
ERWI N, KOPP, AN 0 SHAPI RO

Dr. R. P. Shutt, Dr. A. M. Thorndike, W. A. Tuttle,
and Dr. W. L. Whittemore, have been very generous
in granting frequent assistance and the use of their
facilities. Many persons at Brookhaven, Harvard, and
3rown were exceedingly helpful in the scanning and
analysis of the films. The staG of the Brookhaven
Cosmotron, Dr. G. L. Collins chairman, gave us in-

valuable aid. Miss M. Carroll did much of the numerical
calculation in the data analysis.

We are especially indebted to Dr. R. K. Adair and
Dr. L. B.Leipuner for the use of their bubble chamber
and scanning equipment and their constant personal
assistance in operating and maintaining the chamber
during the run.

PH YSICAL REVIEW VOLUM E 115, NUMB ER 3 AUGUST 1, 1959

Recoil Momentum Distribution in Electron Pair Production*

K. S. SUH AND H. A. BETHE
I.aboratory of Nuclear Studies, Cornell University, Ithaca, iVem York

(Received March 12, 1959)

Electron pair production by a very energetic photon in the field of a particle of arbitrary mass (in particular
in the fields of an electron and a nucleus) is studied following the work of Borsellino. The distribution of
recoil momenta q is calculated for q of order of the electron mass and it is shown that the recoil distribution
is independent of the mass of the recoil particle if appropriate variables are used. It is also explicitly shown
that the mass of the recoil particle does not make any difference in the recoil distribution for very small q
(of order q; ).The total cross section must therefore be independent of the mass of the recoil particle in the
high-energy limit, as previously stated by Borsellino. The Wheeler-Lamb result for pair production in the
field of a bound electron is also justified. The results also describe the electromagnetic production of any
fermion pair if certain restrictions are satisfied.

'HE theory of electron pair production by a photon
in the field of an electron has been studied in

most detail by Votruba' and Borsellino, '' by using
Dirac s positron theory in Born approximation. Feyn-
man diagrams of the process are given in Fig. 1 and four
more diagrams, which are obtained by exchanging the
two electrons in the final state, must be added. The
processes corresponding to diagrams (c), (d) and their
exchange diagrams are referred to as y —e interactions. 4

Votruba's calculation is complete in that it involves all
possible processes. His final expression, however, is so

long and complicated that it is dificult to handle;
consequently, in order to carry out a general analytic
integration, approximations which may introduce

errors are required. In particular, Votruba finds that
the distribution of recoil momenta q over the region q

of order unity is dificult to obtain and, therefore, in

evaluating the total cross section, he does not include

the contribution from this region correctly.
Borsellino developed his theory for a particle of arbi-

trary mass 3f in whose Geld the electron pair is pro-
duced. Consequently he neglected the p —e interaction

'l

y

FIG. 1. Feynman dia-
grams for electron pair
production by a photon in
the field of an electron.

and exchange terms in his calculation. The errors'
caused by this procedure are presumably negligible
at high photon energies because the probability of large
momentum transfer, where the eGect of y —e interaction
and exchange is important, is negligibly small.
Borsellino's calculation should therefore be nearly
correct at high incident photon energies, except for the
unimportant case when the recoil momentum is of the
same order as that of the incident photon.

In this paper, the recoil distribution function for
high incident photon energies is obtained from the
previous calculation of Borsellino in a simple and
tractable form. The recoil distribution function for
electron pair production in the field of an electron is

*Supported by the joint program of the OfFice of Naval Re-
search and the U. S. Atomic Energy Commission.

' V. Votruba, Bull. intern. acad. Tcheque sci. 49, 19 (1948).' A. Borsellino, Nuovo cimento 4, 12 (1947).
3 A. Borsellino, Rev. univ. nacl. Tucum6, n, A.6, 7 (1947).
4 J. Joseph and F. Rohrlich, Revs. Modern Phys. 30, 354 (1958).
'We use the electron mass as a unit, and also set, A=c=1

&hroushout,

' For a detailed discussion of the y —e ig.ter@ctiog and t:xchange
gGects, see reference 4,
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compared with the corresponding distribution for that
in the field of a particle of arbitrary mass M (in particu-
lar when M is equal to the mass of a nucleus), and it is
seen that the two agree exactly if appropriate variables
are used. It is also explicitly shown that the mass of the
recoil particle does not make any difference in the recoil
distribution for very small q (of order q;„).When the
recoil electron is originally bound in an atom, our
result agrees with that of Wheeler and Lamb. ' The
results also describe the electromagnetic production of
any Fermion pair if certain restrictions are satisfied.

We will express the distribution of recoil momenta

q for electron pair production in the Geld of a particle
of mass 3f by an incident photon of energy k as

do (k,q,M) dQ(k, q,M)
=rirss =nrs'I" (k,q,M)

dg 4g

Where o. is the fine structure constant and ro is the
classical electron radius. The general expression of
«k, q,M) as given in reference 3 is very lengthy and
complicated. It will, however, be shown in the following
that it can be greatly simplified at high incident photon
energies.

The minimum value of q for a given energy of the
pair electrons follows from the definition of q, plus the
assumption that both pair electrons go in the forward
direction:

qmin(f = s) —=qmin =W(qmin) M+ 2/k. (3)

The kinetic energy of the recoil particle, W(q;„)—M,
is always negligible compared with the momentum

q;„, provided M&~1 (and k&&1) which is necessarily
true for production of electron pairs. If, however, a
heavy pair (e.g. , muons) is produced in the field of a
lighter particle (e.g. , an electron) and if we now denote

by 3I the ratio of the mass of the 6eld particle to that
of the pair particle, then M(1; in this case the relation

W(q; )—M«q;„ is fulfilled only if

' J.A. Wheeler and W. E. Lamb, Phys. Rev. SS, 858 (1939).

q;„(f)= k p p+=—W(q—;„) M+k/(2EM+. ) — (2)

k/(2E E+) =—W(q;„) M+1/2kf—(1 f), —

where f=E+/k and W(q;„)= (Ms+q;„') '* is the energy
of the recoil particle. Both E+ and E, which are the
energies of the created positron and electron with
momenta p+ and p, respectively, have been assumed

large compared with unity. The smallest value of q;„
is obtained by setting E+=E =k/2; for other energy
distributions, q;„ is larger;

4 2|' 2q*]7 25 2
«k, q,M)=- -I 1——I! -+-

q 3 & kqj E6 6kq (kq)')

( 2 1—ln(2kq) 4 ) 1+(1—2/kq)'
+ )ln (6)

Ekq (kq)' 3(kq)'J 1—(1—2/kq)1

2
— (1+(1—2/kq) '& (1—(1—2/kq) '*

p

(kq)' E 2 ) E 2 )
where 1(y)= Js&Lln(1 —x)j/xdx denotes the Spence
function. ' To obtain formula (6), we have partly used
expansions of Borsellino's formulae which are valid
only for —.', kq —1»1/Mk. Since Mk»1 and since (6)
vanishes at kg= 2 as it should, this restriction is rather
unimportant.

It is interesting to note that the recoil mass M does
not occur in expression (6). This is a formal proof of
the theorem that the mass of the recoil particle does
not make any diRerence for q&&1. The physical reason
for this is that, for q«1 (of order q;„), the field in
which the pair is produced behaves as if it were a static
one. This theorem permits us to use Bethe's formula"
for very small q (or order q; ) for electron pair produc-
tion in the field of an electron, even though it was
derived for the nuclear case.

The factor

(1—2/kq)
'

(7)

appears in every term of Zq. (6). This arises from the
fact, mentioned in (2), that the minimum q depends
on f, the fraction of energy in the positron, and attains
the value (5) only for f= sr. For a given q, the maximum
and minimum f permissible are

2)2

kq

so that (7) simply represents the permissible interval
of f

The formula (6) agrees exactly with that given in

~kM)2 is actually a necessary condition for pair produc-
tion in the field of a light particle of M'((1, because q;+M' —lV(g;,) &M whatever the value of q, . Therefore by
high incident photon energy we mean kM))1 in addition to k&)1.' K. Mitcheli, Phil. Mag. 40, 351 (1949).

m H. A. Bethe, Proc. Cambridge Phil. Soc. 30, 524 (1934).

in addition to k))i. If this is fulfilled, or if M~&1, then
(3) simplifies to

q; =2/k, (5)

and (2) also simplifies correspondingly.

(a) For k»1, q q;..

After a reasonably straightforward but rather lengthy
calculation, we may reduce the distribution function to
the following expression:
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reference 4 which is derived from Votruba's result
(reference 1) for the same region. " This is expected,
because the cintribution from the 7—e interaction and
exchange terms is negligible in this region. F(k,q, M)
for q«1 depends on q through kq which is a charac-
teristic of the distribution.

(b) For k»1, q«k, kq»1.

In this case F(k,q,M) can conveniently be expressecl
as a series of descending powers of k, viz. ,

F(k,q,M) =Fp(k, q,M)+k F, (k,q,M)+; (9)

Fp(k.q, M) is given by

where

X(k,q,M)

q R(k,q,M): k—$~ 2M—(W M)]—X(k,q,M)
I'p(k, q,M) =

3kW LM(W —M)qs q
—W+M LM(W —M)q-:LM(W M)+2q-:

'

W= (M'+q') l,

E(k,q,M) = (k(q —W+M) —M(W —M) }(k(q —W+M) —M(W —M) —2},

k(q —W+M) fM(W —M)+1}—M(W —M) fM(W —M) —2}—{M(W—M)}ff M(W —M)+2}-'E(k q M) l

=ln
k(q —W+M)

The expressions (10) and (11) can be greatly simplified,
as is shoWn in Appendix A, with the result

Fo(k, tLq, M])

2 1 (2t —1)
1+ 1n/1+ (+$'($+2) 'j, (12)

3 ~ &'*(&+2)'

where p=q'/4. Using p=$/2, one can easily show that
Bethe's formula (15) is identical with our (12).

The recoil distribution (12) in terms of the variable (
is independent of the mass of the recoil particle. "
This is a very remarkable and rather unexpected result
which should be useful experimentally.

where
g—=M(W —M), (13)

and a general notation

F (k,r),M) =dO(k, r),M)/dr), (14)

for any observable quantity rl=q, W, t, etc. , is
used. Formula (12) will also be valid for the electro-
magnetic production of any Fermion pair provided the
conditions k))1, q&&k, and kq)&1 and, in addition,
Hf))1 are satisfied. The unit of mass in this case, as
previously mentioned, is the mass of one particle of
the produced pair, and 3f is the ratio of the mass of the
recoil particle to that of the pair particle.

When M)&1, as is the case for electron pair production
in the field of a nucleus, we have

t —qs/2

which is independent of M. This case was previously
treated by Bethe, whose formula" for q»q;„reduces to

8 1 in[pl+(p+1)'*j
Fir(k, q,M) =——

3 q p'(p+1)'

1 ( inLp'+(p+1)'j)
+—

I
1-

q' E p**(p+1)' )
» Forinttla (6) may also be derived from the article of Jost,

Luttinger, and Slotnick, Phys. Rev. 80, 189 (1950) for the same
region.

n Compare Eqs. (32), (38), (41), and (44) of reference 10 as
applied to pair production.

In the following discussion, we will restrict ourselves
to the case of electron pair production in the field of
an electron. Here we have $= W —1 and Pl($+2) l=-q,
and thus for (12), we can write

2 g'

Fo(k, q, 1)=—
3 W(W —1)'

r 2g 3
1+ in(lV+q) . (16)

J

When W is much larger than 1, (16) can be simplified

by a further approximation to give

Fo(k&q~1) = (2/3q') L1+2 ln(2q) j. (17)

The first correction factor Fi(k, q, 1) is reduced to the
simpler approximate expression in Appendix B. It is
clear that Fp(k, q, 1) as given in (16) is of order unity
since it is independent of k and since g is of order 1.
In the same way Fi(k, q, 1) is seen to be of order ink

(+ a constant of order 1).
Since k&)1 and the recoil momentum q 1 is much

smaller than the momenta of the created pair, the
eGects arising from the y —e interaction and exchange
terms should not be large; they may partially compen-
sate each other because they seem to have opposite
signs. As discussed in reference 4, the contribution of
the y —e interaction terms is expected to be of relative
order q/k 1/k, while the contribution of the exchange

"This fact, that the recoil distribution in terms of the variable
, is independent of the mass of the recoil particle, is equally valid
for the case of g~g;, . In this case we merely put q= (2()~ in
Eq. (e).
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terms should be of order q/E, which, integrated over
the (nearly uniform) energy spectrum of the negative
pair electron, yields a result of order k ' ink. We may
therefore expect that (16) gives a good representation
of the distribution of recoil momenta q in the region
where q is of order unity, the error probably being of
relative order k ' ink.

The distribution function I'p(k, q, 1) as given in (16) is
plotted as a function of q in Fig. 2. The curves corrected
for the term k 'I'i(k, q, 1) in (9), using the formulas as
given in Appendix B, are given in the same Ggure for
k=100, 400, and 1000. However, the corrections made
there are not complete, because further modification
for the y —e interaction and exchange terms should
also be made.

Since the recoil distribution in terms of the variable
$ is the same for an electron as for a nucleus, the total
cross section for pair production will be the same in
both cases, if we (a) assume k))1 and (b) neglect:
screening. This result was first obtained by Borsellino
and should be correct except for terms of order k ' ink,
as pointed out by Borsellino.

When q is very small (q«1 but kq))1), both (6) and
(16) reduce to

I'p(k, q, 1)= 28/9q—=I'pp(q), (18)

as was shown by Bethe."The result of the integration"
of (16) over q from an arbitrary but small q=qp
(q; «qp«1) to infinity is

2 14 f 1 i 41
I'o(k, q, 1)dq=- —»/ —I+—.

&op 3 3 (qo&

Ke may write this in the form

~00 fQ 1 82
I'o(k, q, 1)dq= I'oo(q)dq+ —.

QP 27

The total cross section can thus be obtained by assum-
ing the simple formula (18) to be valid up to q= 1, and
then adding 82/27 for the contribution of larger q.
Votruba, ' ' who was not able to get a valid expression
for q of order 1 or larger, estimated the total cross
section to be simply given by the first term in (20)
which is in error by the constant 82/27. Joseph and
Rohrlich, in reference 4, accept Votruba's total cross
section even though they realize that he did not treat
the important region q 1 correctly.

Finally we consider the initial binding of the recoil
electron in an atom. It was pointed out by Wheeler
and Lamb' that this binding affects only small q, just
as screening does for the pair production in the field
of a nucleus. This is because, for large q (or order 1),

"The integral of Fo(k,g, 1) of (16) is given as

1 4 13q qI'p(k, q, 1)dq =-
( )

—~ 1
—~+1 ln (W+g)

2 2+- 7 ln(W —1)—
9 8"—1

to'

10

1.0

IO

IO

!0
lo

)

LO io IO

FIG. 2. The recoil momentum distribution function I'p(k, q, 1) and
the corrected values due to the lower order terms for 0 =100, 400,
and 1000, plotted as functions of the recoil momentum q.

the recoil electron receives su%cient energy to be con-
sidered free. Now Wheeler and Lamb assumed that for
large q (or order 1), the cross section was the same as
for pair production in the field of a proton. Since we
have proved in this paper that this assumption is
correct, the Wheeler-Lamb calculation is thereby fully
justified.
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APPENDIX A

A close look at the expressions (10) and (11) shows
that I'p(k, q,M) generally depends on the quantity
M(W M). We will the—refore introduce a variable

$=—M(W —M), where W= (M'+q')*.

Therefore

W —M= $/M and Mq= P(/+2M') &.

Since S'dW=qdq,

d$ qdq—=de=
M 8'

(13)

(A.1)

(A.2)

"Hart, Cocconi, Cocconi, and Sellen, following paper (Phys.
Rev. 115, 678 (1959)g; E. Malamud, this issue /Phys. Rev. 115,
687 (1959)J.

"See in particular Figs. (3) and (4) of Hart et al , reference 15. .
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Substitution of (13) into (11) yields

R(»h M) ={(k/M) (k'5(+2M'3' —5)—0 {(k/M) (5'*(5+2M')' —
5) —5 —2)

(k/M) {P (/+2M')' —$) ($+1)—$($+2)—P ($+2) '*R(k,P,M) '*

X(k,(,M) =ln
(k/M) {$'*(/+2M') i—$)

(A.3)

H we further introduce the abbreviation

5—=k(q —W+M) = (k/M) {$*(/+2M') ' —$),

substitution of (A.4) into (A.3) yields

R(k, ~,M) = (5—
~) (5—

~
—2),

iV (k, P,M)

always be fulfilled, even if the field particle has less
mass than the pair particles, as is the case for the
production of a muon pair in the field of an electron.

If (A.10), (A.11), and (4) are satisfied, then (A.7)
will be valid. We can then expand R(k, P,M) & in a power

(A.5) series, thus:

R(k, f,M) *'=5 ((+—1)—1/25 — . (A.13)

5(5+1) e(E—+2) '*R(k, GM)
'*t(k+—2) For most processes, this expression can be simplified

by setting5

Expression (A.5) can be greatly simplified by noting
that, under very general conditions,

5&&/+2. (A.7)

To prove this we consider the two cases (a) +&3P, and

(b) $&3P. The magnitude of M itself is unimportant
for the present.

Case (a) +&3P, therefore q«M. Then

R(k, P,M) =5'. (A.14)

For (A.6) we obtain, using the full (A.13):

Se =5(6+1)—5'(5+2) 'LS—(5+1)3
—(($+2)+$**($+2)'*/2S; (A.15)

therefore

e~=g1+$ $l($+2—) ij/1+$&($+2)'/5)
+$'($+2) '/252. (A.16)

Mq =$ 2 ($+2M2) k))g~q2/2

Therefore
S~kg,

and (A. 7) is satisfied provided

(A 8)
Now we have

5'(5+2)'& k+ 1, (A.17)

(A.9)

(A.10)

and therefore, using (A.7), we see that the second square
bracket in (A.16) may be replaced by unity. The last
term in (A.16) may also be neglected which is seen by
dividing this last term by the first bracket, and then
using (A.17) and (A.7). Then

~qM, 5 kM. (A. 12)

(A.11)

(A.10) states simply that the recoil momentum is
small compared with the total momentum as we have
assumed throughout this paper. (A.11) implies that q
is large compared with its minimum value, q;„=2/k
as given in Eq. (5); smaller values of q were treated
separately in Eq. (6).

Case (b) $&3P, therefore q&M. Then

cV(k, ),M) = In)1+$—$l($+2) lj
= —»L1+5+8'(k+2)'3

(A.18)

3(2

2$—1
1+ 1nli+$+$i($+2)&) (A.19)

~:(~+2)~

Substituting (13), (A.2), (A.4), (A.14), and (A.18)
into (10), we obtain

I e(k, g(q, M))

From this 5&)$ follows by (A.10), but to make S&)2 we which is identical with (12).
must require also relation (4), i.e. ,

APPENDIX B
(4)k3f&&1.

For the case of electron pair production in the field
It was shown in Sec. (II) that this condition (4) must of an electron, we may write

2q l W—1 i R(k q1):
r, (k,q, 1)=

~
(W —1)(W—5)+q(2 —W)y

W(W —1)' q
—W+1) k(q —W+1)

l 2(W—1) (q —W) ~
~+i (W—2)(q —W+1)+ i L(k,q, 1)—2 (W—1)I(k,q,1), (3.1)

q
—W+1
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where now
R(k,q, 1)= {k(q—W+1)—(W —1)}{k(q—W+1)—(W+1)}

{k(q —W+1)—(W—1)}i+{k(q —W+1)—(W+1)}''

I.(k,q, 1)=ln

k (q
—W+1)W —q' —qR(k, q, 1)1

X(k,q, i) = ln-

k(q —W+1)

1 E(k,q, i) (W q)L(—k,q, 1)
]I(k,q, 1)= ~ F(k,q, i)dq, F(k,q, i) =— +

~g;„W 2 q
—W+1

(8.2)

4 (3 7~ )2
1'~(»q, i)= I

——
I
—

~

——1
1 »(2kq)

q &q 2) Eq )R(k,q, i)'—k(q —W+1)—W

When k))1 and q«k, with exception of the case where approximate expression

q is so small that kq 2, we can approximate R(k,q, 1)
and E(k,q, i) in the following way:

-~k(q —W+1), (8.3)
k(q —W+1)—W

—-' ln'(2kq)+ — (8 5)2

(b) For q))1 but q«k, we can approximate

Further simplifications can be made in the following
two cases:

(a) For q«1 but kq))1, we may as above
approximate

We also make similar approximations in the coe%cients
of R(k,q, i)&, L(k,q, 1), and I(k,q, 1) in 8(1). Then
substitution of (8.3) and (8.6) into (8.1) yields the
approximate expressionL(k,q, i)~—,

' ln[kq(2 —q)$~—,
' ln(2kq), 8.4

I(k,q, i)~x' ln'(2kq) ——'n-' I', (k,q, i) (1/q') {(8—6q)+q(-', m'+4 —ln(2k)
—ln (2kq) ln (k/2q)) }. (8.7)

The correction term k 'F~(k, q, i) is negative and its
absolute value is a decreasing function of k.

We also make similar approximations in the coefhcients
of R(k,q, i)&, L(k,q, i), and I(k,q, 1) in (B.i). Then
substitution of (8.3) and (8.4) into (8.1) yields the

1V(k,q, i) ln (W—
q) ~

1+
~

ln(W —q).
(

k(q W+1)j L(k,q, i)~2 in{2k(q —W+1)}~-,' ln(2k),

I(k,q, i)~~~ ln(2kq) ln(k/2q)+-', ln(2k) —~~~P+1. (8.6)


