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Dislocation Dynamics at Low Temperatures
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A model for low-temperature dislocation motion is developed using the concept of nucleation and growth
of kinks in dislocations lying in Peierls potential troughs. The model is compared with existing experi-
mental data.

INTRODUCTION

YTTON et al. ' have found an activation energy for
& the low-temperature creep of single crystals of

pure aluminum which they suggest may be associated
with the Peierls' energy. In the following treatment a
creep mechanism requiring the presence of the Peierls
energy barrier is proposed which yields results which
are in agreement with experimental evidence.

DISLOCATION KINETICS

1. De6nitions and Presentation of the Problem

An otherwise straight dislocation line lying along a
close packed direction in the Peierls potential valley
will contain an equilibrium number of steps where the
dislocation line is displaced by a simple lattice vector. '
Ke shall follow the notation of Read4 in terming such a
step a kink if it lies in the glide plane; a jog if it does not
lie in the glide plane. A dislocation acted on by a stress
less than the Peierls stress will advance by a two-stage
process involving the nucleation of kinks and the
lateral propagation of kinks along the dislocation line.

New kinks must be formed by the nucleation of
double kinks. These double kinks, shown in Fig. 1,
then can separate under the action of both the applied
stress and Auctuating thermal stresses. For a separation
d, the external shear stress will balance the kink-kink
attraction. As the kink-kink attraction is of short range,
we can consider, in all cases to be discussed later, that
the critical separation, d„beyond which the interaction
between kinks is negligible, will be given by

dc—2m)

where tez is the kink width (Fig. 1). The activation
energy for thermal production of a kink pair of separa-
tion larger than d, will thus be about

ponent of external shear stress in glide plane along the
Burgers vector, 0, minus the Taylor stress due to
elastic interaction of the dislocation with other dis-
locations in the lattice, 0-, ', b=the magnitude of the
Burgers vector -', (110);and zt=-,'%3b=distance between
neighboring close-packed rows in the glide plane. 5

A kink on a dislocation line will diffuse under thermal
stresses. Thus a kink pair will not necessarily separate
once it has reached a separation greater than d, because
the probability for back diffusion against the shear
stress and subsequent kink-kink annihilation will be
great. In fact it will later be argued that only a small
fraction of the nucleated kink pairs will reach a separa-
tion beyond which the recombination probability is
negligible. A kink pair nucleated in the direction
opposed by the shear stress will be forced to annihilate.

Hence, in order to form a theory of dislocation creep
over the Peierls barrier, the rates of double-kink
nucleation and of kink diffusion must be evaluated.
Double-kink nucleation has previously been considered
in a theory for the Bordoni' peak by Seeger and Donth' '
who employ the theory of stochastic processes in deter-
mining the interaction of a dislocation line with sound
waves. Seeger' has also suggested a formula for the

afz

(IIO) directions

FxG. 1. A double kink in a dislocation line segment
lying in a {111}plane.

'Lytton, Shepard, and Dorn, Trans. Am. Inst. Mining, Met. ,
Petrol. Engrs. 212, 220 (1958).

2 R. Peierls, Proc. Phys. Soc. (London) 52, 34 (1940).
'W. Shockley, Trans. Am. Inst. Mining, Met. , Petrol. Engrs.

194, 829 (1952).' W. T. Read, Jr., Dislocations in Crystals (McGraw-Hill Book
Company, Inc. , New York, 1953), p. 46, 80.

8"=2WI, —obad„ (2)
z Evidently we consider only a face-centered cubic lattice

throughout this treatment since we shall compare the model with
experimental results obtained for aluminum. Nonetheless, the

where 8 I = energy of formation of one kink; 0-= corn- model. is general and could be applied to other crystal structures
by a suitable change of parameters.' P. G. Bordoni, J. Acoust. Soc. Am. 26, 495 (1954).

7 H. Donth, Z. Physik. 149, 111 (1957).
8Seeger, Donth, and Pfaff, Discussions Faraday Soc. 23, 19

(1957).
G. Leibfried and Discussions to G. Leibfried, Dislocations and

1lsIechanical Properties of Crystals, edited by J. C. Fisher (John
Wiley & Sons, Inc. , New York, 1956), p. 495.
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nucleation rate of double kinks. However, it is not easy
to see how these methods could be correlated with the
diffusion of kinks in an unequivocal way. Yet it is
noteworthy that all models employed for activation of
the dislocation line are such that one may rightly
assume that the dislocation line can be treated as a
mechanical system whose average state is determined
by the partition function

Z „eag rd—Pd& (3)

neglecting quantum effects. This assumption will be
employed in a direct evaluation of the thermal concen-
tration of kinks. The nucleation rate will be determined
by balancing it against the annihilation rate due to the
collisions between diffusing kinks.

t
Z'q ' o„ub (mbo~) .*' (-—2Wk)

I expl
kZ) kT E2uS) ( kT )

where 0.„=Peierls stress, k =Boltzmann's constant,
T=absolute temperature and 5= line tension of the
dislocation.

3. The Diffusion of Kinks

A dislocation kink will be of small extension, say
x =10a. The mean square amplitude of thermal stress
over this distance, ar = (2pkT/w')

' (p= shear modulus),
mill, except at very low temperatures, exceed the
applied stress, and it will certainly far exceed any
crystalline resistance to motion of the kink. The kink
can therefore effectively be regarded as a free effective
mass oscillating under thermal stresses, in agreement
with the continuum model of the kink presented in the
Appendix. Also the motion of a kink under an external
shear stress of ordinary magnitude can be looked upon
as a drift superimposed on diffusion, as the external
shear stress only perturbs the thermal stresses.

But the forced oscillations of the kink under thermal
waves do not describe the diffusion process when the
waves are considered to be coherent. The diffusion is
rather to be considered as due to thermal fluctuations in
the radiation force (analogous to acoustic radiation
pressure) on the kink. This force is determined by the
scattering of sound waves by the kink. When the kink
moves, it runs into more waves on one side than on
the other establishing a net radiation force which de-
termines the mobility of the kink. Diffusion and drift

2. Thermal Density of Kinks

In the Appendix the partition integrals Z' for a dis-
location line containing a single kink, and Z for a non-
kinked dislocation line are evaluated. From these
expressions [Eqs. (36), (60)] the equilibrium density, m,

of double kinks per unit length is given by

where v is the velocity of the kink along the dislocation
line and D is the diffusion coeKcient.

Dislocation mobility has been discussed by Leib-
fried, " whose work was later extended by Xabarro. "
Xabarro concludes that the Leibfired formula is correct
in form and order of magnitude, although it probably
yields a somewhat low mobility. The cases considered
were radiation from oscillating dislocations, each seg-
ment radiating as if it were part of an infinite rigid
dislocation; and scattering by the deformed lattice
around the dislocation. Only the latter process was
found to be important. Because of the small extension
of a kink, the radiation emanating from kink oscilla-
tions of not too high frequency will correspond to the
radiation from a point rather than from a line segment.
This will certainly contribute to the resistance to
motion. Radiation of waves along the dislocation may
also be significant. We hope to discuss these problems
at a later opportunity; at present we shall assume that
the Leibfried-Nabarro process is dominant. |A'e should
also mention that the Leibfried formula has had some
success in the interpretation of megacycle internal
friction. "It is possible that in crystals with no external
shear stress, the dislocations largely lie along non-close-
packed rows and contain so many kinks that they can
be considered as being essentially free in megacycle
experiments. Then the Peierls barrier would only be
evinced during plastic Qow and large bow-outs of
dislocations. '4

The Leibfried formula reads

V = 10oc/E, . (6)

where V= normal velocity of the dislocation, c=velocity
of sound, and E is the energy of thermal vibrations
per unit volume. For a kink, then,

v 10cg/E—
By the Einstein relation, Eq. (5),

D'=10ck T/Ebu.

Inserting the classical value E 3kT/b', one obtains
6nally the diffusion coefFicient

D—'ADA', (9)

where vD = c/b Debye freq—uency.

' A. Einstein, Investigations on tlze Theory of Brownian Move-
ment (Methuen and Company, Ltd. , London, 1926), p. 9."G. Leibfried, Z. Physik. 127, 344 (1950)."F. R. ¹ Nabarro, Proc. Roy. Soc. (London) A209, 278
(1951).

"A. Granato and K. Lucke, J. Appl. Phys. 27, 789 (1956).
'4A. H. Cottrell, Discussion to K. Lucke and A. Granato,

Dislocations and Mechanical Properties of CrystaLs, edited by
J. C, Fisher (John Wiley 8z Sons, Inc. , New York, 1956), p. 457.

are thus controlled by the same factors, indeed by the
Einstein" relation,

v =Dobu/kT,
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dn (l) (~ha)
+2DI I ~(t)

dl EkT j (10)

Under steady-state conditions, this current must be
constant in the region /&2w. The solution of (10)
is then

0-ba

(1—2w)
kTJ I, „

20baD I kT
rs(l) =

tTbQ

+n, (2w) exp (1—2w) . (11)
kT

Now suppose that an unfolding double kink is annihi-

lated when it reaches a length X. In an infinite dis-

location line X would be related to double kink-double
kink collisions. The corresponding boundary condition

n(g)

4. Dislocation Velocities and Creep

On a straight dislocation line, double kinks will be
nucleated by a thermal activation process. The probable
separation, d„of a critical-size double kink nucleus
will be about 2m for the following reasons. The longer
the separation d, the larger is the activation energy
required to overcome the Peierls barrier, and the lower
is the frequency factor for direct nucleation of double
kinks, both factors reducing the probability of nuclea-
tion of a double kink of wide separation. When the
separation between the double kinks is small they will

interact strongly leading to collapse of such a double
kink. Thus a nucleation of kinks of separation d. will

be balanced by kink annihilation by kink-kink collision,
establishing the equilibrium concentration of kinks.

Let e(l)dt be defined as the number of double kinks
per cm of dislocation with length between l and l+dl.
At the Inoment consideration is restricted to non-
interacting double kinks. Kink-kink collisions are sum-

marily taken into account by the boundary condition

(12) to follow. Under equilibrium conditions, n(l) is

constant for /&2m, because in the region l& 2m, there
are neither sources nor kinks and the diGusion coeK-
cient is constant (see Fig. 2).

When an applied stress is present, the di6usion cur-
rent is, by Eq. (5),

in the diBusion problem is

B(X)=0.

Equations (11) and (12) yield

o.bu 0bcJ= 2e(2w) D exp (X—2w)
kT kT

(12)

which reduces to

cbu
exp'kr (X—2w) —1, (13)

J= 2n(2w) Do ba/kT,

independent of X, when

X 2w&l,—=kT//oba.

(14)

The velocity of advance of an infinite dislocation in
its glide plane in a direction perpendicular to the dis-
location line will be

V„=uXJ, (17)

provided X&/„where X is the distance along the dis-
location swept out per kink pair,

X=2yv,

and v- is the average time required for a nucleation event
in the newly exposed ledge within a growing kink pair,

The physical meaning of /, can be explained in the
following way: Double kinks which have reached a
length greater than l,+2w will only have a small
probability of recombining under thermal fluctuations
and will expand under applied stress until they annihi-
late upon reaching a length X; while double kinks
much shorter than this critical length will have a high
probability of recombining.

Now for all cases we will consider, the stress-de-
pendent term in Eq. (2) is less than the uncertainty in
the activation energy W' and can be neglected. Also in
all cases l,&h, h being the diffusion path leading to
double-kink collapse (see Fig. 2). Now as long as l,& 2w,
most of the double kinks nucleated must collapse, so,
since the stress dependence of the nucleation is small as
noted above, the double-kink density e(2w) will be
about the same as the equilibrium value n. Hence,
employing Eq. (4), Eq. (14) becomes

0 (aba„p ' (mbo„l * (—2$'il
I expl I (16)„(kTj &2agj E kT j

Equilibrium Curve v =2/XJ,

so that by Eqs. (5) and (14)

X= (~/J)'= (2/&)".

(19)

(20)

0

FIG. 2, Distribution of double kinks as g, fgnqtjon of kink length l,

Inserting Eq. (20) into Eq. (17), we obtain

(21)
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V=2a(Jw)' for L)X, (23)

V= 2aJeL/X= aLJ for X)L. (24')

Finally the dislocation velocity will be related to the
creep rate ~ by the expression

~=XbV, (25)

where X is the total length of active dislocation line
per cm'.

COMPARISON OF THEORY VGTH EXPERIMENT

The above model will be compared with the results
of Lytton et al. ' on the creep of aluminum.

The following constants will be used: @=2.7X10"
dynes/cm' b=2. 86&(1 0' cm, and v&~10 3 sec ' The
dislocation line tension is given by S—Ijb'.

The main experimental facts obtained by Lytton
et a/. ' which are relevant to the present discussion are
as follows:

In creep experiments on 99.995/~ pure aluminum
single crystals oriented to favor slip on a single slip
system, a stress-independent activation energy,

hH'=3400 cal/mole (0.15 ev),

was found for strains less than 10% in the temperature
range 80'K—400'K. For strains higher than 10/o and
temperatures higher than 400'K, other creep mecha-
nisms which presumably are associated with cross-slip
and climb became predominant. These other mecha-
nisms were manifested by larger activation energies.

Typical stresses used were 0.=10 4 p at 80'K and
0.=2X10 ' p at 295'K.. At a temperature of 395'K,
with a stress 2X10 'p, a, creep rate ~ 0.3X10 '
sec ' was found.

I.et us tentatively assume that the creep law Eq. (24)
applies. Then the observed activation energy should
equal 28'~, i.e.,

WI, =0.075 ev.

By Eq. (30) of the Appendix, then

o-„—2X10 ' p.

With this value of o-~, the width of the kink, defined in
the Appendix by Eq. (47), becomes

In general, for a dislocation segment of finite length I,
Eq. (21) will be modified to

V=2a(Je) &(L/L+X),

which reduces to two limiting expressions:

DoUble Ki&k

Dislocotion Leoves

{III) Plane

barrier to be larger than the applied stress in the creep
experiment.

With 0-„—10 ' p and 2S'I,=0.15 ev, the calculated
values for X, from Eqs. (4) and (20), are

100'K: X=0.65X10'b (1.85X10 ' cm),

300'K: X=3.5X10'b (1X10 ' cm),
400'K' X=2X10'b (0.57X10 cm).

For creep law (24) to apply, the requirement L&X
must be fulfilled. The value of I.will be determined by
such factors as:

(a) The average length of operative sources.
(b) The average spacing between locking impurities.
(c) The average distance between intersecting dis-

locations.
(d) Average length of straight dislocation segments

in the Peierls valley (see Fig. 3).

An intersection of a dislocation with dislocations
having one of six 2 (110) Burgers vectors mutually
sharing a (111)glide plane will result only in the forma-
tion of one kink in each dislocation. In aluminum this
cutting process is expected to have a, low activation
energy, of the same order as double kink formation,
say 0.2 ev. The energy of interaction between a dis-
location and an impurity in a f.c.c. metal will typically
be of the same order of magnitude. "So, in these cases
we expect for reasonable stresses that small pile-ups of
kinks will provide the necessary stress concentration
for break-away. These pinning points should therefore
inhuence the creep only by playing a role in the determi-
nation of I.. Dislocation —dislocation intersections lead-
ing to jog formation would require a much higher
activation energy and would provide strong pinning
points at the lower temperatures where di6usion is
slow. It may be necessary for our model to apply that
the spacing between these pinning points be sufficiently
large to allow the dislocations to bow out between
them, although it is possible to think in terms of a
modification of the Seeger" theory for the yield point,
in that for high stresses the buildup of stress concentra-
tions at the intersecting points is rate controlling, while
for lower stresses these buildups are so rapid compared
with the break-through frequency that Seegers theory
applies. This mechanism is possible because the break-

These values are not unreasonable, but of course they
should only be taken as rough order of magnitude es-
timates showing that 0~ is about 10 'y and z is
about 10b. Incidentally this estimate shows that it is
consistent within our model to assume the Peierls

Fro. 3. Straight segments of a dislocation line
lying in a {111)plane.

"J.Weertman and E. J. Salkovitz, Acta Met. 3, 1 t', 1955).
'6 A. Seeger, Dislocatk ns and 3IIechunical I'roperties of Crystals,

edited by J. C. Fisher (John Wiley R Sons, Inc. , New'~York,
1956), 'p. 243,
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through frequency increases much more rapidly with
stress than kink nucleation.

All possibilities considered, it is likely that I.& 10 4

cm, and considering ca,se (d) above, caused by internal
stresses, it might be of the order 10 ' cm. Referring to
the above-listed values of X, it can be seen that the
condition I (X should be fulfilled.

The condition (15), with L substituted for X, is well
fulfilled for the lower temperatures and the higher
stresses. Butfor T=300 K and o 2)&10 '

p, , we obtain
1,.=1.2&10 ' cm, which is close to the smaller possible
values of I-. But the eRective kink nucleation rate is
only slightly changed if condition (15) is not quite
fulhlled, so this point is not considered critical.

With a„~10 3 p, , i~10 4 sec ~, o~10 ' p, 281,~0.15
ev, T 300'K, and L 10 ' cm, Eq. (25) yields)t 10'
cm ', a reasonable value for active dislocation length in
a good single crystal. Thus formula (24) describes the
experimental data in a self-consistent manner.

The creep formula (23) can definitely be ruled out as
inapplicable. If it were accepted, it would be necessary
to put 2lFI, 0.30 ev, which at 100'K would lead to
values of X of the order of hundreds of meters, which is
impossible.

SUMMARY

The creep Eq. (25) applies to a creep mechanism that
gives a stress-independent activation energy at low
temperatures. This mechanism is substantiated by the
observation of a stress independent activation energy
for the low-temperature creep of aluminum. Although
the agreement between theory and experiment is good,
the following reservations are noted.

Condition (15) must be fulfilled for the model to
apply. Thus high temperatures and low stresses limit
the application of Eq. (25). Also at very large stresses,
the kink concentration e(2w), the boundary condition
on the diffusion problem, could be reduced below the
equilibrium value. In this case the gross nucleation rate
would have to be considered, involving Eq. (2) and a
transmission coefficient analogous to the Zeldovich"
term in classical nucleation theory: both of these terms
would introduce a stress dependence into the activation
energy, although clearly the Peierls barrier would still
control the creep rate. Finally, quantum eRects have
been completely neglected in the theory. However, the
temperature hv/k corresponding to the lowest frequency
of dislocation vibration in the Peierls valley is 10 K,
and the frequency changes of the higher frequencies
during kink activation are shown (in the appendix) to
be moderate. Thus it seems reasonable to apply the
classical treatment above 10'K.

The present treatment is felt to be important in
demonstrating that a translating dislocation line can be
treated as a coetieuols line. If, in the frequency-change
calculation in the Appendix, the contributions of short

"J.B. Zeldovich, Acta Physicochirn. , U.R.S.S. 18, 1 (1943).

wavelengths had been important, it would have been
necessary to introduce a cutoff wavelength ( a) which
would have introduced the discrete nature of the dis-
location line. The calculations show that it is not
necessary to introduce this discreteness. It is hoped
that the continuous line model can later be applied to
the Bordoni' eRect.

Lastly, it is noted that other investigators" "have
found temperature-independent activation energies for
low-temperature creep to which Eq. (25) may apply.
Conrad" also shows the stress dependence of the creep
rate and notes that no theoretical explanation exists
for the stress dependence. No such explanation is
attempted here, but it is noted that the unknown stress
dependence in Eq. (25) is in the factors X and I, both
of which are probably dependent on stress and strain.

APPENDIX. PARTITION FUNCTION FOR KINKED
DISLOCATION LINE

A dislocation line is taken to satisfy the equation of
motion

pr)'$/O' Sr)'$/r)x'+ bo—„sin(2z $/a) =0, (26)

where p= effective mass per unit length and $ and x are
explained in Fig. 4. In the static case (26) reduces to

(27)

Considering the case of one kink with its center at x=0,
the solution of (27) is

u exp(2xG) —1
$e ———arc sin

7r exp(2xG)+1
(28)

where G= (2mbo„/aS)' The energy .of the kink is

f r)g) ' o~ab (2a.p)
W& —— -',S

I

—
i
+— 1+cosl

Eclxi 2a E u )
"H. Conrad, Acta Met. 6, 339 (1958)."J.W. Glen, Phil. Mag. 1, 400 (1956).
'0 H. Conrad and W. D. Robertson, Trans. AIn. Inst. Mining,

Met. , Petrol. Kngrs. 209, 503 (1957).
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~(ilO) direction y
Potential Volley need be treated. By Eqs. (33) and, (34)

(36)

~ Dislocation Line
gallery

Rid~e

Valley
X

FIG. 4. Detail of a kink in a dislocation line in a f 111)plane.

By insertion of Eq. (28) into (29), the energy of the
kink j.q

Wi„.= (2a/vr') (2vrabo„5) '. (30)

The summation over j should only be carried out up
toj „„„=7r/b, .as b is the distance between neighboring
atoms along the dislocation. However, such a cutoff is
not consistent with the continuum model defined by
Eq. (26). Fortunately it will turn out that all of the
quantities of interest receive negligible contributions
from short-wave amplitudes so that summations may
be carried out up to j= oo without appreciable error.

Expanding the dislocation energy H to the second

power, the whole segment M remaining in one potential
valley,

(rIg) '
t rIP) ' 7rba„

2~1
—

I +k~1 —
I +—8 d*

J ~ig &Bf J L. rIx) a

and inserting Eq. (31) into (32),

(33)

The circular frequencies of vibration ~, are given by

Subsequently the dislocation line is described by
normal mode amplitudes. Consider a dislocation of
length M. Then perform the orthogonal transformation

g(x) = (2/M)'P; A; sinLk (x—-', M) ],
j =mar/M; nz=1, 2, . (31)

t27l kT) ' t' Wg)bz=bag"
l l xexpl—

I p~ ) I. kT)' (37)

where the double prime indicates that t;here is one less
factor in the product than in Eq. (36), the single prime
indicates that the frequencies are different, and

M=[bA '+bA. '+ +bA ']'' (38)

where bA are the Fourier components of the bg result-
ing from a translation bx of the kink. From Eq. (28)

where g=Gx. Then

4aG exp(g)
6x,

exp(2g)+1
(39)

2aG(2
bA =bxX

Now consider a dislocation line of the same length 3f
and the same total number of degrees of freedom which
contains a kink. It is necessary to compute the partition
integral for this system to compare with Eq. (36). In
passing from the unkinked to the kinked configuration,
one vibrational degree of freedom has been removed and
one translational degree of freedom consisting of pure
translation of the kink along the dislocation line has
been introduced.

Under pure translation of the kink, the energy re-
mains constant and a line in the m-dimensional space
(A, , A.. . A ) is described. The contribution to the
partition integral stems from a "tube" in phase space
around the translational line (see Fig. 5). The cross
section of the tube is determined by the vibrational
modes. It is assumed that it is possible to integrate
independently over the cross section and along the
translational line. This procedure is rigorous only for
an infinitesimal cross section.

An element of tube 68 then contributes

S 2m.bo.„
G&P= J +

p ps
(34)

I
~r" exp(g) sini j(x—-',M)]

X l dx. (40)
exp(2g)+1

The kinetic energy term in H will factor out with the
same amount in the partition integral in all cases to
be considered, so only the potential energy term

Z
J

' . . expl ldA&dA2 dA (35)
I kT i

Extending the limits of integration to ~~ and sum-
ming over the residues at 2g= (2m+1)i~, m=O, 1,

t'2 y
l exp(~~/2G)

bA, „~i=bxX2al —
l

I M ] exp(sr~/G)+1

~= (2m+1)~/M, m=O, 1, ; (41)
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Fro. S. A tube in phase space corresponding to translation
of a kink along a dislocation.

and

for lxl & ldl,

$= I' sin(Qx)+R cos(Qx), Q'= ——G'. (48b)
C2

The secular equations become, for uneven solutions,

1—(Q/E) tan(Ed) cot(Qd)
tan (QM/2) = (49)

cot�(Qd)+

(Q/E) tan(Ed)

for even solutions,

cot(Qd) —(Q/E) cot(E'd)
cot(QM/2) = (50)

1+(Q/E) cot(Ed) cot(Qd)

(42)A2 ——0.

Now, by Eq. (38), changing the summation into

integration,

11 r" exp(«/2G)
68=Sx)&2a- d~, (43)

l~ ~ p exp(«/G)+1 QM/2=QoM/2+Qd —P, tang= (Q/E) tan(Ed),
(51)

Qp
——2mpr/M, m=1, 2,or

2a(G) &

ca=—
1

—
1

nx.
&2)

(44) for even solutions,

It can be shown that when the translational mode is

excluded, only real and positive Q and E need be con-

sidered.
By some rewriting of Eqs. (49) and (50), for uneven

solutions,

The frequencies co' are found from the differential

equation resulting from linearization of Eq. (26) about
the solution (28):

QM/2=QpM/2+Qd —P, cot&= (Q/E) cot(Ed),

Qp= (2nz+1)vr/M, m=1, 2,

To first order, from Eq. (48b),

(52)

(exp(2g) —1) '
p —S +G'S11—2 1—

1
1( 0

gP gx2 l (exp(2g)+1]
(45)

g2$ $2$-S -G2sg=o,
Bf Bx

(46a)

Instead of the diKcult (45) the frequency changes are

estimated from

~~/~= (Q~'/~') ~Q (53)

The sequence of frequencies &u, Eq. (34), starting
with m=2, is to be compared with the sequence of
frequencies co' determined by Eqs. (51) and (52). This
procedure secures that the total number of degrees of
freedom is the same in both cases, without speci6cation
of the cutoff wavelength.

An estimate is needed of

& in+~=»g~ —»g~'=P(&~/~). (54)

$2$ g2$—S +G'Sg=0,
BI Bx

Employing Eqs. (34), (48), (51), (52), and (53),
(46b) approximating Qd by Qpd, and turning the resulting sum

into an integral, it follows that

At x= ad, it is required that $ and 8$/Bx be continuous.

The distance d is chosen so that there exists a solution

of Eqs. (46) of zero frequency and yielding $(x)~0 as

1xl~~, corresponding to the translational mode. d is

then given by
d =7r/4G.

»-rr-=("/-) (Q/-)(2Qd-~)dQ,

~Q E~
tany = ~p

1

—+—
1
tan(2Ed).

EE Q&
(56)

Now consider the eigenfrequencies of Eqs. (46) with

the boundary conditions )=0, x= aM/2. The trans-

lational mode is excluded. For —d&x&d,

It can be shown that p must be taken in the same

quadrant as 2Ed. The integral in Eq. (55) is then
rapidly convergent. By Eqs. (47) and (48), Eqs. (55)
and (56) become

sin(Ex) i pp'

)=A E2 +G2 ~

cos(Ex) c'
(48a)

Z
5 in+co =- (2Z —y)dZ,

pr ~ p Z'+ pr'/16
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where By numerical integration

8 lnIIw = —0.50. (59)

tang =-',
(Zs+ws/8) &

(Z'+~'/8)'-
tan21 Z'+ —

1
. (58)'

Z & 8)

Finally, from Eqs. (34), (36), (37), (44), and (59), and
realizing that Z'=5Z/6x,

z' (f~ni '(—=1.05g/
1 1 1 exp1 — 1. (60)

Z KakT) 4 2aS) E kT)
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Effect of Oxygen on the Work Function of Barium

P. A. ANDERsoN AND A. L. HUNT
State College of Washington, Pullman, lVash&sgtom

(Received March 2, 1959)

While a high sensitivity of the work function to gaseous contaminants is generally characteristic of metals
which adsorb the common gases strongly, barium combines outstanding work function stability with an
exceptional amenity for these gases. The paradox is investigated by administering measured quantities of
oxygen to vapor-deposited barium surfaces at known rates, with concurrent monitoring of the work function.
It is found (1) that when clean barium is exposed suddenly to a massive dose of oxygen, its work function is
lowered by 0.32 ev; (2) that the work function of the heavily oxygenated surface remains constant for 5 days
and then drifts very slowly toward the clean-metal value, and (3) that when oxygen is administered to a
barium surface slowly (2X10"molecules per cm' per hour) no change of work function occurs during or after
the absorption of a quantity of oxygen equivalent to 100 complete monolayers of the oxide.

The results are interpreted as stemming from two processes which compete for control of the surface; the
expected surface oxidation and a restorative process involving engulfment of oxygen ions. The mechanism of
engulfment is discussed.
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& 0

l0 CM

FIG. 1.Tube for massive dose experiments. Barium vaporized by
ovens 0 and H and re-vaporizer I (1-mil Ta, 45' mounting) is
deposited to form reference surface E' and test surface G. G, moved
on track F (parallel 60-mil W wires) by armature 3f, is exposed to
oxygen by breakage of glass capsule D. C is molten tin seal,
external heater not shown. Glass sylphon J transmits motion for
Kelvin measurements. E', G, spun cups 0, B; disk N: 5-mil Ta..
Winch A for glass bell 8:2-mil W wire on Pyrex drum.

' 'I is well known that a high sensitivity of the work,
~ - function to gaseous contaminants is generally char-
acteristic of metals which adsorb, or absorb, the com-
mon gases strongly. The tungsten-oxygen system is the
common prototype of this class; when a tungsten sur-
face is cleaned by momentary Qashing in a vacuum of

the order of 1G ' mm, its work function drifts upward
rapidly as a monolayer of oxygen builds up on it. In
another group of metals, epitomized by silver, zinc, and
cadmium, the work function of an initially clean surface
is unaGected by prolonged exposure to residual gases at
pressures of the order of 10 ' mm. ' It is thus possible to
classify many of the common metals in two mutually
exclusive groups, the gas-sorbing, work-function-sensi-
tive metals and the nonsorbing, insensitive metals.
Against this background, the behavior of barium stands
out as highly anomalous. Barium is an excellent "getter";
it combines stoichiometrically with oxygen and is an
effective absorber for hydrogen, nitrogen and water
vapor. But if a clean barium surface is prepared by
vapor deposition at a residual gas pressure of the order
of 10 mm and if the fresh surface is measured before
contamination can occur, i.e., so quickly that the total
number of gas molecules which strike the surface within

the deposition-measurement interval is small with re-

spect to the gas content of a monolayer, the initial work
function shows no drift with time."We have the unusual

spectacle of a metal surface absorbing gas continuously
while showing no measurable change in work function.

' P. A. Anderson, Phys. Rev. 49, 320 (1936);57, 122 (1940);98,
In9 (j955).

'P. A. Anderson, Phys. Rev. 49, 320 (1936).' N. C. Jamison and R. J. Cashman, Phys. Rev. 50, 624 (1936).


