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binding on screening at various energies is needed in
order to evaluate measurements in hydrogen. Con-
duction electrons in metallic absorbers may also affect
the screening. In considering measurements and calcu-
lations with accuracy &1/~ it may be necessary to
calculate the contribution of the second order diagrams
in the perturbation theory. Until such calculations are

made, no significance can be given to the slight devi-

ations of experiment from theory seen in the graphs.
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The theory of radiative muon capture is developed. The discussion includes both parity conserving and
nonconserving effects. The Gell-Mann weak magnetic term and the induced pseudoscalar are included,
along with comparable relativistic effects in the nucleons. The theory is applied to light nuclei and especially
to the radiative Godfrey reaction p +6C' —+ s+p+,;B".An experiment to detect the induced pseudoscalar
directly is proposed.

I. INTRODUCTION

HE theory of radiative E capture has a long
history. The first computation was made, at the

suggestion of Oppenheimer, by Morrison and SchiG in
1940.' They found that the photon spectrum to be
expected in allowed electron E capture, neglecting
all relativistic and screening eGects, is of the form

(1—x)'x dx, where x is the photon energy in units ot
the maximum photon energy. This formula obtains for
both Fermi and Gamow-Teller transitions and allows
no distinction between them. The first experiments
exhibiting this spectrum were done by Bradt et al. ' on
the nucleus Fe".The theory for allowed transitions was
reined by Jauch' and is most completely given by
Glauber and Martin. 4 The latter authors consider
relativistic, Coulombic, and screening corrections to the
Morrison and Schiff computation and experiments by
I.indquist and Wu4 are in excellent agreement with
their elaborate theoretical treatment. The net con-
clusion of this work is that allowed electron radiative

' P. Morrison and L. I. Schiff, Phys. Rev. 58, 24 (1940).' H. Bradt e5 al. , Helv. Phys. Acta 19, 222 (1946).
3 J. M. Jauch, Oak Ridge National Laboratory Report ORNL-

1102, 1957 (unpublished).
4R. J. Glauber and P. C. Martin, J. phys. radium 16, 573

(1955); Glauber, Martin, Lindquist, and Wu, Phys. Rev. 101,
905 (1956);P. C. Martin and R. J. Glauber, Phys. Rev. 109, 1307
(1958).

IC capture is well described by a four-fermion coupling
with photon emission superimposed in the natural way.

The shape of the photon spectrum is, of course, inde-
pendent of parity conservation or nonconservation in
the electron capture event. However, it was realized'
shortly after the discovery of parity nonconservation,
that in a parity-nonconserving interaction the p s
coming from the inner bremsstrahlung of the electron
undergoing capture could be circularlypolarized, partial-
ly or completely. In fact on the two-component theory
for V and A the circular polarization is 100% right inde-
pendent of any details of nuclear matrix elements.
Recently Mann ef al. ' have measured the circular
polarization in E capture in AP~ and have obtainecl
close agreement with this prediction of the V—A two-
component theory. In general, in a given transition,
the degree of circular polarization is a measure of the
relative strengths of the covariants involved in the
four-fermion coupling. We shall return to this point
below when we discuss the "induced" pseudoscalar in
radiative muon IC capture.

With the advent of intense muon beams" one may
contemplate the study of radiative muon E capture
experimentally. We shall see later that the anticipated

' R. E. Cutkosky, Phys. Rev. 107, 330 (1957).
'L. G. Mann et a/. , Phys. Rev. Letters 1, 34 (1958).
s An intensity of 10s mnons/cms sec is now obtainable.
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ratio of radiative to nonradiative muon capture rates
is about 10 4 and hence, as an example, in the Godfrey
reaction, ' tc +sC"~ sB"+v, where the ordinary muon
capture rate to the ground state is observed to be about
10' sec ',' we expect an absolute radiative rate of about
one a second. An encouraging feature of the process is
the relative abundance of high-energy gammas in the
allowed spectrum, Fig. 1. This spectrum has its maxi-
mum at x=~~ or about 30 Mev in the case of the
Godfrey experiment where the maximum photon energy
is 91.4 Mev—taking the muon mass as 103.8 Mev.
However, it is clear from Fig. 1 that a considerable
fraction of the y's lie above 50 Mev which is approxi-
mately the maximum photon energy emitted in external
or internal bremsstrahlung during the process p,

—+ e
+tr+9; i.e. , ordinary muon decay. The high-energy y's
also lie well above all of the background from nuclear
transitions. Hence, if one observes such high-energy
photons, E~&50 Mev, they must come from the muon
capture process. Experiments are now under way to
detect them. "

The tlzeory of radiative muon E capture is much more
complex, and hence more interesting, than that of
radiative electron capture. This has, of course, to do
with the large ratio of muon to electron mass, 208.
Because of it the muon Bohr orbit is some two hundred
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FzG. 1.The "allowed" photon spectrum.

s T. N. K. Godfrey, Ph.D. thesis, Princeton University, 1954
(unpublished); and Phys. Rev. 92, 512 (1953).' Harrison, Argo, Kruse, and McGuire, Gatlinburg Conference on
IVeak Interactions, October, 105$ (unpublished); Burgman et al. ,
Phys. Rev. Letters 1, 469 (1958);J. G. Fetkovich et al. , Gatlinburg
Conference on Weak Interactions, October, I95h'

I Bull. Am. Phys.
Soc. Ser. II, 4, 81 (1959)g; W. Love et al , Gatlinbttrg Conference . on
Weak Interactions, October, I95b' LBull. Am. Phys. Soc. Ser. II, 4,
81 (1959)g. The tirst reference is particularly impressive since this
group observed the y's coming from captures to excited states ot
&B'~. They show that 90% of the captures are to the ground state.

'0 C. York (private communication); C. Rubbia (private com-
munication).

times smaller than the electron Bohr orbit, and the
neutrino wavelength is comparable to or smaller than
the nuclear radius. For carbon, ~R 2, where R is the
nuclear radius and for heavier nuclei it is still larger.
Thus the usual beta-decay expansion into degrees of
forbiddeness is quite slowly convergent, even for carbon,
and hence sizable departures from the allowed spectral
shape, (1—x)'a dx, are to be expected for all nuclei. This
clearly recognized by Cantwell" who, in 1956, gave the
spectral shapes for radiative muon capture from various
light nuclei. The case of carbon, the only example of
muon capture to a particular final state which has been
studied experimentally, was not considered by him and
we shall give the spectral shape below. Cantwell also
discussed corrections to radiative muon capture which
arise when the nuclear extension and shape are taken
into account in the wave function of the muon after it
has radiated. In electron E capture, from medium
heavy nuclei, the intermediate wave function can be
taken to be that of a Dirac electron in a point Coulomb
field and this is what Glauber and Martin4 do. In muon
E capture, due to the small Bohr radius, the extension
of the Coulomb field must be considered even for
medium-heavy nuclei. For light nuclei, like carbon, we
can with very little error ignore all Coulomb e6ects in
the intermediate states and this is done in the calcu-
lations below. We emphasize that these results are
meant to apply to nuclei for which Zn&i. Moreover,
we shall replace the E-shell muon wave function by its
value at the origin, an excellent approximation for
carbon, but entirely inadmissible for heavy nuclei.

An especially interesting feature of radiative muon
capture, again springing from the large muon mass, is
the presence of induced couplings in the S matrix for
the process. If we begin with an underlying Hamiltonian
which is V —2 in the weak couplings, then, as is now
well understood, there can appear terms in the S matrix
which have other covariant forms. These terms are
induced by the strong couplings of the capturing nu-
cleons to pions. The effective pseudoscalar" and the
Gell-Mann weak magnetic term" are of this character.
In the next section we describe the general formalism
for taking such terms into account, and our formulas
for the spectra include contributions from them and
from other relativistic eGects in the nucleon velocities
of the same order of magnitude.

Parity-nonconserving quantities in radiative muon
capture were first discussed by Huang, Yang, and Lee. '4

These authors consider the circular polarization of the
p's and the angular distribution of the y's relative to
the muon spin of a muon supposed 100%polarized. The

"R.M. Cantwell, Ph.D. thesis, Washington University, 1956
(unpublished).

"M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 355
(1958); L. Wolfenstein, Nuovo cimento 8, 882 (1958).

'3R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958); M. Gell-Mann, Phys. Rev. 111,362 (1958); J. Bernstein
and R. R. Lewis, Phys. Rev. 112, 232 (1958).

'4 Huang, Yang, and Lee, Phys. Rev. 1DS, 1348 (1957).
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two quantities are, in fact, not independent, as we shall
show later. It is apparent from the formulas of Huang
et al. that the V—A theory, without induced couplings,
predicts 100% right circularly polarized quanta for
radiative muon as well as electron capture, irrespective
of nuclear structure. One of the principal results of our
work is the observation that the induced pseudoscalar
term, by itself, yields quanta 100% left circularly
polarized and hence that the over-all circular polariza-
tion of photons in muon capture will be less than 100%
and in this way the induced pseudoscalar may be
detected directly. The actual circular polarization
depends on the nuclear matrix elements, and below we
give a prediction for the radiative Godfrey experiment
based on an analysis by Fujii and Primakoff" for the
nonradiative Godfrey reaction. The computation of the
induced pseudoscalar and Gell-Mann terms in radiative
capture raises some points concerning gauge invariance
which are discussed in Secs. III and IU.

In all of this work we shall not consider the effect
of the hyperfine interaction between muon and nuclear
spins on capture rates, etc." It was felt that at the
present stage of experiments this was an irrelevant
complication, especially since our principal application
was to 6C", a spin zero nucleus. It is an entirely straight-
forward matter to amend the formulas to include the
hyperhne coupling for nuclei with spin.

Hence, in summary, the purpose of the present paper
is to bring the study of radiative muon capture up to
date by developing the consequences of the full V—A
theory, including induced couplings and other rela-
tivistic eGects. The inhuence of these terms on the
photon spectrum and circular polarization is computed
with particular emphasis on the radiative Godfrey
reaction p +6C"—+ 5B"+v+y.

With this introduction, we may now turn to Sec. II
in which the details of the formalism are presented.

II. FORMALISM

In this section we develop the formalism needed to
compute nuclear radiative muon capture on the V—A
two-component theory.

The Hamiltonian for muon capture is written in the
Feynman —Gell-Mann form as"

H =Ho+H. g+S*GJ»J»t.

Here Ho is the free Hamiltonian, H, & is the strong inter-
action Hamiltonian, including electromagnetic couplings.
The weak interaction is written as a current J„ inter-
acting with itself with the universal unrenormalized
strength G. J„may be split into a vector and an axial
vector part:

~~ A. Pujii and H. Primako6 (to be published).
'6 Bernstein, lee, Yang, and PrimakoA, Phys. Rev. 111, 313

(I958l.

G g~sz I2 (3)

where C is the charge conjugation operation and I the
total isotopic spin vector, then J„v as written above
satisfies

GJ vG '= J„v.
We shall now assume that J„~is composed of terms

satisfying'7
GJ ~G-&= —J ~ (~)

The conventional axial vector current P~(—iy»y5) r & &P~

has this property. This restriction on the currents, plus
Lorentz invariance, implies that the matrix elements
of the currents between physical nucleons take the form

( I J.'IP)= -L~'"'(q')( —'v.7.)+~'"'(q')q.v j ., (6)

(~ I
J»'I P) =~-t c'»'(q')7. iD'»'(q') ~"q.3~—' (&)

Here q„= (p n)T—»he four functions A&», 8&», C'»,
and D'» are discussed below. It is the G-conjugation
symmetry which eliminates the other two possible
covariants in the matrix element of the currents, which
are allowed by Iorentz invariance; i.e., q„ for the
vector and y50.„,q„ for the axial vector.

As has been discussed in the literature, ""in the
universal Fermi theory A'»(0) is identified with the
axial vector coupling constant of P decay. However, in
radiative muon capture qq= ~+Eq pq, so that q' can-
be the order of m', where m is the muon mass. In any
case there are strong theoretical arguments" to show
that A(» is a slowly varying function of q'. In fact
GoMberger and Treiman" have indicated that

2 &» (q') 1 q'

A '»& (0) ~ 43IIv'

On the strength of this we shall neglect the momentum
dependence of A &» and identify GA'» with the renor-
malized axial vector coupling constant of beta decay,
g~~'.

"For a discussion of other possible theories see S. %'einberg,
Phys. Rev. {to be published).

We shall assume, with Feynman and Gell-Mann,
that J„v obeys the differential conservation law
B„J„v=O.For muon capture the part of J„v which is
relevant is

J» =P~y»r P~—+i&.T aA—.* 4.*—T aA—.)
+AXA'» (2)

Thus written, J„v changes protons into neutrons. The
pion current term guarantees the conservation law
B„J„v=O. We shall ignore possible strange-particle
sects on the current.

The axial vector current does not obey a conservation
law, and we shall not specify it explicitly. However, if
we define the G conjugation operator in the usual way,
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FIG. 2. The principal Feyn-
man diagram for radiative muon
capture by a proton. E is the
photon momentum and p0 and

are the initial and inter-
mediate muon momenta.

The quantity mB(»(q')G is shown to be an induced
pseudoscalar coupling constant in ordinary muon
capture where the momentum difference q), may be
transferred to the lepton matrix element and the Dirac
equation used to reduce it to pseudoscalar form. It has
been shown" that mB'")G=—gI ~» &Sg~'~&. The plus
sign goes with the dispersion-theoretic calculation of gy
and either sign is possible if 8&» is estimated by using
the empirical 4r ~ l4+u decay rate. Evidence from the
observed rate of the Godfrey reaction, "'

p
—+ Cls ~ Ills+ u

seems to favor the dispersion-theoretic sign.
The combination GC(»(q') is the vector coupling

constant. Since the vector current is taken to be con-
served,

C (q)/C (0)=F. V)/F"(0).
Here F, (q') is the isotopic vector part of the charge
form factor of the proton as measured in electron-proton
scattering. " If we suppose that the total charge form
factor of the proton Fr("'=F4 +F, is approximately
2F&~, i.e., if we make use of the fact that the neutron
has approximately zero charge radius, then the variation
in the vector coupling constant as a function of mo-
mentum transfer can be obtained from the formula

Ft'(q')/Fr'(0) =1—6qs(ru') (1o)

Even for q-444, Eq. (10) indicates that Ft (q')/Ftu(0)
departs from unity by only three percent. Hence we
shall ignore its variation over the photon spectrum and

take GC(» =gu (s), the observed P-decay coupling
constant. , The conservation of the vector current
implies that C»~1.

On the Feynman —Gell-Mann theory the function
D'» is directly related to Fs(qs), the magnetic form
factor of electron-nucleon scattering. Precisely speaking,

L) (s) (qs) Fs(» (qs) Fs(&) (qs) P„—l4

C(P) (qs) Ft(u) (qs) —Fy(~) (qs)

In the last step we have replaced the experimental form
factors by their value at zero momentum transfer. "

If the induced couplings are, for the moment, neg-
lected then the Feynman diagram in Fig. 2 represents
the dominant contribution to radiative E capture in the
primitive process )(4 +p ~ 44+u+7. We shall neglect,
throughout this work, contributions to the photon emis-
sion due to the radiation by the proton. The larger
energy denominator makes these contributions an order
of magnitude smaller and of the same order as the un-

certainties in the nuclear matrix elements. %hen in-

duced couplings are included, then other diagrams in-

volving charged pions, which are responsible for the
presence of the induced couplings, must be included. Ke
shall discuss these in detail in the next two sections. In
the present section we shall develop the consequences of
the V—A theory with no induced couplings, but includ-

ing relativi. 'stic corrections. This means we shall evaluate
the matrix element associated with Fig. 2. Further, we

shall make the assumption that nuclear E capture is
representable as the E capture of a muon by a collection
of noninteracting physical protons. In other words we

shall neglect meson exchange contributions to muon
capture. Estimates in the literature indicate that these
are also effects of about 10%."

If n and P are two directions of photon polarization
then, under the assumptions discussed above, it is easy
to show that the transition probability summed over
muon and neutrino spins can be written as

8 1 1 2 4

Q M M()t= Q Q Q C,C;*E),."
4v,~„32E'4r4'u 2I+1 4r(4' ~4 ~g 4, 4'=& ),~=4

X»[(1+74)7 es*7&74o.4t(1+75) (—s7u)74''7«-. Yj (12)

The new notation introduced here is the following: ~

is the photon polarization vector in the direction n,. e

may be complex if the polarization is not linear;
C~=gy&', C2=g~&&, O~'= —iy4p~y5, 0)'=pe), I; is the
total initial nuclear spin, m, and m~ are the components
of the nuclear spins over which we are summing, and
a is the muon Bohr radius. We have replaced the muon
wave function by its value at the origin and have used
the free-particle Dirac Green's function for the muon

'4 See, for example, J. Bernstein and M. Goldberger, Revs.
Modern Phys. 30, 465 (j.958), for @ discuss&on of these form
fg.coors,

in the intermediate state. The nuclear matrix elements
are contained in the quantity Xz, '&; that is,

where
S), '&=M), '3f &*

A
.
) g„„.&*{PS(r—r;)~;(-)

i=1

(13)

Xexpf —s(v+K) r)J&,'"')P .'d» «z«. (14)

The J),'"' are the effective vector and axial vector

"Bhn-Stoyle, Gupta, and Primakoff (to be published),
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currents. These are defined below and have been derived
by transcribing the results of free proton capture under
the assumption that the nuclear protons capture as if
they were independent. We have retained in the J's the
leading relativistic corrections which are of order v/M
or K/M and we have dropped terms involving I';/M,
where P; is the initial proton momentum. The induced
couplings will have a similar form but they will be
larger since the induced coupling constants are greater
than the vector and axial vector coupling constants.
Under these assumptions,

J ~ =e J 8'i=i@ (v+K)/2M,
and

J' "=ie (K+v)e/2M J ' "=1.
Using Eq. (12) we may study four quantities:

(15a)

(15b)

where K/E is the unit photon momentum vector. Thus

TrL(1+v,)v. e~*vEv40, ~' (1+v,) ( ivv)v40i'vie~~ v]—
- (1—o K/Ep p ivEv, y—

=8E'T.
I

(1) the v energy spectrum and the capture rate;
(2) the v, v angular correlation:
(3) the circular polarization of the v's;
(4) for polarized muons, the angular distribution ot

the y's relative to the muon spin direction.

The first two quantities are evidently independent of
parity conservation or nonconservation in the capture
process, and the second two vanish if parity is con-
served. In fact there is at present no experimental
evidence that parity is not conserved in muon capture
and so the observation of 3 or 4 is of some interest even
apart from subtle details.

We shall begin the general discussion by proving that
a measurement of 3 is equivalent to a measurement of
4 under the assumptions which lead to Eq. (12).

To this end we define a quantity p(E), the circular
polarization of photons of energy I, as follows:

P(E) = [IVz(E) Xr, (E)]/fÃ~—(E)+iVz, (E)j. (16)

Eg(E) is the number of right circularly polarized
photons with energy E and likewise SL, is the number
of left circularly polarized quanta. We may compute
iVz from Eq. (12) by setting e =es=ez= (e&+ie2)/V2.
The lepton trace in Eq. (12) can be rewritten by making
use of the identity

Tr[(1+v4)v er,*vEv40, &t(1'+vz) ( i—vv)v40&, ,'v&eL v]'

(1+- o.

"K//Ey ~
i—vKv4~

=8E T.
i

2 )& 2E )

XO.'"(&+vs) (—ivi)v40x'-

Written in this form, first suggested by Cutkosky, ' Eq.
(18) is identical to the lepton trace for the beta decay of
a nucleus with emission of a zero-mass positron with a
definite helicity characterized by the projection oper-
ators —,'(1&e K/E). Thus we have the theorem that the
circular polarization of a photon emitted in radiative
E capture is identical to the helicity of a zero-mass
positron emitted in beta decay. It is instructive to
compare the lepton traces involved in E~—ÃI, and
iVg+lt(1, Using Eq. (18) and the identity e= iv4—vvz,
we have

Xz+Xr. Tr/( ivKv4)0—,'"(1+vs) (—ivv)v4&'1,

while

-i& a —&1.-TrLvs( —ivKv4)o. '"(1+vs) (—iv~) v40~'j.

The two traces are identical except for a factor of 75
in 1Vii —Xr,. Hence for a given covariant, p=&1
depending on whether y~ commutes or anticommutes
with O.&. This is a familiar result from the usual dis-
cussion of helicity in beta decay and establishes the
fact that on the two-component V—A theory, without
induced couplings, the photons are 100% right cir-
cularly polarized in radiative E capture. The induced
couplings must be examined more closely and we shall
do so in the next sections. It is clear that photons with
opposite circular polarization cannot interfere in the
energy spectrum.

We shall now show that the circular polarization
determines the angular distribution, relative to the
muon spin direction, of photons emitted in the radiative
muon capture of polarized muons. "The essential point
in the argument is that during the photon emission by
the muon the proton behaves like a spectator as far as
angular momentum balance goes. Thus the photon
angular distribution relative to the muon spin will be
of the form 1+P cose and for a 100% polarized muon
we shall show that this p (which is here unity) is just
the circular polarization discussed above.

We shall consider a photon which is 100% right cir-
cularly polarized and suppose that 8=+. This situation
is shown in Fig. 3. The replacement of the muon wave
function by its value at the origin is equivalent to
neglecting the muon momentum in the E shell. Thus
the intermediate muon will emerge at 8=0' in order to
conserve energy-momentum. However, this configura-

XO."(1+vs)(—ivy)v49',

(18)

2 The line of argument which we follow was suggested to us by
R. E. Cutkosky in a private communization for ~hiph ~e @n;
grateful,
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tion can never conserve angular momentum in the
intermediate state since the initial angular momentum
of —,

' in the positive z direction cannot be matched after
the photon emission. Thus the photon angular dis-
tribution must be 1+cos8 and in general the correlation
coeRcient is the circular polarization p. It is clear that
this argument is not more general than the assumptions
which lead to Eq. (12).

Of course, as the muon cascades into the E shell, it
becomes depolarized even if it was originally 100%
polarized by the m. —+ p+ v decay. Therefore the
observed angular distribution will have the form
(1+I'P cos8), where I' is the residual muon polarization.
In practice one need not rely on theoretical estimates
of I' since the electron asymmetry in the competing
process p —+ e+v+P measures I' directly. Empirically
I' is the order of 10 to 20% for spin-zero nuclei and is
close to zero for nuclei with spin.

We may now proceed by means of Eq. (12) to a com-
putation of the photon spectrum. This is given by

X(x)dx=
e' e4

32vr4 m2 ma3 2I,+1
(1—x)'x dx

xpp p "c,c,*
m&mj' i„j=l X,0=1~

( i'm)—
X ~40'' dQ, dQ~. (19)

e' eg4 1
(1—x)'xdx-

327r4 m'- ~a' 2I;+1
iV(x) dx =

K v K
Mrv -yM&* —M&—

E s IC

The notation is as before except that we have introduced
the variable x=E/~r, where er is the photon end-point
energy and is given by a~=m[1+ (E„„,,; E„„,,r)/m5, —
the E„,being the nuclear energies. We have neglected
the muon E-shell binding e'nergy. The neutrino mo-
mentum is given by v=er(1 —x). For orientation we
shall, for the moment, ignore the relativistic corrections
to the nuclear matrix elements and consider the non-
relativistic terms, which will be the leading terms in the
theory. Making this assumption, we have

FIG. 3. The emission of a
100% right circularly polar-
ized photon is shovrn for
0=+.

Ox!S

where, as a reminder,

M42=, p.„.r*(p 8(r r,)r—, &

z=-1

Xexp[ —i(v+K) r5)P„„,'drr drqdr,

M'= . . ' P„„,~*{/6(r r,)r,&—
i=&

exp[ i(v+K—) r5=4n. Q Q (i)'j&(I v+KIr)
l~ m=1

XYi (v+K)Yi (r). (21)

The j's are the spherical Bessel functions and the Y's
are spherical harmonics. This is not the usual beta-
decay expansion into degrees of forbiddenness, which
would be very slowly convergent since

I
v+K

I
r ~&1 for

all but the very lightest nuclei. To get a rough idea that
Eq. (21) is a reasonably convergent expansion for muon
capture we can replace j&(x) by its value for small
arguments,

j~(x) ~
* ' (2l+1)!!

Xexp[—i(v+K) r5e, g „,'drr. dr~dr.

It is clear that any V—A interference term would
involve the vectors K and v in the combination KX v.
But if eGects in the nucleon velocities are ignored, the
matrix element M' can only depend on the vector K+ v

times a suitable pseudoscalar function, since the initial
and Anal spins are summed over. Hence there are no
V—A interference terms in this approximation although
there are such terms when nucleon velocity eGects are
included, as we show below.

Now to obtain an explicit photon spectrum from Eq.
(20), the nuclear matrix elements must be freed of their
dependence on the photon momenta. This is done by
expanding the plane wave exp[ —i(v+K) r5 into the
spherical harmonic series

K v where (2l+1)!!—=1X3X5X X (2l+1). From this we

+IggI' 1———M' M'* dQ„dQr, (20) see, that although x~&1, the double factorials cause
E p rather rapid convergence of the series, especially since



angular momentum and parity considerations require
that only every other order can contribute to a given
transition. For very light nuclei 2 ~&10, it is a good
approximation to use this asymptotic formula to
evaluate spectra. In this case the product of any two
matrix elements can be expressed as

V E+l

M),'M, &*=16'x' Q P (i)'—'
(2l+1)!!(2P+1)!!

X V~ (v+K) V*) „(v+K)m),'(lm)m, '*(I'm'),

with

f P A

m),'(Im) = P„r*[Pr ( 'J), '"'r,'

XFi *(r;)]f„'dr&, dr~.

In this way the photon momentum dependence has
been removed from the nuclear matrix elements and the
usual angular momentum techniques can be used to
evaluate any given spectrum.

For somewhat heavier nuclei, like carbon, introducing
the asymptotic expansion for j&(x) involves an error of
as much as 40%. On the other hand, we em& drop higher
terms in the Bessel function series without much error.
Therefore we may expect the spectrum to be well repre-
sented for such nuclei by

e' eg4 1
X(x)dx= — (1+x)'x d» (2Jr+1)

32m' m' ~u'

(
I

I gv I'I fj oI'+
I g~ I'I fj«I'

+ LI grl'I J'j—oI-'
E p

—
s lg~ I'l J'j«l'j d" d" (22)

In Eq. (22) we have introduced the obvious shorthand,

This has been shown in considerable detail by Fujii and
Primakoff" who find that

~x'
I
J'ersl

~0.19
I f~l

for the transition between the ground state of 6C" and
;B". Both electron scattering data and nuclear shell
model calculations give essentially the same answer. Of
course, the principal eGect of these terms is in inter-
ference with the terms in J (r. These interference terms
are as large as 40% for carbon. For heavy nuclei any
expansion of jo is very dangerous and one must make
use of a different technique. " So long as Eq. (23) is a
good approximation the theory will contain the nuclear
matrix elements in the ratio

6 sf

for the axial vector, and

for the vector. The angular integrations may be done,
having introduced Eq. (23) into Eq. (22), and the
resulting spectrum reads

e' &f4 1
iV (x)dx= — (1—x)'x dx1 (2Ir+1)

27( 5$1l Q

X(lg I I
J'1I [1—,'Z, (4x+3—4x')]

+ lg~l'I J'~l'

X[1+(2/9) Rg (20x—20x' —9)]). (24)

In the Godfrey transition, which is 0 —+ 1 (no), there
is no vector contribution in the approximation where
relativistic effects are neglected. For this transition

I
J'(rl' may be obtained empirically from the rate of

the reaction s8"~ e +p+sC" which is given by the
equation

' 4-'*LE r" )~(r—r')
J

Xj()(l v+Kl r)0;gP „.'drt, drzdr, -
where

„()(e)=
I J (r-l fI g~(P)

I
m

2~3

&'max

f=) F(Z,E)(E,„—E)'(E'—1)~dE
1

where 0 is any spin operator. To obtain Eq. (22) we
have replaced the sum over initial and final spins by a
spatial average.

The explicit formulas for the spectra are buried in
the J'j&0 since the argument of js, I

v+Klr, contains
the angle between v and K which must be integrated
over. For carbon it is quite accurate to take only the
erst two terms in the expansion of jo, i.e, , we writ

f is 5.625X10' for this transition. "w(~) is known to be
33.15 sec ' and hence

I
J'al' is known. In getting

I
J'(r I' from the beta decay rate we take advantage of

the fact that corrections to the allowed approximation

j()(l «+Klr)=1 —s I
v+KI'r'

e "See H. Primakoff, Revs. Modern Phys. (to be published), for
a discussion of the closure method as applied to muon capture in

23 heavy nuclei.
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are small. The absolute scale of the spectrum is prob-
ably not of particular interest as opposed to the relative
shape which depends on R~ and must be taken from
theory.

According to Eq. (22), the gamma-neutrino angular
correlation is given in the "allowed" approximation by

K ~ lg I'If11'—lie I'If~I'
1+——

I gv I'I f1I'+
I g~ 'If~l'

(25)

Since this seems a somewhat academic quantity we shall
not refine the theory for it further. We may mention
that a measurement of the correlation between the
decay beta and the inner bremsstrahlung gamma would
be of interest in the radiative Godfrey experiment, but
we shall not work out the theory here.

It is important to know the relative rates of radiative
to nonradiative muon capture. To this end we need a
formula for the ordinary capture rate. This has been
discussed frequently in the literature"" and is given,
in the notation already introduced, by

1 2 4

g~~ ~g~ 2I;+1 m;, mf 0

(—~Vvi
XTr (1+F4)0.ftl I(1+y,)0),' «„. (26)

v )

This answer is well known from the theory of radiative
electron E capture. ' Empirically the rate for ordinary
muon capture in the Godfrey experiments is between
0.7)(10' and 0.9&(10' sec '.' Therefore we anticipate
an absolute radiative capture rate here of about one a
second. In view of the very intense muon beams now
available" and of the large number of very-high-energy
quanta in the spectrum, this is very likely a usable
capture rate.

Kith the machinery so far assembled it is straight-
forward and only somewhat tedious to compute the
leading relativistic corrections to the spectrum given by
Eq. (20), again neglecting the induced couplings. We
give these corrections, along with the main terms, in

As above, the leading terms in the rate are given by

1
1(2If+1){I av I

'I fio I'+
I g~ I'I fio~

I

'}
2m ma'

(27)

To get a rough idea of the ratio of the radiative to
the nonradiative rates, we can replace jo by unity in
both Eq. (22) and Eq. (27) and take the ratio. In this
case the nuclear matrix elements cancel and the integral
over the photon spectrum is immediate. The ratio
comes out to be

n (eyq'
I

—
I
=2XIO-.

12~ Em)

the approximation that leads to Eq. (22). Thus

e2 &f4 1
Af (x)dx = — (1—x) 'xdx

32m4 m2 xa'

X1(2If+1)
Iavl'If'gaol'

1+—
3f

1 Ey

+ la~I'If J«l' 1+-—
3M.

2+- (g~—gv*+gvg~*)(x l) If—'i«l'
3M

+—-I lgv 'If gaol'
—%la~i'

E v

XIfj«'j do„«,. (2g)

For 6C ) where we can expand jo as before, we have
the formula

e2 ef4 1
E(x)dx = — (1—x)'xdx

2'' m' ~'

1 ef
x1(2~f+1) If~I' la~i'I 1+-—

2
y-Z,

I
20x—2Ox' —9j I

9

2 EJ'+-—(g~gv*+gvg~*) (x—l) (29)
3M

An interesting new feature brought in by the rela-
tivistic corrections are the V—2 interference terms in
the spectrum. Ke shall see in Sec. IV that the Gell-
Mann weak magnetic terms are of this character and
are the dominant relativistic corrections.

It is very instructive to specialize Eq. (28) to the
case of radiative muon capture by a free proton and
then to compare the answer with the apparently unre-
lated electron spectrum in the beta decay of the free
neutron also including relativistic eGects. For con-
sistency, in this calculation, we have included contri-
butions to the spectrum which arise when one corrects
the neutrino momentum for nuclear recoil. Such terms
are neglected by writing v/ef ——(1—x). This approxi-
mation is entirely reasonable for a nucleus as heavy as
carbon. The leading corrections, for the protons, are
given by

v' cf K v cf (x'+(1—x)')-—=(1—x)' 1—2x
ME v M~ (1+x) )



'102 JEREM Y BERNSTEIN

Fza. 4. This diagram illus-
trates the origin of the induced
pseudoscalar in muon capture.

This is as far as we shall carry the theory without
induced couplings. In the next section we consider the
induced pseudoscalar and in Sec. IV we shall discuss
the Gell-Mann weak magnetic term.

Therefore in the reaction p +p —& e+ v+y, the photon
spectrum is given by

e' 1 eg4

E(x)dx = —(1—x) 'xdx
kr' xa' m'

~, px+(1 —x) ~-
~ (Igvl'+3lg~l') 1—

I

(1—x)

2 6y

+(lg~l'+I gvl') —x -(fg—vl' lg
—

I )
M 3 M

+2 (gvg~*+g~gv*) —(*—2), (3»)

while the electron spectrum in the beta decay of the
neutron is given by

1V (EIr)dE~

( Elr) '
&Ez~y'I 1—

I
dEx (lgvl'+3lgxl')

I

er (E2 ( Elr) ) ( Err )
&& 1—

I

—+I1-
MEef' ( er ) )

2 E'
(I gv I'—Ig~ I')+(I g~ I'+

I gv I')
3 E~M

ey (X—
I 1—

I
2 (gvgx*+gzgv*)

~fEa)

tj (Ex 1 1 m~
X—

I

——— I, (30b)
M E eg 2 2 gfElr)

with EIr (m,2+E')&-—
I! lt is clear from Kq. (30b) that the relative electron
spectrum in the beta decay of the neutron is identical
to the photon spectrum in the process p +p —+ e+v+y
if we set m. =0 and change the sign of the last term.
This is as it should be since we have previously shown
that radiative IC capture and nuclear positron beta
decay for zero-mass positrons have identical leptonic
traces. The change of sign in the V—A interference
term for the elect~ox beta decay of the neutron is a con-
sequence of the well-known fact that under charge
conjugation

f~R')»-
g& 4'v( &'Y)Vs)4'p.

m Bxy
(31)

To the extent that this procedure is justifiable we
have two contributing diagrams to radiative muon
capture via the induced pseudoscalar as shown in Fig. 5.
The second of these diagrams —the "catastrophic" term

FIG. 5. These diagrams
are the "local" approxima-
tion to the induced pseudo-
scalar contribution to radi-
ative muon capture. Fig.
5(b) is the "catastrophic"
term.

III. THE INDUCED PSEUDOSCALAR

In the previous section, contact between strong and
weak interactions was made only indirectly through
the nuclear matrix elements. In this section and the
next, the strong interactions enter directly and hence
there is the additional element of uncertainty in the
conclusions that we draw which arises when one deals
with strong interactions by Feynman diagrams and
perturbation theory. However, we believe that the
theory which we give isolates the dominant eGects.

The induced pseudoscalar in muon capture is gene-
rated by the process depicted in Fig. 4."A calculation
of this diagram shows, in the notation of Sec. II, that
mB~"~(m )G—=gp~"~~&8gg~o~. The plus sign goes with
a calculation of the black box in Fig. 4 that includes
only nucleon-antinucleon pairs, for example the dis-
persion-theory computation of Goldberger and Trei-
man, "and the minus sign is a possibility if the empirical
m —& @+v lifetime, which depends on the square of the
relevant matrix element, is used to evaluate the loop,
as Wolfenstein has done. " Preliminary data on the
nonradiative Godfrey process, ' when compared with
the detailed theory of Fujii and Primakoff, " seem to
rule out the minus sign as a possibility. In the theory
which we develop below, the pseudoscalar is incoherent
with the other contributions of the V—A theory in
radiative capture effects so that this sign ambiguity
is irrelevant.

Let us begin by replacing the nonlocalities of the loop
in Fig. 4 by an effective local Lagrangian J. , i.e., we
shrink the loop to a point. Then

while
0'v O'= —Pv 0

p'( ill„y~) g"=p( —iy y~)p. —
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zt. iy—(E tz—o)yz y e —
hazy e zz„. (32)

iy(tzo E)+—m

The second term in Eq. (32) is the "catastrophic"
term. Equation (32) may easily be rewritten as

( 1
8, —mes Y'e IzzI.

iy (tzo —E)+m
(33)

Hence, in the local approximation, the induced pseudo-
scalar term reduces to a local four-fermion "intrinsic"
y5 coupling with the coupling constant g~ defined above.
It is clear from the remarks of Sec. II that this coupling
by itself produces internal bremsstrahlung quanta that
are 100% left circularly polarized. Therefore all effects
computed with Eq. (33) add incoherently to the rest
of the theory. The corrections to the local theory are
shown in Fig. 6. It is easy, after Treiman and Wyld, to
exhibit the general structure in momentum space of
these graphs. The above authors show that for real
pion radiative decay, when the electron mass is ne-
glected, the entire set of diagrams can be reduced to the
local ps form. This is no longer so for virtual pion decay
into muons since we can use neither e P =0 nor nz —0,
which are essential conditions for their proof. Nonethe-
less, it can be seen that the nonlocal contributions will
be at most of order m/M compared to the leading terms.
It may be worthwhile, at some future time, to try a
more detailed theory for these, but in this first estimate,
we shall simply drop them. On the other hand the

—comes from making the replacement (8/Bx&,) ~
(&/&xq)-ed' in Eq. (31). Such a procedure has been
made familiar by the analysis of Treiman and Kyld"
of radiative pion decay of real, as opposed to virtual,
pions. The lepton matrix elements corresponding to
these diagrams are, after setting q=E+v —tzo, where

po is the energy-momentum of the initial muon, and
using the Dirac equation to eliminate the neutrino
momentum,

Nv(x)dx=
e' eg4 i i lgp I'

(1—x)'xd
32zr4 m' zru' 2I,+1 4M'

XLP r;'—&8(r—r~)e;exp( —i(v+K) r)j

Xfnu, 'dr& dradrx (K+v)

X 1——— dadQ& (34)
E p

Since Eq. (34) represents a correction to the principal
contributions to the spectrum we can, with sufhcient
accuracy, set the plane wave equal to unity, i.e., make
the allowed approximation, and derive, after integration
over the neutrino and photon angles,

catastrophic term must bc kept since it is of the same
order of magnitude as the muon emission term, and is
necessary for the gauge invariance of the calculation.

As a parenthetical remark we note that, by the
above arguments, p rays emitted in the real process
zr —& tz+v+y must be 100% left circularly polarized if
the universal Fermi theory of this decay is accepted.
This will also be true of y's in the process E + t&,+v—+7.
Unfortunately the sense of p circular polarization is the
same for a scalar or a pseudoscalar E particle so that
y circular polarization experiments will not distinguish
between these. At the end of the next section we give a
formula for t&l(x), the circular polarization as a function
of photon momentum which is to be expected in the
radiative Godfrey experiment on the basis of the theory
developed in this paper. Making the approximation

yz~ (e K+v)/2M

in the nuclear matrix elements and using Eq. (33) for
the lepton matrix, we may derive the following ex-
pression for the photon spectrum due to the induced
pseudo scalar:

(a'1 (b)

e' eg4 1
Np(x)dx= — 1(2It+1)(1.—x)'x dx

32K m ~g 9 4M'

(c)
FIG. 6. These diagrams are typical nonlocal contributions to radi-

ative muon capture via the induced pseudoscalar.

~'S. Treiman and W. Wyld, Phys. Rev. 101, 1552 (1956). We
are very grateful to C. N. Yang for questioning the gauge invari-
ance of a preliminary calculation of the induced pseudoscalar and
pointing out the relevance of the paper quoted above.

x lg, l'l J' l'(sx —sx+3}. (35)

The scale of these corrections is evidently (m'/4M')
X l gv l

'—20%. We shall now turn to the weak magnetic
terms.

IV. VfEAK MAGNETISM

As we have remarked in Sec. II, the presence in Kq.
(2) of the term

i)y.T& &a„y.* y.'T& &a„y-.]—-



704 JEREMY BERNSTEIN

P
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the catastrophic terms cancel each other: typically, the
two terms in Fig. 8(c) and 8(d) cancel. As before we
shall neglect the nonlocal terms like Fig. 8(e). Under
these conditions the matrix element for the weak mag-
netic contribution to radiative E capture is written as

(a) (b)
FIG. 7. These diagrams show the "weak magnetic" contributions

to muon capture.

enables us to impose the conservation condition
B„J„~=Oon the vector current. It is clear that this
term, when multiplied into the suitable lepton matrix
element, allows the direct decay mode m —& vr'+e +f
with a known rate that has been given by Feynman and
Gell-Mann. "In muon capture we may have the virtual
events m++p -+ no+a and mo+p —+m +v intervene
in the capture process as is shown in Fig. 7. The totality
of such diagrams yields the function D&»(q'), discussed
before. We do not, however, have to resort to any per-
turbation-theoretic arguments to evaluate D(». Rather
we can take advantage of the fact that J„—~ and J„,~,
the isotopic vector current operator of electromagnetic
theory, are isotopic rotations of each other and thereby
use empirical electromagnetic data to evaluate D'».
This was done in obtaining Eq. (11) of Sec. II. In
calculating the weak magnetic contributions to radi-
ative muon capture we must again consider both muon
emission terms, such as Fig. 8(a), and catastrophic and
nonlocal ter'ms such as Figs. 8(c) and 8(e). One can
convince oneself that, owing to charge independence,

)&exp(—i(v+K) r)(—ioq &"q )jf 'dr, dr~dr

where, as usual, qq= vq+ICy —Noq. The dominant con-

.I6—

,l2

P r
ojr

(b}

N

(c)

N~--
P

(e)
FIG. 8. These diagrams show possible "weak magnetic" con-

tributions to radiative muon capture. The "catastrophic" terms
8(c) and 8(d) cancel each other.

0 .I .2 .5 4 .5 .6 .7 .8 .9 I.O
PHOTON ENERGY IN UNITS OF THE MAXIMUM ENERGY

FIG. 9. The spectrum to be expected in the reaction
p +C'2 —+ 3'2+v+& on the full V—A theory.

tribution to Eq. (36) is obtained by making the replace-
ment

in the nuclear matrix element. We have used energy-
momentum conservation and neglected the E-shell
muon momentum. The phase of the nuclear matrix
element has been defined in such a way that when the
matrix is specialized to a single proton and then iso-
topically rotated, the proton's anomalous magnetic
moment comes out positive. It is easy to see that
photons emitted by Eq. (36) alone are 100% polarized
right, that is, in the same sense as the usual V—A
terms. In fact, as Eq. (37) below makes clear, the effect
of Eq. (36) on the photon spectrum is to replace unity,
the ordinary Dirac moment in units of e/M', by the full
isotopic vector anomalous moment 1+@„—p„ in the
relativistic corrections to the allowed vector terms. The
fact that the single-particle moments enter here is a
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consequence of our earlier assumption that nuclear
muon capture can be described as the capture of a
muon by an ensemble of noninteracting "dressed"
protons. Since p„—p 3.7, the weak magnetic V—A
interference term yields the dominant relativistic cor-
rection in radiative muon capture. Putting the entire
theory together, we obtain for the photon spectrum in
the approximation where only the allowed terms are
kept in the relativistic corrections, and in which the
first two terms in the expansion of jo are kept in the
nonrelativistic quantities,

e' eg4 I
Ã(x)dx= — (1—x)'x dx1 (2I&+1)

2% 52 7l a

experiment is given by

1' 2
p(x) = lgg I' 1+——+—E~(20x—20x' —9)

3M 9

+(gagv +gvga )3(1+pal IJ~) (x 2)
M

1
(»2-»+3)

9 4M'

2
&& Ig, l2 1+-—+-Z, (20x—20x2 —9)

335 9

6f
& Igvl' J'll' 1+(1+» »)—

M
+ (g~gv*+gvg~*) 3 (1+~,—~ )—(x—k)

—-', Rv(4x+3 —4x') + (gggv*+gvgg*)

&&
I J ~

I
'3 (1+v —

w )—(x—-')
M

Ey 2
+ l gal'I J'a I' 1+——+—Rg(20x —20x' —9)

3M 9

1 8r~

+ lgpl'I J'~I'- L»' —»+3j . (37)
I

In Fig. 9 we have plotted the relative photon spec-
trum which we expect in the radiative Godfrey experi-
ment. Since this is an allowed Gamow-Teller transition,
the terms in lgvl2 vanish. We have also plotted the
allowed specimen, (1—x)'x. The coupling constants g~
and gy have been taken as real. The circular polarization
as a function of photon frequency, p(x), for the Godfrey

Deviations from unity in p can only reflect the
presence of the induced pseudoscalar. In fact, these
come to about 20'Po at the high-energy end of the
spectrum and may not be beyond present experimental
techniques.

Then, in summary, corrections to the allowed terms
in radiative muon capture are evidently of great theo-
retical interest and may, in the near future, be sus-
ceptible to measurement '0
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