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Negative Temperatures

P. T. LANDSBERG
Marischal College, University, Aberdeen, Scotland

(Received March 6, 1959)

It is shown by an example how the concept of negative temperature finds a natural place in the approach
to thermodynamics which was originated by Carathéodory.

1. INTRODUCTION

HE concept of spin temperature does not so far
seem to have been discussed from the point of
view of Carathéodory’s principle in thermodynamics.
A brief discussion of alternative signs for the absolute
temperatures of equilibrium systems is, however, con-
tained in an attempt to extend the approach originated
by Carathéodory.! The purpose of this note is to show
explicity how a negative temperature finds a natural
place in this system of ideas. The results derived here
are therefore to some extent contained in, or simple
corollaries from, the approach developed in I. But they
are difficult to obtain from I without working through
the whole paper, so that the present exposition may be
of use.

Consider a spin system which is decoupled from the
lattice, and whose thermodynamic equilibrium state can
be described by specifying the strength H of a uniform
applied magnetic field, and the temperature 7=—1/T,
where T is the absolute temperature. From a statistical
mechanical analysis, the phase space may be taken to be
the (S,7) plane. Curves of constant magnetic field have
then the form shown in Fig. 1. These have been drawn
for the high-temperature approximation, when

M=—CHr, : (1)
U=C(H+B)r, (2)
S=A—C(H+B%)7/2, 3)

where 4, B, and C are constants. M is the average value
of the magnetic moment in the direction of the applied
field, and U is the mean internal energy. B is determined
by the interaction among the spins. The proof of Egs.
(1) to (3) is straightforward, the main formulas having
been given by Abragam and Proctor? (see Appendix
for additional derivations).

The above example shows incidentally that the usual
definition of an ideal paramagnetic material by M
= f(H/T) is too broad, since this law can also be ob-
tained for interacting spins. The following additional
restrictions may be suitable for the ideal paramagnetic
material: (i) H=0 implies M =0, and conversely; (ii)
the internal energy in zero field is independent of tem-

1P, T. Landsberg, Revs. Modern Phys. 28, 363 (1956), to be
referred to as I. A more detailed exposition is contained in a
forthcoming book on thermodynamics which is being published
by Interscience Publishers, Inc., New York.

2 A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958).

perature. With this definition the system specified by
Egs. (1) to (3) is an ideal paramagnetic system only
if B=0.

2. ANALYSIS OF THE PHASE SPACE

The thermodynamic state of any system must be
specified by at least two independent variables (I,
p. 365). One may chose T and S (as above), or 7" and
another variable x, say the magnetic field. If one has
only one independent variable, x and 7' cannot be inde-
pendent. The theory of the thermodynamic equilibrium
of such systems should therefore be derivable from the
theory of equilibrium with respect to the variable x.
For instance, the condition T1=T; for thermal equi-
librium can then be stated by using only the variable
(i.e., the magnetic field). From this observation one
obtains, as a special case, a remark by Abragam and
Proctor (reference 2, p. 1444), who note with respect to
systems satisfying Curie’s Law that conclusions about
the magnetic moment of the system can be derived
“without bothering about spin temperature at all.”

There is therefore little thermodynamic interest in
considering a spin system which is subject to quasistatic
adiabatic processes only, since this has only one inde-
pendent variable. It will therefore be assumed that it is
possible to link adiabatically the states represented by
any two points in the phase space of Fig. 1—unless the
contrary can definitely be established for specific points
of this space. The concepts of I can then be applied,
and one has two independent variables in T and S, or
T and H. The question as to the validity of this assump-
tion focusses attention on the search for the irreversible
adiabatic processes which may be possible with spin
systems. (For example, the above assumption would be
invalid if no irreversible adiabatic processes were possi-
ble for spin systems.)

The set 3.—Denote by 3 the set of points which has
the property that the states represented by any two
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points of 8 can be linked adiabatically, and that no
points which can be in the set are excluded (I, p. 371).
Note that points such as R are outside 8. For at infinite
absolute temperature the entropy has the value 4 for
all finite fields. R can be approached indefinitely, even
in a quasistatic adiabatic manner, by raising the field,
but it cannot be attained with finite fields. Thus no
point on the 7=0 axis can lie in §, excepting the point
for which S=4.

The set F(B).—This is the set of points which consti-
tutes the “frontier” of 8 (I, p. 376), i.e., it contains all
boundary points of 8. F(8) consists of the curve H=0,
part of the axis 7=0, and we shall regard it as open in
the direction of the axis S=0, since the theory leading
to Egs. (1) to (3) ceases to apply in any case as the low
entropy values are approached. The part AR of the
7=0 axis, including the point S=4, belongs to F(B).
The assertion that a point lies in F(8) does not mean,
of course, that the point belongs to 8. Which of the
points of F(8) belong to 8 must be decided by a separate
argument. The criterion to be used is that, if a point of
F(B) belongs to B3, then the state which this point repre-
sents must be adiabatically linked with the rest of 8. If
it does not belong to 8, it is not adiabatically linked
with the rest of 8.

The set v.—One can take one further step without
deciding which points of F(8) belong to 8. Consider the
set of those points of F(8) which do in fact lie in 3, and
remove them from B. One is then left with two discon-
nected sets, to be denoted by v and 7., which lie re-
spectively to the left and to the right of the axis 7=0.
Each set is an open set, i.e., it consists of internal points
only, because it contains no boundary points. As in I,
p-376, if a set «y is referred to in the sequel, either one of
these open connected subsets of 8 is meant. Each point
of v1 possesses a neighborhood, every point of which
lies also in 71, and the same holds for vs.

3. EXISTENCE OF TWO SUBSETS v:
GENERALIZATIONS

The fact that the set 3 contains fwo sets v holds clearly
for all systems having a finite number of energy levels
[and is not a property of the specific model leading to
Egs. (1) to (3)].2 For such systems it is a fact of statis-
tical mechanics that the entropies at 7=0 and 7=0 are
independent of external parameters. However, critical
values of such parameters may exist for which the
entropy jumps abruptly from one value to another, for
example, if a degeneracy is split by a magnetic field at
absolute zero. It follows that on a plot such as that of
Fig. 1, the set 8 can have only isolated points [which
lie in F(B) and therefore outside v ] on the 7=0 axis. In
an analogous plot of entropy against absolute tempera-
ture, the set 8 can have only isolated points on the 7'=0
axis. It follows that whenever positive and negative tem-

3 It holds also for an infinity of levels, provided there exist both
an upper and a lower bound to the energy. See also N. F. Ramsey,
Phys. Rev. 103, 20 (1956).
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peratures have been defined for a set 8, which refers to a
system having a finite number of energy levels, that set
contains (at least) two disconnected sets vy.

An even more general conclusion of this kind can be
derived from thermodynamics. That an integrating fac-
tor of d’Q is the absolute temperature T, holds in general
only for a set v, since no troubles can arise in these sets
from the existence of boundary points. In such a set it
may be possible to approach the hypersurface 7’=0 and
7=0 as closely as desired (and it may also be possible
to define these sets by a limiting process, as discussed
in I, p. 379). However, they cannot be reached in v,
since the mathematical processes which enabled one to
define the absolute temperature T as an integrating fact
of d'Q, presume that T is finite and nonzero. Hence one
can conclude that the sets v cannot actually attain or
cross the hypersurfaces T=0 and v=0.

4. THERMODYNAMIC CONSIDERATIONS

In the preceding sections we have started with statis-
tical mechanics and hence introduced the thermody-
namic phase space together with its simplest topological
properties. It is instructive to invert this procedure.
Given the thermodynamic properties of the system in
the form of Egs. (1) to (3), what can one say about the
limitations of the treatment which gave rise to them?

The second law will be used in the following form:
All points of v are 4-points. By an ¢-point is meant a
point y of v such that every y-neighborhood of it con-
tains a point which is adiabatically inaccessible from ¥y
[I, (D11)7]. Let this law be applied to Fig. 2(a), assum-
ing B=0. It is clear that the point O cannot be adiabati-
cally linked with the points of the set 8. For if it were,
one could pass from any point in ¥ to all neighboring
points, by choosing paths along adiabatics and going
through 0. Hence the points of v would not be ¢-points.
This argument, which applies to ideal paramagnetic
systems, shows that at low temperatures and low fields
such systems cannot exist. If B#0 it is, of course, clear
from Fig. 2(a) that the system cannot exist at low tem-



520 P.

peratures. A similar argument, applied to the origin of
Fig. 2(b), shows that this point is adiabatically unlinked
with the rest of the points of v (whether B=0 or B5%0).
The removal of one point from the set 8 must mean that
physically also the immediate neighborhood of this
point does not correspond to true states of the system.
The origin of Fig. 2(b) corresponds to infinitely high
temperatures and infinitely high fields. Thus thermo-
dynamics suggests that the theory of Sec. 1 is either a
high-temperature low-field theory, or else a low-tem-
perature high-field theory. The first possibility is in
fact the correct one.

It may be argued that at points such as 0 one has
physically no means available of chosing one adiabatic
rather than another on which to leave 0. In the present
method of presenting thermodynamics, however, such
questions do not arise, since any curve which lies in a
set B and consists of adiabatics represents a quasistatic
adiabatic linkage of two states. The possibilities of such
linkages depends exclusively on the topology of the
thermodynamic phase space.

Toahigh-temperature theory the third law of thermo-
dynamics in its conventional form cannot be applied.
In a more general formulation, the third law is a state-
ment which asserts which of the boundary points F(B)
of a set ¥ may be regarded as adiabatically linked with
the rest of v, and are therefore to be regarded as also
belonging to the set 8. In general, all boundary points
F () which do not correspond to a state at the absolute
zero of temperature can be included in a set 8. By this
principle all points of the curve H=0 of Fig. 1 are to be
regarded as part of the set 3. This applies also to the
state of maximum entropy A. This conclusion is in
agreement with the result obtained from the assumption
stated at the beginning of Sec. 2.

It is only for a set v that the second law asserts the
existence of an entropy and an absolute temperature.
In the present example, therefore, it tells us that there
exist an entropy .S; and an absolute temperature 7' for
the set i, and similarly that there exist functions Sy, T
for vs. Since the equation @’Q=7'dS remains valid under
the transformation T"— CT, S — C1S, however, there
is still some arbitrariness in the definitions. If one set
7 is considered by itself, for example, the choice of sign
is still available, and this gives rise to various types of
thermodynamics, as considered in I.
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In the present example the signs chosen for 7" and §
in v; and in v, are also arbitrary from the thermo-
dynamic point of view. It is only if one considers the
relation between the two sets that additional restrictions
can be brought into play. For instance, one can use the
statistical mechanical result that for a given field one
can have two physically distinct states of the same
entropy. It then becomes very convenient to choose
opposite signs for the absolute temperatures in y; and
72, and to choose the additive constants in the entropy
in such a way that the entropies are positive in both
v1 and v,.
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APPENDIX

Using the notation of Abragam and Proctor,? the
Hamiltonian of the system is W= H,+ H;, where

Tr(Ho)=TI‘(H1)=TI'(HOH1)=O.

The mean internal energy in the high-temperature ap-
proximation is, with 8=1/kT,

U=Tr(Web%)/Tr(e")=Tr (W —BW?)/TrI.

The mean magnetic moment in the direction of the
field is

M=Tr(Me*7)/Tr(e*")=Tr(M—BMW)/Trl.
Since Hy=—MH, where H is the magnetic field,

U~—C(H*+B)/T, M=CH/T, (A1)

where
C=Tr(M?)/kTrl, B=Tr(H?)/Tr(M?).

In the text U and M have been written for U and M.
The relation TdS=dU-+MdH becomes, upon using
H and T as variables,

dS=CT3(H*+B*)dT—CHT-%H.

Hence the entropy can be taken in the form
S=A—1CT-2(H+B).
This yields Egs. (1) to (3) of the text.

(A2)



