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High-Temperature Thermal Conductivity of Insulating Crystals:
Relationship to the Melting Point
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The Lindemann melting rule is used to eliminate the elastic constant from the thermal conductivity
formula proposed by Lawson. The thermal conductivity is thus obtained as a function of density, atomic
weight, and melting temperature. The introduction of a dependence on bond character allows a major
fraction of the available high-temperature thermal conductivity data to be reproduced within a factor of
two. A dependence of thermal conductivity on mass ratio of the type found theoretically by Blackman for
diatomic crystals is observed.

I. INTRODUCTION

" N insulators, in which the thermal current is carried
~ - by phonons, the thermal conductivity, ~, is given
by the formula' P =3Cel, where C is the specific heat
per unit volume, e is an average velocity of sound, and
l is an average phonon mean free path. At high temper-
atures in su@.ciently pure and perfect crystals / is
determined by phonon-phonon scattering. At temper-
atures high enough so that the lattice oscillators are
classically excited, C has the Dulong and Petit value and
/ is proportional to the reciprocal of the temperature.
The thermal conductivity under these last circum-
stances is referred to as the high-temperature thermal
conductivity.

Various expressions which relate I or P in the high-
temperature range to other mechanical properties (e.g. ,
thermal expansion coefficient, Debye temperature) of
the crystal have been proposed. ' ' Unfortunately all of
these expressions involve properties which are known
only for rather intensively investigated crystals.

For practically all materials which are intentionally
prepared the density, atomic weights, and melting
temperature are known. However, certain rules of a
semiempirical nature connect the melting temperature
with other physical properties of a crystal. ' ' In this
note such rules will be used to eliminate the less readily
available parameters from the thermal conductivity
formulas and to replace them with T, the melting
temperature. The resulting expression will be compared
with experimental data given in the literature.

A correlation of lattice thermal conductivity with
melting temperature has been suggested previously:
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Eucken' concluded on empirical grounds that many
substances have the same thermal conductivity at the
melting point. Such a rule appears to work fairly well
for substances with low melting points, but is not valid
for crystals melting above about 500'K.

II. DERIVATION OF THE FORMULA FOR XT

It has been shown by Lawson' and by White and
Woods" that the various thermal conductivity formulas
are essentially equivalent in the high-temperature
region. The form proposed by Lawson' is most con-
venient for the present purpose. It is

y —/r/3~2T~3/spl/s

where a is the interatomic distance, y is the Gruneisen
constant, p is the compressibility, and p is the density.
The dependence of all of these quantities on the
temperature is very weak, and A, T is constant to a good
approximation at high temperatures.

The Lindemann melting rule' can be used to eliminate
y from (1). The Lindemann rule is based on the as-
sumption that melting takes place when the amplitude
of thermal vibration of the atoms reaches some fixed
fraction, ~, which is the same for all materials, of the
interatomic distance. It can be put into the form

g= e'V/RT„,

where V is the volume per gram atom. Substituting (2)
into (1) and setting a= (V/Eo)'/' and V=A/p, where
3 is the mean atomic weight and St) is Avogadro's
number, gives

XT=/tRI'/3yse'Xe'/sjT s/'p'/s/Ar/' (3)

=BQ, (4)

where 8 represents the bracketed factor in (3) and
0=—T s/'p"/A '/'. Now most of the variations of
physical properties among different materials has been
combined into the second factor of Eq. (3), and it
might be hoped tha, t Eq. (4) with 8 regarded as
constant wouM be a useful formula for the approximate
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prediction of lattice thermal conductivities. In the
subsequent text the evaluation of this idea will be
undertaken, and references to Eq. (4) should be under-
stood to mean Eq. (4) with I3 regarded as a constant.
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FIG. 1. The high-temperature thermal conductivity data of
Table I plotted in the form suggested by Eq. (4). In the abscissa,
T~ is expressed in Kelvin degrees, p in g/cm, and A in grams
per mole. A is the average atomic weight. The line indicates
proportionality between XT and Q.

III. EVALUATION OF THE FORMULA

For the purpose of evaluating Eq. (4), values of XT
and of T 31'p'~3/Ar~' are tabulated in Table I. An
attempt has been made to include in Table I all of the
available thermal conductivity data for which a
temperature range has been observed in which ) varies,
at least approximately, as T ' and in which it appears
that material of reasonably high structural perfection
has been used. In some of these cases the measurements
have been made at temperatures considerably less than
the Debye temperature, and the assumption of classical
excitation of the "optical" modes of vibration does not
seem plausible, in spite of the T ' dependence. However,
the de-excitation of the optical modes will probably not
make a difference of a factor greater than two in the
thermal conductivity, and it will be seen that such a
factor does not have an important eGect on the con-
siderations to be presented.

The data of Table I has been used to construct Fig. 1.
It is seen that Eq. (4) with 8 regarded as constant is

capable of defining the thermal conductivity to within
about one order of magnitude. Since the independent
variable in (4) varies over four orders of magnitude,
some significance can be attached to Eq. (4).

In calculating 0 for crystals containing a molecular
unit, e.g. , (CO3), (CBH6), the parameter 2 was taken to
be the molecular mass. This amounts to ignoring the
internal degrees of freedom of the molecule. The

ThsLE I.A collection of high-temperature thermal conductivity
data, taken from temperature ranges in which A, is approximately
proportional to T ~.

Material
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0
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BeO
MgO
A1203
InP
GaAs
InAs
InSb
PbTe
Si02
Ti02
BaF2
KCl
NaF
Mg2S„
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35q
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15&
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6v
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0.8z
0 7z;aa

0 4aa

31000
2500
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370 .
110
230
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14.7
14.4
5.2

14000
11900
8100
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4050
6000
1500
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2500
730
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1240u
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50w
28w
36w

CV
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CV

CV

CV

CV

vW
vW
vW
CV

l
l
CV

CV

Cv
Cv
cvt'
CV

l
l
l
l
CV

l
l
l
l
vW
CV

l
vW
vW
vW

1.78
1.52
1.69
3.7
1.07
1.53
1.06
1.62
1.75
3.0
7.2
1.10
1.21
4.9
1.54
2.11
1 50u
3.2

1.63
1.35

& cv: covalent; i: ionic; vW: van der Waals or molecular bonding. The
classification according to bonding type is based on structural considerations
as described by F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, New York, 1940), Chap. I; and A. F.Wells, Structural Inorganic
Chemistry (Oxford University Press, New York, 1945).
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The suggestion provided. by observation (2) is
examined in Figs. 2 and 3, in which the points derived.
from the covalent and the ionic and van der Waals
solids are plotted separately. The division of the solids
into types is as in Table I. The lines of Figs. 2 and 3
constitute a good representation of the data; two thirds
of the points fall within a factor of two of the line to
which they are assigned by the structural criterion.
Many of the large deviations are cases in which a real
question could be raised about the bonding classifi-
cation, e.g., Se and Te, in which the bonding between
chains is certainly not covalent. The value of 8 for the
covalent line is 0.13, for the ionic —van der Waals line
it is 0.015.

IV. THE MASS RATIO EFFECT

FzG. 2. The high-temperature thermal conductivity data plotted
in a form similar to that of Fig. 1 for the ionic and van der Waals
crystals.

justification for this is mainly empirical: the use of the
molecular mass fits the molecular crystals into the
present scheme in the most satisfactory way. However,
it is also true that in a case for which a contribution to
the thermal conductivity from internal degrees of
freedom has definitely been observed, the temperature
dependence of X is not T ', but is more nearly X=con-
stant. "

There are some general features of Fig. 1 which are
worth noting: (1) Eq. (4) holds quite accurately for
some sets of very similar substances, namely: neon,
argon, krypton, and silicon, germanium, GaAs, InSb,
InAs; (2) the covalently bonded solid. s tend to lie above
the ionic and van der Waals solids for a given value of
0; (3) the elements tend to have higher values of XT
than compounds with the same value of 0; (4) in the
units of Table I, 8=0.03, which is about the order of
magnitude to be expected from Eq. (3).
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Fxo. B. The high-temperature thermal conductivity data plotted
in a form similar to that of Fig. 1 for the covalent crystals.
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Observation (3) of the preceding section is a result
first appreciated by Kucken and Kuhn" who noted
that in the alkali halides the thermal conductivity tends
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Fn. 4. The deviations of the points from the lines of Figs. 2
and 3, AT/Q, T)«i„plotted against the ratio (heavy atomic
weight/light atomic weight) for the diatomic crystals.

to be highest for those crystals in which the anion and
cation masses are most nearly the same. The theoretical
explanation of the eAect was given by Blackman. "
Blackman considered the case of a linear chain of
atoms. If all of the atoms of the chain are identical
there is no thermal resistance in the linear case, as
shown by Peierls. ' The reason is that the conservation
laws for energy and for crystal momentum have only
trivial simultaneous solutions for the linear chain.
Blackman showed, however, that if the lattice is
diatomic the additional dispersion introduced by the
splitting of the vibrational spectrum into two branches
allows nontrivial solutions to be found. Thus the
diatomic linear chain has a nonvanishing thermal
resistance, which depends on the mass ratio of the
atoms, increasing as the ratio is increased from one.

In addition, however, Blackman showed that this
thermal resistance persists only up to mass ratios of

n A. Eucken and E. Kuhn, Z. physik Chem. (Frankfurt) 134,
i93 (1928).

"M. Blackman, Phil. Mag. 19, 989 (1935)."R.Peierls, Ann. Physik 3, 1055 (1929).
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about three. If the inass ratio becomes larger than
three, the separation of the acoustical and optical
branches of the vibrational spectrum becomes so great
that interactions involving phonons in both branches
become impossible. Since these are the interactions
which produce the thermal resistance, the resistance
then vanishes.

Although Blackman's calculations applied only to
the linear chain, he believed that a similar eGect should
appear in the three-dimensional case, superimposed on
the ordinary three-dimensional resistance. '4

In order to see the relationship of Blackman's result
to the present analysis of thermal conductivity data,
it will be assumed in this section that the procedure of
the preceding section has been successful in normalizing
out of the thermal conductivity most of the variation
from material to material which is due to variation of
the average mass, the interatomic forces, and the
crystal structure. The remaining variation can be
studied by calculating the ratio of the measured )T to
that predicted by the straight lines of Figs. 2 and 3,
hereafter denoted by (XT)„&,.

An attempt is made in Fig. 4 to attribute this
remaining variation to the mass ratio eGect. In Fig. 4
values of XT/() T)„q, are plotted against the ratio
(heavy atomic weight/light atomic weight), column
five of Table I, for the diatomic crystals. Although the
points for high mass ratios are rather sparse, the
trend can be recognized. For mass ratios from one to
three, the ratio XT/(XT)„~, decreases with increasing
mass ratio. However, at a mass ratio of about three
there is a discontinuity at which the value of XT/ PT)„&,
increases to the value which characterizes the com-
pounds with mass ratio near unity. The disappearance
of the Blackman-type scattering does not take place
sharply at mass ratio three, but this is not surprising
in view of the simplicity of Blackman's model.

V. DISCUSSION

The value of the present correlation, as compared to
previous ones dealing with the same subject, is that it
associates the thermal conductivity with more easily
measurable, and hence more frequently available,
parameters. The calculation of the abscissa in Fig. 1
requires only a knowledge of chemical formula, density,
and melting temperature. The use of the plots of Figs.
2 and 3 requires, in addition some understanding of
the crystal structure.

In some cases, notably that of silicon and germanium,

Eq. (4) predicts the relationship of the thermal conduc-
tivities of the solids in question with greater accuracy
than the Lindemann rule gives the relationship of their
melting temperatures. The derivation of Eq. (4) given
in Sec. II should therefore be regarded as suggestive
rather than quantitative. In this connection it should
be pointed out that a result similar to Eq. (4) can be
obtained using the semiempirical relationships in
diferent ways; for example, one might substitute the
relationship of Zwikker, ' o,T = constant, into the
Dugdale and MacDonald4 formula for /, l=a/AT,
where o, is the thermal expansion coeKcient.

The physical essence of the Eqs. (3) and (4) is that
the melting temperature is used as a measure of the
force constant of the crystals and it is assumed that the
anharmonicity (in a dimensionless sense) is the same
for all materials. Reasons why the covalent crystals do
not fall into the pattern of the ionic and van der Waals
crystals are not hard to find. Firstly, the Griineisen
number is generally smaller for covalent materials than
for other types, being only one or less for the former.
Secondly, the melting phenomenon is diferent for the
covalent materials, in that they usually melt with a
contraction in volume to form a metallic liquid, whereas
there is little change in structure or bonding involved
in the melting of the other crystals.

In all of the preceding discussion the anisotropy of
the thermal conductivity of the noncubic substances
has been ignored. This is principally because the simple
semiempirical ideas used provided no way of taking the
anisotropy into account. No improvement in the final
correlation is to be expected from an inclusion of the
eGects of anisotropy, however, as, for most of the
anisotropic substances of Table I the anisotropy of the
thermal conductivity is not known, and in the remaining
cases the anisotropy is usually less than a factor of two."

A final point worthy of attention is the validity of the
frequently used. assumption that thermal conductivity
is a decreasing function of atomic weight. Although A
appears in the denominator of Eq. (3), and the state-
ment appears to represent a trend in the covalently
bonded solids, it is by no means universally true. The
outstanding example here is found among the noble
gases, where neon has the lowest atomic weight and
the lowest thermal conductivity. The highest and lowest
values of XT are represented by diamond and neon,
respectively, the two elements of lowest atomic weight
which are included.

'~ W. A. Wooster, Z. Krist. 95, 138 {1936).


