. 6eld. (The integrals are given a meaning by an
equivalent summation over arbitrarily small four-
dimensional cells. ) When acting upon the zero-eigenvalue
states of the operators @, or P, the Geld reflection opera-
tor p exhibits the eigenvalue +I,

&ol p=&ol, plo)= lo&

Accordingly, we write

y(x)'&ol =&old(x)',

I
09(x)'=0 (*)'Io),

where (l(/(x)' in the position of an operator contains p, and
thus is anticommutative with all )I/ and p operators. The
summation defining the generating function, or Green's
functional, can now be performed and we get

cL/'//j=&o ~xv —/ (/()// Q) s (.()'.
x&"v

)
(s&)s(&)W&) //) (olw)

P

The latter form also involves the conversion of the
eigenvalue variations into elements of the external
algebra,

&~'B'I &~(*)'=&~(*)'O'B'I

The abstract operator equations defining the state
I W)

acquire thereby a differential operator realization that
characterizes the Green's functional,

(ncl+ spina) +eqn +P(x)'
Sy(x)' SB(x)' Sy(x)'

XGLy'B']=o,

b) bg—-', e qu +B($)' GPP'B'/=0,
»(r)' &e(&)' &e(&)'

and from which the original Green's function equations
are recovered with the aid of the correspondence

G(xi x9„,$) $„)

or
GL~'B'j=8'B'I w&hol w),

~ ~ ~

Sy(x,)' Sy(x,.)'
in which we have recognized that the exponentials are
operators of the special canonical group, which trans-
late eigenvalues of canonical variables. Indeed,

O'B'IB.(r) =8'0I -""B.(~)
=8'B'IB.(&)',

and
(y'B'I(t (x) =(OB'I ee'ey(x)

=Q'B'
I y(x)'.

Thus the generating function is exhibited as the wave
function representing the state

I
W') in the g'B' descrip-

tion, apart from a constant that normalizes GI 00$ to
unity.

The operators A and P can be given differential
opera, tor realizations in the ct)'B' description. Infini-
tesimal eigenvalue changes induce the variation

~&4'B'I =O'B'I J(dk)~B—(5) ~ (5)

X&
»(6)'

~ i G((@'B'j
»(~.)' @'~B'=0

~L~'i~LB'1=8'B'lo(~'B')&
—(0 I e css'A+ a e

I
0)—

which is in conformity with the fundamental property

B.(5)'~L4'3LB'j=8'B'I B (() I o)=o,
4(x)'~L4'3~LB'3=(y'B'I4 (*)I

o&=o.

An alternative expression of the relation between 6 and
8' is obtained by writing

A formal solution of the functional di6'erential equa-
tions appears on applying the differential operator
realization to the explicit operator construction of the
state IW),

(0I W&G$/t/'B'$=e w(s«'o' "i'a'Iffy']8/B' j.
%e have used the notation

which we express as

(dx)t (x)'y(x), &o I
W)&4'B'I G9»BRIO(4'~')) =O'B'I e ""'I 0(&'B')&

which utilizes the unit value ascribed to the trans-
formation function

and

&~'B'l~. (&)=—
».(&)'

&~'B'it( ) =
ry(x)'

(y/B/ If/g/) ale/ /i/EQP

when either eigenvalue set is placed equal to zero. As a
vector equation,

fl A fuller discussion of this group appears in an article being
prepared for publication in the ENcyclopedca of Physics t Springer-
Verlag (to be published} j Vol. 5, Part 2,

&olw&GI~, Bjl«~'~')&- . "Io(~B')&

can also be displayed in the )J'A' representation, where
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it takes the form

{0I w)G[ft I/g', (1/i)b/8A')8[i@]ft [A']=e ~«'"'I

with the aid of the following consequences of the
canonical transformation 8 -+ A, 2 ~ —&; /f/ ~f:

Q /g /

I
p/g/) elf'+ tBIA I

(&/~/
I

&//~") =~L&/ —&//]b&~/ —~"]
It should also be mentioned that an integration concept
can be devised for both types of field variable, such that

d [//b']d [A']ee'&' —'B'"',

d[&']dÃ']b[&']b[&'] =1.

The generating function, for example, thereby acquires

the integral representation

fd[P/]d$g/]e //r[P'A— 'I+e'$' iB—'A'.

d[y']d[Z']e- «' 't

The discussion of Euclidean Green's functions will be
continued in another publication.

Note added il proof It h.—as not been suKciently emphasized
in this paper that the term "Lorentz gauge, " as descriptive of a
gauge in which there is no distinguished time-like vector, refers
to a class rather than just the special gauge used in the paper. One
can also introduce, for example, the transverse Lorentz gauge
{here "transverse" has a four-dimensional space-time significance),
characterized by

(8)g G~'L'(x, g)=0, n=1. . . v

together with appropriately modified Maxwell differential equa-
tions. The radiation gauge functions constructed from Lorentz
gauge Green's functions are clearly independent of the specific
Lorentz gauge employed. This subject will be discussed further in
a later paper.
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An integral representation as a function of invariants is found for the Fourier transform of the matrix
element between the vacuum and a one-particle state of the retarded commutator of two currents. A special
case is a spectral representation for the vertex as a function of momentum transfer. The threshold in this
representation is lower than that found in the usual perturbation theory.

INTRODUCTION

E shall study the structure of the matrix element
of the commutator, the retarded commutator,

and the time-ordered product of two Geld operators
taken between the vacuum and a single-particle state.
Our technique will be to manipulate these functions in
the physical region in such a way as to obtain an
integral representation for the function in terms of the
invariant momentum parameters that characterize its
Fourier transform.

We shall discover that, for a special case of this
representation, one can continue analytically certain of
the invariant parameters out of the physical region and
automatically obtain a spectral relation for the vertex
function as a function of the momentum transfer.
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The basic representation we shall 6nd for the Fourier
transform of the retarded commutator of two currents is

e"*II(x)dx&[J (x),i (0)] I p)

H(p, P,P')
dpdp (1)

h'+ 2PPk —p+is (Pk+PP')

in which the variables are limited by

0&P& —1, p&max{ f(P), —P'P'},

where f(p) is a function, which we will specify later,
determined by the mass spectra of the intermediate
states, and H(p, p,p') is uniquely determined by the
Fourier transform in the physical region.

THE REPRESENTATION

We sha11 begin by deriving a representation for the
matrix element of the commutator of two currents. We


