
P H YSI CAL REVIEW VOLUM E 115, NUMBER 3 AUGUST 1, 1959

Electric Field Distributions in an Ionized Gas*
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A method for improving systematically the Holtsmark distribution is described. It is based on a cluster-
type expansion and takes into account increasing orders of correlation. In this paper, it is applied to the
calculation of the distribution of the high-frequency component of the electric Geld in an ionized gas in
thermal equilibrium.

I. INTRODUCTION result. The conditions under which it is correct are well

known, ' and are the same as those that make our power
expansion meaningful. Stated in physical terms, they
say that the volume of the cloud which surrounds each
charged particle and shields it should be large compared
to the volume per particle.

We distinguish two parts in the electric field, which
we call the high-frequency and the low-frequency
components. The high-frequency component is that
part of the electric field whose time variation is governed

by the motion of the electrons, while the time variation
of the low-frequency component is governed by the
motion of the ions. It is obviously desirable to separate
the two parts and. calculate their distributions sepa-
rately since they involve such radically different fre-
quencies. But it would be incorrect to believe that the
high-frequency part is just the sum of the fields of all
the electrons and the low-frequency part the same for
the ions. Indeed, the low-frequency part contains a
contribution from the electrons since each ion is sur-
rounded by a cloud of electrons which moves at the
same speed it does and follows it everywhere. The
correct way to calculate the distribution of the low-

frequency component is to assume first that the ions
are fixed in space and to take the time average of the
electric field at the point where the distribution is
desired. It is this time average which constitutes the
low-frequency component, and its distribution can then
be obtained by letting the ions themselves be distributed
in space in the appropriate manner, In other words,
the low-frequency component consists of the sum of
the shielded ionic fields, the shielding being caused by
the electronic cloud surrounding each ion, and the
average being taken over times long compared to
typical electronic relaxation times, but short compared
to ionic times. For the shielded ionic field, it is appro-
priate again to use the Debye-Huckel result' since this
is a long-time average. We emphasize that this shielding
does not include any contribution from the other ions.
The Debye-Huckel theory does not apply there, and
this eGect will be properly taken into account when we
introduce the ion pair correlation function. Having
thus defined the low-frequency component, we see that
the average of the remainder, the high-frequency

~

'HE knowledge of the probability distribution
function for the electric field in an ionized gas is

a prerequisite to the solution of a number of problems,
in particular that of the calculation of the broadening
of spectral lines emitted by atoms in the gas. This
problem was first attacked a long time ago by Holts-
mark, ' who solved it by neglecting the correlations
between the various charged. particles producing the
field. Since then, various attempts have been made to
include these correlations. ' ' In the present paper, we
shall propose a method for including them which is
somewhat similar to the cluster expansion method of
statistical mechanics. The idea is to set up the calcu-
lation in such a way as to yield exactly the Holtsmark
result in the high-temperature limit when correlations
become unimportant. The corrections to this appear as
the result of taking into account increasingly compli-
cated types of correlation, the first correction being
provided by two-body correlations, the next one by
three-body correlations, etc. Obviously, such an ap-
proach will be valid only if the result does not deviate
too far from the original Holtsmark distribution. This
restricts it to the high-temperature, low-density limit,
i.e., to the case of an ionized gas in the usual sense as
opposed to that of a very hot solid for which some of
the previous theories were also intended. ' On the other
hand, when used in its region of validity, it constitutes
the first few terms in a series expansion in powers of a
small parameter and can, therefore, be trusted com-
pletely. Although we shall write the complete series
expansion in a formal way, we shall eventually calculate
only the correction due to two-body correlations. For
the correlation function we shall use the Debye-Huckel
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component, over times large compared to typical elec-
tronic times always vanishes. It is, therefore, plausible
to assume that the distribution of the high-frequency
component is the same as that of a gas of electrons
with uniform neutralizing background, and we shall
do so.

The method which we shall develop applies equally
well to both components of the electric field. Since the
calculations are simpler for the high-frequency part,
only the results of that case will be reported here. The
low-frequency part of the distribution will be published
later. In Sec. II we derive the Fourier transform of the
field distribution by a cluster expansion method, and
in Sec. III we apply it to the calculation of the proba-
bility distribution of the high-frequency component at
a neutral point.

II. THE CLUSTER EXPANSION
Pt

We consider S particles with coordinates x~, ~ x~,
enclosed in volume 'U, and we call e the density,
n=X/'U We .call Ei the electric field produced at a
given point by the particle located at x&. The total
electric field we call E,

El+ E2+ ' ' '+EX

We are looking for the probability distribution 8'(E)
of the total field, but it is simpler to calculate its
Fourier transform,

F(k) = " exp(ik. E)W (E)d'E.

We do this by changing over to the variables x&, - - - xz,
instead of E. We call P(xi,x&, x&) the probability
of occurrence of a given configuration of the E particles.
Therefore,

F(k)= "expkik (E,+ +E~)l
&&P (xi, x,v) d'xi d'xq. (3)

At this point we use a standard trick and replace each
exponential, exp(ik E;), by the sum of two terms

exp(ik E,)=1+Lexp(ik E~) —1$. (4)

In order to abbreviate notations, we write this in the
form

exp (ik E,) = 1+q, , (5)

and expand the product of lV such factors. The result
is to replace the exponential in (3) by the following
series:

1+Xi p'+22 pig~ +'''(6)

where Pi means the sum over all particles, Q2 the sum
over all pairs, etc. When the Mth term of this series is
substituted in (3), we can integrate immediately over
all coordinates but those of the M particles to which
the p's'refer. This means replacing P(xi, . x&) by

P~(x, , x,), the probability function that the M
particlesi, s, will be located at x,, x,. The result is.

with
F(k) =Q F~(k), (7)

F4r(k) =Pg )~44,". p,P4r(x;, x,)d'x.;. d'x, . (8)

We have called the one-body probability function
'U 'gi(x). The function g2 is the two-body correction,
etc. By extracting the factor 'U~ as we did, we have
de6ned the g functions in a way which is independent
of 'U for large 'U. Here P2 stands for the sum over all
pairs among the 3E particles, while +~2 is the sum over
all distinct pairs of pairs. Similarly, g» is the sum over
all possible combinations of one triplet and one pair
involving five distinct particles out of the 3f, etc. In
each term, the product II gi(x~) extends over all
remaining particles among the M, i.e., all those which
are not already involved in pairs, triplets, etc. Each
term in (9) may be represented by a cluster diagram in
the customary manner. '

"The g functions appear occasionally in the literature. Sec,
for instance, J. E. Mayer and E. Montroll, J. Chem. Phys. 9, 4
(1941);or E. E. Salpeter, Ann. phys. 5, 217 (1958).

The sum in the last equation is over all possible combi-
nations of M particles among the 1V.

We now introduce explicitly the idea that correlations
will have a small eGect. This is expressed by writing
the function I'~ in the form of a series containing in-
creasing orders of correlation. As a first approximation,
we can say that the M particles are completely inde-
pendent and therefore I'~ will be the product of M
one-body probability functions. The latter can be taken
equal to 'U ' when we compute the field distribution at
a neutral point, but not if we require it at a charged
point. As a correction to our first approximation, we

may introduce in I'~ a two-body function which will

take care of those cases where two particles approach
each other closely and are correlated. If-two diBerent
pairs of particles come close together in two diGerent
parts of the gas, we shall just take the product of two
such corrections. But if three particles should all come
close together, we would need a further correction since
the sum of the pair corrections is probably not accurate
there. Therefore, we introduce a three-body correction
and it will also occur when several distant groups of
three particles come in close contact. Next we need a
four-body correction, etc. All this is expressed in the
following equation":

.)=IIg( )+Z g(, )IIg( )
++22 g2(X j,xk)g2(xl)xna)II gl(X4)++222' ' '+ ' ' '

+p 3 g3 (X&,xy, x~)II gi (X,)
+Z. g.( „", )g ( .. ., .)IIg (;)+Z.
+Z g(, )g(- -)IIg.()+
+24 +
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We must now substitute expression (9) back into (8)
and sum over all M's. We assert that, in the limit
where X and 'U become very large, the density e
remaining constant, the result for F(k) is the same as
the following:

F(k) =G, (k)G, (k)G3(k) (10)

Gp(k)=1+U gp I rp, .
&p,gp(x„, ~ x,)d x," d x,

+'U ' Qpp &p,' . (p„gp(x;, x,)gp(x„.x„)

Xd xz d xz+'U P ppp + ' . (11)

Here, Pp runs over all possible combinations of P
particles out of the E, Qpp over all possible distinct
combinations of two clusters containing P particles
each, all particles being diferent, and so on. The
difference between (7) and (10) is only that in every
term of (7), as expanded using (8) and. (9), all particles
must be different, while in (10), as we have defined it,
it could happen that one of the particles involved in
GI, say, mould be the same as a particle involved in Gq.
Thus (10) contains some terms which are not included
in (7). &ut the reader will easily convince himself that
the number of such terms is smaller. than the number
of terms appearing in both expressions by a factor of
order E, and therefore this is a negligible correction
when E tends to infinity.

If we let X become infinite, we can write Gp(k) in
closed form if we realize that in every sum all terms are
equal and that we only have to count the number of
terms. The result is

The question, how fast does the series in (14) con-
verge, might be raised at this point. It is possible to
show that, for given e and k, successive terms contain
increasing inverse powers of the temperature. Thus,
the series becomes increasingly better as we approach
the high-temperature limit, as we have stated earlier.
In this respect, the present problem differs radically
from the imperfect gas problem, ' for which the cluster
method, when applied to Coulomb interactions, gives
divergent answers. The reason for the diGerence is
that the electric field, for which we want the probability
distribution, depends mainly on the positions of the
particles in the immediate vicinity of the point where
we are calculating it, and any long-range interaction of
these particles with others elsewhere in the gas is not
very important. By using the Debye-Huckel correlation
function, we have already taken care of all relevant
long-range aspects of the problem. It is also clear that,
although both theories use the "cluster trick, " they put
it to different purposes; in (4) it is applied to exp(ik R;),
while in the imperfect gas problem it is used for the
Boltzmann factor itself.

III. DISTRIBUTION OF THE HIGH-FREQUENCY
COMPONENT AT A NEUTRAL POINT

Our model consists of a gas of electrons of density e
with uniform neutralizing background. We choose the
origin of coordinates to be the point at which we want
the field distribution. The proper field to use is the
unshielded Coulomb field,

E;=ex;/r, a.

Since the origin is neutral, g1 is unity. The integral
(13) is straightforward for h& and yields

with
Gp(k) = expL(n /P!)hp(k) j (12) h, (k) = —(4/15) (2~eh)-*', (17)

hp(k) = yi .
q pgp(x„. .xp)d'xi d'xp, (13)

which is the Holtsmark result.
According to the Debye-Huckel theory, ' the pair

correlation function is

F(k)=exp g (nP/P!)hp(k) .
P~1

(14)

and therefore we obtain the I'ourier transform of the
field distribution function in the form

with

P2(xi,x2) ='0 ' exp( —e'4i2/zT),

Ci2 ——[xi—x2~
' exp( —~xi —x2~/X),

X= (~T/4sre') l.

(18)

(2o)

W(E) = (2n)
—' exp( ik E—)F(k)d'h. (15)

As is customary in other cluster expansion problems,
the result is the exponential of a power series, each
term of which involves bigger and bigger clusters, By
taking the first term only, one obtains the Holtsmark
distribution in the case of the field at a neutral point.
In our calculations we shall include the second term,
substituting for the function g2 the result of the Debye-
Huckel theory. The field distribution itself is obtained
by inverting (2),

The corresponding expression for gm follows from (9),

g2 (xi,x2) = exp ( e' »C/» —)T1. —(21)

The fact that h2(k) is a small correction to hi(k) for hot
ionized gases whose densities are not too large is a
consequence of the smallness of g2 for all configurations
except those where electrons 1 and 2 approach each
other very closely. Similar reasoning leads one to expect
that three or more electrons have even less chance of
being close enough together and that the pair correction
gives most of the correlation effect. In accordance with
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Asymptote —————=

0 2 4 6 8 IO I2
„I/2

FIG. 1. The func-
tion P(x&y) in terms
of which the correc-
tion due to pair cor-
relations is evalu-
ated. = 2Pzr

—') sin(Px) F(x)xdx.
n

(29)

depend on angles, the probability distribution H(P) for
the scalar quantity P is

H (P) =4zrP'W (P)

gz (xr, xz) = —a'C'rp/irT,

hence

the spirit of the Debye-Huckel theory, we shall linearize
(21) and use instead

(22)

According to (17), the first term of the series in (14) is

zzh, (k) = —xl, (30)

while the second term can be writteii

kp (k) = —(e'/a T), ppi(psC tzd'xid'xz.
J J

(23) with

—',~zk, (k) =xi'(x, y),

y= rp/X.

(31)

(32)

This last integral seems at first sight rather diS.cult
to evaluate. But some insight into the behavior of the
integrand is obtained if one notices that a fairly good
a.pproximation for pp, is zek x,/rP for small k or large r, ,

and minus unity for large 4 or small r;. This indicates
that, if we expand cp, in spherical harmonics, the first
two terms, i.e., the isotropic and the dipole term, will be
most important. Therefore, we expand every factor in
the integrand of (23) in spherical harmonics as follows
(taking the vector k along the a direction):

pp'=Ziz'54zr(2L+1)7'5j i(ek/r, ') 5zp7Y—ip(&, ,rp;), (24)

C is ——P[[(2l+1)/4zr7if[(ri, rp, X)7[p(grz, rptz) (25)

fi(ri, rs, X) Vi *(gi,o~t) I'i (Oz, rpp). (26)

The last line is obtained from the previous one by using
the addition theorem for spherical harmonics. " The
functions j& are spherical Sessel functions. "The func-
tions fi can be obtained in closed form and are fairly
simple for the lower 1 values. The angular integrations
can now be performed with the help of the orthogonality
relations for spherical harmonics, and one is left with
a series over l, each term consisting of a double integral
over r~ and r2. lt turns out that the main contribution
comes from the 3=1 term in conformity with our
expectations. The series is alternating and convergent
and is well approximated by its first three terms. The
sign of hp(k) is opposite to that of hr(k), but its absolute
value is always smaller.

. For the numerical calculations it is convenient to
dehne a unit length ro by

(4/15) (2zr) irpszz= 1.

This is numerically almost equal to r, defined by
(4zr/3)r, 'zz=1, but more convenient. We also define a
unit of field strength

Ep= e/r p',

and we call P= E/Ep and x= kEp. Since W(E) does not

"J.M. Blatt and V. F. Weisskopf, Theoretical ÃNcleur Physics
(John Wiley R Sons, Inc. , New York, 1952), p. 784.

It turns out that P depends only on x~y and this
function is plotted in Fig. 1. Our approximation for
F(x) is, therefore,

J'(x) = exp( —x't 1—4 (*'y)7). (33)

%e expect it to be good when the two-body correction
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8.0
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10.0

rp/P =Oa

0.01667
0.06308
0.12960
0.20327
0.27132
0.32402
0.35620
0.36726
0.36004
0.33694
0.30684
0.27275
0.23822
0.20557
0.17606
0.14437
0.11837
0.09741
0.08067
0.06733
0.05667
0.04811
0.04118
0.03553
O.G3089
0.02704
0.02382
0.01901
0.01525
0.01249
0.01038
0.00874
0.00745
0.00641
0.00556

ro/X =0.2

0.02189
0.08158
0.16348
0.24818
0.31873
0.36487
0.38390
0.37906
0.35674
0.32393
0.28661
0.24910
0.21404
0.18274
0.15562
0.12741
0.10476
0.08672
0.07235
0.06087
0.05164
0.04418
0.03809
0.03308
0.02893
0.02546
0.02254
0.01795
0.01456
0.01200
0.01003
0.00849
0.00726
0.00627
0.00545

rp/X =0 4

0,02853
0.10433
0.20298
0.29670
0.36499
0.39943
0.40218
0.38138
0.34655
0.30578
0,26464
0.22641
0.19255
0.16347
0.13894
0.11389
0.09401
0.07825
0.06569
0.05562
0.04749
0.04087
0.03543
0.03093
0.02718
0.02402
0.02135
0.01711
0.01396
0.01156
0.00970
0.00824
0.00706
0.00611
0.00533

ro/X =0.6

0.03646
0.13062
0.24611
0.34564
G.40686
0.42591
0.41144
0.37630
0.33195
0.28627
0.24372
0.20623
0.17427
0.14752
0.12533
0.10294
0,08529
0.07132
0.06017
0.05121
0.04394
0.03800
0.03309
0.02901
0.02559
0.02269
0.02023
0.01631
0.01337
0.01112
0,00936
0.00797
0.00685
0.00594
0,00519

ro/X =0,8

0.04521
0.15877
0.29010
0.39219
0.44293
0.44514
0.41437
0.36731
0.31610
0.26765
0.22500
0, 18887
0.15890
0, 13427
0.11409
0.09389
0.07804
0.06550
0.05549
0.04743
0,04086
0.03547
0.03100
0.02727
0.02413
0.02146
0.01919
0.01555
0.01280
0.01068
0.00902
0.00771
0.00664
0.00577
0.00505

a The Holtsmark distribution, except for P from 2.0 through 6.0, was
taken from S. Chandrasekhar, Revs. Modern Phys. 15, 73 (1943).

TABLE l. Distribution function H (P) of the high-frequency
component at a neutral point for several values of rp/X (The.
Holtsmark distribution corresponds to rp/A, =O.) For values of
rp/X not tabulated, one may use linear interpolation for most values
of P. The accuracy of the numerical integration is such that the
last figure quoted is uncertain.
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is small compared to the original Holtsmark term, for
those values of x which do not make F(x) very small.
Figure 1 shows this to be the case for values of ro/X

ranging from 0 to approximately unity. This is also
the range of ro/X for which we can expect the Debye-
Huckel theory to give a reasonable approximation to
the pair correlation function.

The final Fourier transformation (29) was performed

by numerical integration. Table I lists the field distri-
bution for several values of ro/X including the Holts-
mark case, ro/X=O. Temperatures and densities in
most laboratory experiments and many astrophysical
problems fall in the range of ro/X for which the curves
were calculated. The main feature of the results is the
shift to smaller fields of the peak of the distribution as

ro/X increases. For large values of p not included in
Table I, H(P) is well represented by the following
asymptotic expansion which consists of the asymptotic
expansion for the Holtsmark distribution, IIO, minus a,

correction for the pair correlations,

H(P) =Ho (ro/X—)P '"L0.5453(ro/X)

+11.78P '+114.6P "'+ . .), (34)
where

HO=1.496P "'+7.639P '+21.60P ""+ (35)

In another paper we shall apply this method to
several other field distribution problems, in particular
that of the distribution of the low-frequency component,
and compare our results with those of other workers.


