
PHYSICAL REVIEW VOLUME 115, NUMBER 3 AUGUS T l. , a959

Application of the Diffusion-Modi6ed Bloch Equation to Electron Spin
Resonance in Ordinary and Ferromagnetic Metals
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A new solution to the electron spin resonance absorption in metals is given by using Bloch's equation
modi6ed to include diffusion. It is shown that the coefficient for a similar diffusion term added to the
Landau-Lifshitz equation for ferromagnetic resonance must be of order 10 ~ times smaller than that for
nonmagnetic metals. A restricted formula for saturation in nonmagnetic metals is given.

I. INTRODUCTION

ECENTLY a modification of the Bloch equations
has been proposed which includes the eGects of

the diGusion of carriers. ' It occurred to the author that
the modi6ed Sloch equations with Maxwell's equations
should describe electron spin resonance of the conduc-
tion electrons in metals. This problem has already been
solved by a diGerent approach. ' The first-order time-
dependent solution of a spin —', in a static Field Bo and
an rf Geld H~ was averaged over both a spin-lattice
relaxation probability and a diGusion probability. This
integral representation of the magnetization was then
combined with Maxwell's equations to effect a solution.
Dyson's method of solution is so different from the
main stream of resonance calculations that a further
important application of diGusion was overlooked, i.e.,
what eGect does diGusion have on ferromagnetic
resonance in metals' H the magnetic electrons in
ferromagnetic metals are free to move around, they
will contribute to line shape distortions. Recently a
theory has been given to account for the observed line
shapes of ferromagnetic resonance in metals with a
skin depth smaller than the sample size. ' This theory,
without allowing for any diGusion eGects, appears to
account for the experiments. From this result we

conclude that the diGusion constant for the magnetic
electrons must be of order 10 ' times less than that in
nonferromagnetic metals. This point will be discussed

later in the paper.
A crude calculation of the initial eGects of saturation

will also be given.

II. CALCULATION OF ELECTRON SPIN
RESONANCE IN METALS

The equations we need are the Bloch equations for
the transverse components of magnetization modiFied

to include diGusion':

BM/Bt= y(M)&H) —M/T +Dv'M

current:

v t& E= —(1/c) (aH/itt+4zritM/itt),

v XH = (4zro./c) E.
(2)

[n —i (1—E')50R+PBC=0

[4r 5z9eR+ [e'+iK'53C =0

For a solution we must have

(4)

K' —1—in iP—
=0—zaire' E z6

or E4 czE'+cz 0, where— ——

cr ——1+ z (n+ e'),

cz——e'[4zrP+i (1+n)5
i

Next it is noted that since the equations are all linear:

~n= &nn)

In terms of the velocity ~ and relaxation time
D= v'z/3.

Assume the metal occupies the positive half of s space.
The magnetic 6eld is taken along the s axis and the rf
field is assumed circularly polarized. The x and y
components of M, B, and 8 will vary as e'"' "'. Sub-
stituting in Eqs. (1) and (2), we obtain the equations
for the case of no saturation

z M.=&[M„H,—M,H„5—M./T, +.DM.,

i(dM„= y[MeH, —M~e5 —M„/Ti+Ir'DM»
(3)[1+-,'i''5H +4nrM =0,

[1+z Q'~'5Hy+ 4zrM„= 0,

where
oz =cz/4zro oi.

Defining 5R=M, iM» K=H, —iH» E''=—Ir'e'6'/2
e'= 2DTz/P, n= Tz(&u —coo), and p= XgoeTz, Eqs. (3) can
be simplified to

and Maxwell's equations, neglecting the displacement where

' H. C. Torrey, Phys. Rev. 104, 563 (1956).' Freeman J. Dyson, Phys. Rev. 98, 349 (1955).
'%'. S. Ament and G. T. Rado, Phys. Rev. 97, 1558 (I955).
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wh ere

8=E —i'= N„K„,

I„=iECV2/4n. oea. .

(8)

III. EFFECT OF DIFFUSION TERM ON
FERROMAGNETIC RESONANCE

The Landau-Lifschitz Equation appropriate for ferro-
magnetic resonance including exchange and diGusion is

The boundary conditions are tangential X continuous
and k VOR= 0, where k is a unit vector in the z direction.
This latter condition can be derived by integrating
Eq. (1) over a flat disk with one face just outside the
sample and the other face just inside the sample. 4 In
the limit as the disk volume goes to zero all terms
except the diffusion term go to zero. The integrated
difFusion term becomes k VOR, which must, therefore,
also be zero. In component form the boundary condi-
tions are

=yM X[H+ (22 /M, s)V'M —(P,/yM, ')M XH]

+DVsM, (18)

where 3 is the exchange factor, M, the saturation
magnetization, and X is a relaxation parameter. What
needs to be compared is the ratio

D/[ (»7)/M. ]=~

For a good metal D 10', and for some iron-nickel
alloys A~10 ' and M ~10'. Therefore, P is approxi-
mately 10.' Ament and Rado, ' using Eq. (18) without
the diGusion term, have been able to obtain good
agreement with the experimental line shape. The con-
clusion from this is that D for the magnetic electrons
in ferromagnetic metals must be of order 10-' t™s
smaller than in good metal conductors.

BCi+Xs—Kp)
(9)

Ei'viKi+Es'DPCs= 0)

where, BC0 is the magnetic field just outside the metal
surface. The surface impedance,

Z= (4n/c)[k EXH/~ II ~
']

becomes in the complex notation

Z= (4n./c) Im(h/Kp).

Define X= h/Xp, or

BCpX= (ic&2/4n o ea) [EPCi+EPCs].

Let X'= (4naea/ic&2)X, giving finally the result

KpX =EPCi+EPCs.

Equations (9) and (13) define the secular equation

(10)

IV. SATURATION

1 1 1
X' X1 E2 =0,

+1~1 I'2~2 therefore,

(M,)—Mp+ y Ti([MXH].)+D(V'M.),
where the averaging is to be performed at the surface.
Assuming then that D('PM, ) can be neglected, as it has
been assumed that (M,) is almost constant near the
surface, we have for (M,) the expression

(M,)=Mp+yTiX, p' ImI',

with the solution

zcs'*[ci+2csi]-:
Xf

s'+i[et+ cs&]

(15)-The absorption rate is given as

(11) Saturation can be treated by numerically integrating
Eqs. (1) and (2) with the appropriate boundary condi-
tions. If it is assumed that e&&1, which implies the
spin-lattice relaxation time is much greater than the
time to cross the skin depth, the z component of
magnetization should be relatively constant in a layer
several skin depths thick inside the metal. Thus, a first

(13) order correction to saturation can be made by replacing
Mp in Eq. (3) by (M,), where (M,) is obta, ined from the
equation

aM, /at =y[M xH]. [M, Mp]/T—,+ Dv—'sM„

P= (c/4n')%ps ImX.

A comparison with the previous solution' is made by
noting that p is very small as it is proportional to the
Pauli susceptibility. Equation (14) is expanded .in
powers of P and terms only up to those linear in P are
kept. The result then can be shown to be identical
with the section in the previous calculation, called
"(c) Thick Case. '"

z ) cs ze ci e

(4n e') ci+cs& ies— (16)

where Y is defined from the determinant

1 1
V e1 V2 =0,

+1&1 +2&2

in analogy with the calculation of X. Expanded this
becomes

'This method was suggested by G. T. Rado, who had used it R 1; M b (M ) ll n eiF t han e p tfor deriving the boundary condition resulting from the M)& &2M eP acing o y. .. wi ~
in e ec ~ c ange

exchange term (to be published). P(M )/M p and thus the previous calculation is only
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F~(—ip)
(1+us)+z e(1+zn) —ze'

(17)

Note that the assumptions for the validity of this
approximation correspond to Dyson's section "

(cs)
Thick Case, Natural Line. '"

In this calculation of electron spin resonance in
metals it has been assumed that the electrons are

altered by a multiplicative factor. To the term linear
ind|I, Y is given by

acted on by B and not B.' In the case of no saturation
this is inconsequential, but the saturation expressions
would depend on whether B or 8 is used. It is suggested
that such exp erimentents, interpreted using the
numerical solution of Eqs. (1) and. (2), could throw
light on this question.
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A general treatment of polarization-angular correlations involving conversion electrons is presented.
Formulas are given for the b„coefficients for all types of polarization of the conversion electron, electric and
magnetic multipoles, and arbitrary complexity u. It is shown that only three coef6cients are needed to
characterize completely correlations of conversion electrons from the E' shell, for a given type of transition.
Curves are given of the threshold values for these coe%cients for L=1—5, electric and magnetic, versus
atomic number. The relativistic Coulomb functions (point nucleus, no screening) are presented, along with a
number of properties and expansions, in a convenient and consistent notation. Several identities and rela-
tions involving the vector addition coefficients are included.

INTRODUCTION AND SUMMARY

A LTHOUGH not many measurements of angular
correlations involving internal conversion elec-

trons have been performed, ' such measurements appear
to be potentially useful experimental tools. In particular,
the nonconservation of parity in beta decay has given a
new impetus to the examination of the beta conversion-
electron correlations.

Frauenfelder, Jackson, and Wylds pointed out that
the polarization of the recoil nucleus resulting from a
beta decay (in an originally unpolarized nucleus) could.
be analyzed by angular correlations between the beta
decay and a subsequent radiation (gamma or conversion
electron) if the longitudinal polarization were measured.
This analysis furnishes additional information on the
beta interaction.

Rose and Seeker in an interesting extension' have
noted. that internal conversion electrons in coincidence
with beta particles are partially transversely polarized

* Supported in part by the U. S. Atomic Energy Commission,
the Research Corporation, and by a Humble Oil Company Fel-
lowship in Physics.' See, however, S.Frankel et a/. , Phys. Rev. 93, 1425 (1954};100,
1350 (1955); 102, 1053 (1956); 105, 1293 (1957); and 106, 755
(&957).

~ Frauenfelder, Jackson, and Wyld, Phys. Rev. 110,451 (1958).' M. E. Rose and R. L. Seeker, Phys. Rev. Letters 1, 116 (1958).

for odd values of i. If e and k denote the directions of
motion of the beta and conversion electrons, respec-
tively, this polarization term is typified. by e k&& (exk).
The longitudinal polarization terms also have odd v and
are of the type (e k) (e k). In addition to these terms,
however, there are also transverse polarization terms for
evezz v, typically (tr k)& e) (e k).

Physically, the observation of the conversion electrons
is analogous to analyzing circularly polarized. gamma
quanta by the photoelectric effect. Since the relative
pha, se of the electron transition matrix elements is im-
portant, the use of internal gammas should enhance the
eGect because outgoing, as opposed to standing, waves
occur in the internal conversion process.

A general treatment of the conversion electron-x (i.e.,
gamma, beta, etc.) correlation is presented in an ex-
tension of the method of Biedenharn and Rose.4 The
importance of this method is that it greatly simplifies
the problem, by the use of a parametrization due to
Lloyd. It is shown below that for the E shell, with given
values of multipolarity and parity, there exist only three
quantities to characterize completely any x-conversion
electron correlation [see Eq. (23) ff].

In the limit of high energy, the conversion electron

4 L. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25, 729
(1953).


