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Haag's Theorem and Clothed Operators
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Haag's theorem is proved. This theorem states —essentially —that a given relativistic field which, at a
fixed time, is related by a unitary transformation to the free field, is completely equivalent to the free field
throughout all space-time. Previously it had been proved that the vacuum expectation values of the given
field equal the free-field ones up to and including the fourfold vacuum expectation value. A corollary to
Haag's theorem is derived. The corollary shows that a certain type of relativistic, clothed operator is equiva-
lent to the free field everywhere.

I. INTRODUCTION

E denote by Haag's theorem'' the statement
that any quantum Geld theory which has the

following four properties: I—relativistic transformation
properties, II—unique, normalizable, invariant, vacuum
state 4'0 and no negative-energy states or states of
spacelike momenta, ' III—canonical commutation rela-
tions at equal times, and IV—being related to the
free-Geld theory4 at a given time by a unitary transfor-
mation, is completely equivalent to the free-field

theory. Haag' first stated the essential physical ideas
of this theorem. The theorem was later more precisely
discussed and generalized, but not completely proved,

by Hall and Wightman. ' In this paper, we will complete
the proof of Haag's theorem in the (ungeneralized)
form stated above. We will also prove a corollary to
this theorem; namely that a theory in which the field

satisfies I, II, and, at a given time, has an expansion in
terms of annihilation and creation operators belonging
to the no-particle representation of the (momentum

space) canonical commutation rules, is completely
equivalent to the free-Geld theory. Finally we note that
for a clothed theory of the type discussed previously, '
the requirement that the field transform relativistically
places the theory under the assumptions of the corol-

lary, and thus forces the equivalence of such theories
to the free-held theory.

In Sec. 2 we give precise statements of properties I
through IV, and summarize the relevant results of
references 1 and 2. Section 3 contains the proof of
Haag's theorem. Section 4 proves a corollary to Haag's
theorem, and notes the application to clothed operators.
Finally, Sec. 5 contains a remark about clothed oper-
ators.
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Property II requires that

U;(a,A)&p; ——+p;,
or

P,~% 0;——0, (2b)

where 4'0; is the unique, invariant, normalizable,
vacuum state of each theory, and I';I" is the energy-
momentum operator of each theory. In addition the
spectrum of I' must be bounded from below by zero.
Property III requires (a) the existence of canonically
conjugate fields «;(x,r) at a given time r (r is always
fixed), which have Euclidean transformation properties:

U, (a,R)pr, (x,r) U;(a,E) '=- pr;(Ex+a, r), (3)

where a is a space translation and R a proper space
rotation; and (b) that one of the pairs of conjugate
fields satisfy the equal-time, canonical commutation
relations

LAo(x, r) s o(y, r)]=9(x—y), (4a)

PAp(x, r),Ap(y, r)]= Ln-p(x, r)p.p(y, r)]=0. (4b)

The other conjugate pair satisfies (4a) and (4b) by
virtue of property IU. The operators A;(x, r) 7r;(x, r)
are assumed to form an irreducible set for each theory,
which we take to mean that A, (x,r), 7r;(x,r) give a
complete description of each theory. Property IV
requires that there be a unitary operator U such that

Ai(x, r)~ VAp(x, r)V ',

s-i(x, r) Vrrp(x, r) V '
(Sa)

(Sb)

2. ASSUMPTIONS OF HAAG'S THEOREM, AND
RESULTS OF HAAGs AND HALL

AND WIGHTMAN

Property I requires that fields A;(x) (j=0, 1 through-
out) transform under the corresponding unitary repre-
sentation of the inhomogeneous Lorentz group, U;(a,A),
where a is a space-time translation, and Ael+t (the.
orthochronous group of Lorentz transformations of
determinant one), as a scalar field

U, (a,A)A, (x)U;(a,h.) '=A;(Ax+a).
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A;(*)=A;(x)*,

Forsimplicity, itisassumedthatthefieldsareneutral: ready to prove Haag's theorem as stated in Sec. 1,
with properties I through IV as defined in Sec. 2.

(6a)

pr;(x, v) =pr;(x, r)e (6b)
3. PROOF OF HAAG'S THEOREM

For a theory with the properties I through IV, three
results were proved": erst, that the vacuum states of
each theory are related~ by V,

+pl V+00 j

secondly, that the equal-time vacuum expectation
values of the canonical operators are equal for all e,

(+pl A i(xi, r) . A i(x„,r)+pl)
= (Cop, A p(xi, r) ' ' A p(x r)@pp) (8)

and similar equations when any number of the A; are
replaced on both sides of (9) by the corresponding x.;;
and, 6nally, that the vacuum expectation values Ii;&"'

of the two theories are identical throughout all space-
time for m&~4, where

Theorem. —Any relativistic theory with properties I
through IV of Sec. 2 is equivalent to the free-6eld
theory.

Proof. We—give an inductive proof in which two
more vacuum expectation values of the theory of the

field are proved equal to the free-field vacuum
expectation values in each cycle of the argument. Ke
first give the argument' for the case where we know
that J"(")=J p("), 0&~2; and then proceed to the mth
step of the induction, where it has been proved that
F&")=Fp( ', m&~2ns.

Define the operator" A, (x), which satisfies the
Klein-Gordon equation, and extrapolates the operator
A(x) off the surface x'=r:

A, (x)= d'y~ A(y) A(x-y) ~,
c)yo i

)
(Q A (x )A (x ) A (x )+ ) .

(9) where iA (x—y) = [A p(x) A p(y) j is the masses freefield
commutator, and

and $s=xs —xk+i throughout this paper.
Two additional facts which we will need are the

Lorentz invariance' of the F;("',

and the fact that the F;("' are determined uniquely
throughout all space-time by their values in the

~ ~ Consider the norm

neighborhood of one set of vectors, (pi,ps, p„ i),
which we call a Jost point, which have the property
that the convex set of vectors generated from them are
all space-like, ' '

'

d4x f(x)(A, (x) —A(x))+o

d'*d'y f(x)f(y) ((+o,A.(x)A.(y)+o)

P~'"'(b, b ".t.-i) We will show that=P,t.&(sg„sg,, ~g„,),xei+t, (10)
A, (x)e,=A(x)e„all x. (13)

~
P)t,p,

~
&0, )~, &0, g)t, =1.

i

�i~1
i=1 —(Vp,A (x)A (y)4o) —(+o,A (x)A (y)%))

+(%p A (x)A (y)+p)), (14)The references cited discuss the analytic continuation
arguments upon which this last fact i.s based.

TheresultsofHallandWightmanarevalidregardless where f(x) is any testing function in C", the set of
of whether either of the fields A; is the free Geld. As functions with an infinite number of continuous deriva-
mentioned in Sec. 1, we will discuss only the (ungeneral- tives, for which
ized) case where one of the fields is a free field' of some
given mass m. Until further notice we take Ap to be
this free Geld, call its vacuum state Cp, and we drop
the subscript from the other Geld theory. Now we are

6 The assumptions that a single pair of canonical operators is
an irreducible set, that the 6elds A;(x) transform as scalar
(rather than as spin-~, etc.) fields and that the Gelds are neutral
can all be removed straightforwardly; all statements in this
paper remain true for theories with a 6nite number of charged
or neutral Gelds transforming as scalar, spinor, vector, etc., Gelds.

~ The constant of modulus one which can appear on the right-.
hand side of (7) has been absorbed in V with no loss of generality.

s R. Jost, Helv. Phys. Acta 30, 409 (195/).

All four of the vacuum expectation values in (14) are
equal to FP'(x —y), because replacing an operator

9 This case is chosen to shorten the formulas; we could have
started with the.case I~&4.

io For a general 6eld A (g) the operator A, (g) might not exist.
However, provided it is 6rst integrated with suitable testing
functions as indicated below Eqs. (14) and (18), A will exist
here on the domain of A.
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A (x,) by A, (x;) in any vacuum expectation value F&"&

equal to the free-Geld one Fo&"& just reproduces the & &+&~kxly ' ' 'Xn j ply ' gn)
Fo&"). This statement is equivalent to the formula

( t)

Ap(g) =Ao, (/) = t doyI Ap(y) i1(g—y) I, (15)
gyp i '

which we will use explicitly below in proving (23).
Next we show that

X20 =@20=~-

Because of their unitary relation to the C„, the set
(4„l have the analogous three properties for the theory
of the field A (x,r) at time v . Now we can prove Eq. (16).

Consider the norm

vr(x, v)+o= A (x,v)+o (16)

We will prove (16) by a method which will carry over

to the general case in the induction, rather than giving

a shorter argument mhich mill not apply to the general

case. The next paragraph develops the method to be

used in proving (16).
Consider the set of vectors (&i.'},

X„(xt, . x„; r)=A(xi, r). A(x„,v')4p,

d'xf(x) (vr (x,v) —A (x,v) )%'p

= Jtd'xd'y f(x)f(y) {(Vo,vr(x, r)vr(y, v)4p)

(0'o,vr(x, v)A(y, )'vip) —(Vp, A(x, v)vr(y, v')+o)

+(Vp, A (x,v)A (y, v)+o) j, (18)

82

j i~&+) y —x
BXOByO

f(x)d'xd'y& ~.
0'„(xt, x„;v)= (vs!) '(A(xi, v). A(x, v)

A (xt, r) A (x„,v))%p,

0 0g =Q

and construct the set (+„),where +„is a linear combi- where f(x) is any function in C", for which

nation of Xi, for 4&~ m,

all factor pairings

where the factor pairing" of A(x;, r) and A(x, ,v) is

defined to be

(+o,A (x;,v)A (x,,v)+p) = ikey+& (x-
The unitary relations (Sa) and (7) imply that

4'„(xt, . x; v.)= VC&„(xt, x„; v-),

where C „ is constructed from 2 o and 4 o in analogy to

+„.Because Ao is the free held,

4 (xi, ' ' 'x; v)= (vv ) 'Ao &(xt, r) ' 'Ao& &(x,&)C'o,

where Ao' ' is the negative-frequency part of 3 o,

The first and last matrix elements in (18) can be
evaluated simply. For the 6rst,

(+o,vr(x, v)vr(y, v)+o)= (@o,Ao(x, &)Ao(y, v')C'o)

by (8); for the last,

(Vp, A (x,r)A. (y, r)%p) = (C'p, Ap(x, v)Ap(y, v)C'o),

because J &")=J o'"' for e &~ 2. The remaining two
matrix elements can be evaluated using the identity
(17),

(4p, vr(x, v-) A. (y, v)+o) = Q d'xi' d'x„'doy, '.
k=0

Xd ys (4opr (x)v)+i (xt, ' ' xs,' v)

X&s'+'(xi', xs', yi', ys')

Ap&
—

&(x) =
4 yo ~0

d'yI Aob) ~' &(~—x) I,
ayp ) ' x(+ (y ', " y '; ),A(y, )+o) (»)

—in&-& (x—y) = (C'o, A o(y) A o(x)C'o).

The vectors C„(a) are orthogonal for different values

of vs, (b) span the Hilbert space of the free field theory
at time v, and (c) obey the completeness identity

d'xi d'x„d'yi. d'y„
I
C.(xi, x„;r))

n=o 4'

X~-'+'(», x-; yr, y-)(C'-(yt, y-; v) I
=1, (17?

"F.J. Dyson, Phys. Rev. 82, 428 (1951).

Now the unitary relations (Sa, 6) and (7) imply that"
(Vp,vr(x, v)@p(xt, ' ' 'xp,'

v ))
=(C'o, Ao(x, v)C'a(xt', xo", v-)) =0, k) 1. (20)

Thus the sum in (19) goes only from 0 to 1 (in the
general case it would. go from 0 to vvv). Since %&„by

rv The vanishing of the matrix elements in (20) follows if we
use the expansion of the free Geld in annihilation and creation
operators. Then A0 is linear in the annihilation operators, and
since the state CI, has the form of k creation operators acting on
C0, the matrix element vanishes for k)1. If the matrix element
in (20) had m A0 operators, then this product would contain at
most m annihilation operators and the matrix element would
vanish for k)nz.
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construction, involves at most k A (x,r) operators acting
on +0, we can evaluate the matrix elements involving
A in the sum Qo' in (19) (in general, in the sum Po ).
These matrix elements equal the corresponding free-
6eld matrix elements because the F{"&=F0&"~for m~&2

(in general, there will be m operators A, and F{")=F0{"',
for ii&~2m),

(+.(y '; ),A(y, )+o)=(C"(y ', ),Ao(y, )Co) (21)

Now we replace the matrix elements in (19) by the
free-field ones according to (20) and (21), and we can
restore the sum to Pop since the terms from 2 to ~
(in general, from m+1 to ~) vanish. Thus

(eo,7r(x, r)A(y, r)+0)= P td xi'' ' 'd xk'd yl''' ' '

Xd'y), '(CO, Ao(x, r)C'a(xi', x) ', ~))

X&~{+)(xi', x)', yi', . . .y~')

X(c~(yi', y~'; r),AO(y, r)@o)

= (C'p, A p(x, r) A 0(y, r)40), (22)

where the final line of (22) again makes use of the
identity (17) (in the general case, (22) would involve

m m and m A operators on the left and 2m Ao operators
on the right). A similar discussion proves that the
remaining matrix element also equals the corresponding
free field one. Thus the four matrix elements in (18)
are equal and cancel, the norm (18) vanishes, and we

have completed the proof of (16).
Using (13), (12), (16), (Sa, b), (7), and (15), we find

, (
A(x)~0=A, (*)+0= t d'y~ A(y) &(~—y) 1+0J„o, 4 Byo

d'yI A(y),~(~—y) —~(y)&(*—X) l~o
B

J„., & Byo i

re (=v d y] A, (&) ~(.—&) (c.=vA, (*)c„
Byo

for all x. (23)
Now we consider,

F @()lq$2)= (A ($1)%0)A (x2q'r)A ($3) PO)

= (VA0(g, )C p, VA p(x2, r) U-'VA p(ga)C p) =Fo"'($i,$g),

for all $i, $2. (24)

Thus (23) immediately implies F{3'=Foa). Equation
(23) also implies

But (10) allows the equality in (25) to be extended to
all g2 for which g2 &0. In particular, this region includes
all the Jost points, and thus suffices to prove the
equality (25) everywhere. ' ' (The neighborhood of any
Jost point is actually suflicient for this purpose. ) Thus
we have completed a chain of arguments which increases
by two the number of vacuum expectation values
which are equal everywhere. The argument now pro-
ceeds by induction from the case where F( ) =Fo(
m&~2m, following these steps:

1—Prove that

A, (xi) A, (x )+0——A (xi) A (x„)+o

in analogy to (13) and the remarks following it.
2—Prove that

~(xi,~) .m (x,~)%'o= A (xi,~) A (x,~)+0,

and similar equalities where one or more of the ~(x;,r)
and the corresponding A(x;, r) are replaced by A (x,,r)
on both sides, in analogy to (16) and the paragraphs
following it.

3—Prove that

A(xi) .A(& )40= VAo(xi) . Ao(xm)+0,

in analogy to (23).
4—Note that step 3 implies immediately that

F"""'(~ ~. )=F0"-"'(~ ~.-) fo«» ~,

5—Note that step 3 implies immediately that

F{2m+2) (P . . .g ) F {2m+2) (g . . .g )
for ( '=0 and otherwise P; arbitrary,

that Lorentz invariance (10) extends this region to
P '(0, and that analytic continuation allows the
extension to all $, and thus the complete equality
F" +"=F0&'~+'&. Therefore, by induction, F&"&=F0&"&

for all m, and by a theorem of Wightman' the two
theories are completely equivalent.

4. COROLLARY TO HAAG'S THEOREM AND
APPLICATION TO CLOTHED OPERATORS

Corollary. —A field theory which has the properties
I, II, and a further property V (given below) is equiva-
lent to the free-field theory throughout all space-time.
Property V requires that, at a fixed time, the 6eld
A(x, r), where

(26)
XLa(k, r)e—'"'+a*(k,~)e'" $,

k'= (k'+m') & x'= ~

F")(h,h, b)=Fo")(666) 6'=o has annihilation and creation operators, a(k, ~) and
otherwise P, arbitrary. (25) a*(k,r), which belong to the no-particle representation
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of the commutation relations,

La(k, v),a'(k', r)] = 8(k—k'), (27a)

La*(k,r),a*(k',r)g= La(k, r),a(k', r)]=0, (27b)

a(k, ~)@s ——0, (28)

and have Euclidean transformation properties at a
fixed time,

U(a, R)a(k, r) U(a, R) ' e='""'a(Rk, r), (29a)

U(a,R)g*(k,r)U(a, R) =e '+"' g+(Rk, r). (29b)

Proof.—Define

n-(x, r) = (2~)
—fs dsk(ko/2)i

&($ a(k, r)—e "*+o,'—(k,r)e'" j. (30)

Then A (x,r) and m (k, r) satisfy the commutation
relations (4a) and (4b), and ~ has the Euclidean
transformation. properties (3). Further, the free field

As(k, r) and its canonical conjugate Ae(k, r) have an
expansion in terms of annihilation and creation oper-
ators as(k) and as*(k) analogous to (26) and (30) (for
the free-field as and aee are time indePendent); and as
and aQ* belong to the no-particle representation of the
commutation relations (27a, b) and (28), where in (28)
we understand that the free-field vacuum CQ replaces
O'Q. Now the work of 66,rding and Wightman" on the
irreducible representations of the canonical commu-
tation relations includes the theorem that the no-
particle representation is unique up to a unitary
transformation. Thus a and a* must be related to aQ

and aQ* by a unitary transformation, and 3 and x must
be related by the same transformation to AQ and Ap.
Hut now we have shown that A and x satisfy all the
conditions of Haag's theorem and thus A(x) must be
equivalent to the free field.

The corollary applies directly to clothed operators of

"L. Guarding and A. S. Wightman, Proc. Natl. Acad. Sci.
U. S. 40, 622 (1954).

the type discussed previously, ' "provided the require-
rnents I, of relativistic invariance and, II, of no negative
energy states are added to the clothing properties.
These clothing properties are equivalent to V, that the
theory belongs to the no-particle representation of the
canonical commutation rules, together with the require-
ment that the creation operators create the physical
one-particle state from the vacuum,

(31)

where H is the total Hamiltonian and E(k) the energy
of a single particle of momentum k. Because of the
corollary, this type of relativistic, clothed theory must
be identical to the free-Geld theory even without
requiring (31).

5. REMARKS ABOUT CLOTHED OPERATORS

It is our opinion that the trivial nature of the rela-
tivistic (no-particle representation), canonical, clothed
operators discussed in Sec. 4 was to be expected, and
is not discouraging for the use of some notion of clothing
in the relativistic theory of interacting fields. We are
presently investigating, in collaboration with S. S.
Schweber, relativistic theories in which properties III
and IV are dropped, and replaced by the requirement
of local commutativity,

and (31) is dropped and replaced by"

A (x)% =A'" '"'(x)%
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