
tials. In other words, we are led to regard A„(x) as a
physical variable. This means that we must be able to
define the physical difference between two quantum
states which dier only by gauge transformation. It will
be shown in a future paper that in a system containing
an undefined number of charged particles (i.e. , a super-
position of states of difFerent total charge), a new
Hermitian operator, essentially an angle variable, can
be introduced, which is conjugate to the charge density
and which may give a meaning to the gauge. Such
states have actually been used in connection with

recent theories of superconductivity and superQuidity12
and we shall show their relation to this problem in more
detail.
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The formula given by Moliere for the scattering cross section of a charged particle by an atom, on which
has been based the formula for the "screening angle" x in his theory of multiple scattering, has been
examined and found to contain an inconsistent approximation in all orders of the parameter n~= sZ/137p
except the lowest (the first Born approximation). In the present work, the correct expression of Dalitz is
used for the single-scattering cross section of a relativistic Dirac particle by a screened atomic field up to
the second Born approximation. It is found that the effect of the deviation from the first Born approximation
on the screening angle is much smaller than Moliere's expression for this quantity would lead one to believe.
This is so because the deviation from the first Born approximation is very small at the small angles that go
into the definition of the screening angle. In Moliere s work, all the effect of the deviation from the erst
Born approximation on the distribution function f(0) for multiple scattering is contained in the quantity 8
which depends only on x . In the present work, it is shown that in a consistent treatment of terms of various
orders in nr, there exist additional terms of order sZ/137 in the distribution function. These terms, which
represent the second Born approximation, become important at large angles. Calculations have been
carried out for the scattering of 15.6-Mev electrons by Au and Be.The 1/e widths of the distribution function
obtained are in good agreement with the experimental result of Hanson et al. , whereas Moliere's theory
gives too great a width compared with the experimental value in the case of Be.

I. INTRODUCTION

'HE theory of scattering of fast charged particles
by atoms is of importance for the analysis of

such experimental results as the scattering of high-
energy mesons and electrons in going through sheets
of matter. An "exact" theory of multiple scattering has
been given by Goudsmit and Saunderson. ' Its applica-
tion to a specific scattering problem invokes the knowl-
edge of the law of single scattering by an isolated atom.
In a paper in 1947, Moliere' gives a, (nonrelativistic)
formula for the scattering of a fast charged particle by
a screened Coulomb field, in which an approximation
higher than the usual first Born approximation is
attempted. In a second paper Moliere' gives a theory
of multiple scattering which has later been shown by

*National Research Council Postdoctorate Fellows.' S.A. Goudsmit and J.L. Saunderson, Phys. Rev. 57, 24 (1940),
and 58, 36 (1940).

2 G. Moliere, Z. Naturforsch. 2a, 133 (1947).' G. Moliere, Z. Naturforsch. 3a, 78 (1948).

Bethe4 to be obtainable from the theory of Goudsmit
and Saunderson by making certain approximations.
For the single-scattering law to be used in the theory of
multiple scattering, Moliere uses the result he obtained
in his earlier paper. '

Hanson et al. ' have measured the scattering of 15.6-
Mev electrons by gold and beryllium foils and compared
their experimental results with those calculated accord-
ing to Moliere's theory. The calculated "1/e width" of
the distribution has been found to be in excellent agree-
ment with the observed value in the case of gold, but is
somewhat too large in the case of beryllium.

In the case of the scattering of p, mesons (in cosmic
rays) by matter, the rather scanty data' (for large
scattering angles) seem to be in agreement with
i&moliere's theory. Here, for high enough energies of the

' H. A. Bethe, Phys. Rev. 89, 1256 (1953).' Hanson, Lanzl, Lyman, and Scott, Phys. Rev. 84, 634 (1951).
6 George, Redding, and Trent, Proc. Phys. Soc. (London) A66,

533 (1953);I. B. McDiarmid, Phil. Mag. 45, 933 (1954); 46, 1/7
(1955).
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p, mesons when the de Broglie wavelength is comparable
with nuclear dimensions, the scattering theory must be
developed for a charge distribution in the nucleus
instead of for a point charge. Many such calculations, ~

some of which are based on the relativistic theory, have
been carried out in recent years. VVhen the law of single
scattering is modified to take into account the finite
size of the charge distribution in the nuclei, the theo-
retical distribution for multiple scattering becomes too
small, at large angles, by a factor of order 10, compared
with the admittedly scanty observed data. ' This has
led some authors to suggest that this anomalous scatter-
ing might indicate some interactions other than
Coulombic between fast p, mesons and the atomic nuclei.
Such a suggestion also encounters difficulties. Any
modification of the potential between p mesons and
nuclei must be in accord with the experiments on the
interaction of stopped p mesons with nuclei. ' Also the
poor statistics of the present data does not provide
enough ground for taking such a suggestion seriously.

Owing to such discrepancies, however, it seems of
importance to re-examine the theory of Moliere on
which many such comparisons with experimental data
have been based. It is the purpose of the present work

to do so and to give the distribution function for multiple

scattering which contains a correct second Born
approximation for the single scattering in the screened
Coulomb field.

In Secs. II—V, it is shown that the result for the single-

scattering cross section given by Moliere is incorrect.
In Sec. VI, Dalitz's" relativistic formula, derived in

the second Born approximation, for the scattering of a
spin--,' particle in an exponentially screened Coulomb
field has been used to derive Moliere's distribution
function f(8,t) for multiple scattering. We have followed

the procedure of Bethe' starting with the exact expres-
sion of the distribution function as given by Goudsmit
and Saunderson. ' The calculations are carried out
correctly to the next order of sZ/137; the screening

angle parameter y and the parameter 8 are redefined.
The expansion of the distribution function obtained

by us is then carried out in powers of 1/B. The nu-

merical values of the distribution function up to terms
of order 1/8 are tabulated in Table III for Au and Be.
For the sake of comparison Bethe's values are also
included in the table.

' R. Hofstadter, Revs. Modern Phys. 28, 214 (1956), and
references quoted therein.

However, the situation in this respect is somewhat clarified by
the experiments of Fukui, Kitamura, and Watase. According to
them, while one experimental setup gives results in agreement
with the theory of Coulomb scattering from extended nuclei, the
other setup is in agreement with Moliere's theory for a point
nucleus. We are indebted to Professor J. Rainwater for bringing
this work to our attention.

Conversi, Pancini, and Piccioni, Phys. Rev. 71, 209 (1947);
V. L. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1953).

'0 R. H. Dalitz, Proc. Roy Soc. (London) A206, 509 (1951).

II. EXACT THEORY OF SCATTERING
BY A CENTRAL FIELD

To facilitate the discussion of Moliere's theory we
shall give the exact theory (Faxen-Holtsmark) of scat-
tering and show how Moliere's various results a,re
obtainable as approximations to the exact theory. The
exact theory is well known. For a particle of mass m,
momentum p=lik, scattered by a field V (r), the
scattered amplitude in a direction y from the direction
of p is given by

1
f(x)= . Z (2t+1)(e""—1)Pi(c»x),

2ik ~~

Here fi(r) is the radial wave function of the scattered
particle which behaves asymptotically for large dis-
tances r as

(3)

The function Pi(r), being a solution of the Schrodinger
equation with the potential V(r), depends on V(r).
If 2'e, Ze are the charges of the incident and scattering
particle, respectively, i.e.,

lim rV (r) = sZe',

and e is the velocity of the incident particles, it is con-
venient to introduce the parameter a~,

ni =sZes/kv = sZ/137P =cr/P,
—

P being v/e. For ni«1, one may expand 8i in (2) in
powers of EL')

8i —rr 8i(sl+rr ski(1)+is 85 (sl+. . . (6)

Substituting for 8i from Eq. (6) in Eq. (1) and expand-
ing e"" one gets"

f(x) = (1/k) Z i (2i+ 1)(~i~i"'+~i'~i"'
+i(ni8i ")'+ni'8i "+2io'i'5i "8i '

—s(~i8i"')'+ )Pi(c»x), (7)
and

I fh) I'=
I fh) n--I'+2f(x) n--

)&L(nis/k) Pi (2l+1)5i"&Pi(cosx)]+ . (8)

The first term on the right in Eq. (8), of order vis, is the
usual Born approximation which is obtained from the
exact theory by making two consistent approximations of

(i) replacing e"" 1by 2i8i, —
"T.Y. Wu, Phys. Rev. 73, 934 (1948).

where the phase shifts 8& are given by

2m ~" (xkr) '
sinai= —

~

I I Ji+, (kr)V(r)fi(r)dr (2).
ks& (2i
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(ii) replacing 6~ in Eq. (2) by
potential with exponential screening the following
approximation for C & has always been made, namely,

arm
ui8&&o& = — [J(+., (kr) $'r V (r)dr.

p

For a screened Coulomb field,

(10) ~&C'(p) =
2sZe'm I'" e ""

dr
k'k " (r' —p') '*

= 2ni dr, (19)
(r2 —p&) i

GZe
V (r) = —e-"',

ol
C (p) =2Eo(),p), (20)

one obtains

n&5("'=7rkni„ t J&+;,(kr) j'e ""dr,
0

and the familiar result

where Ep(kp) is a Bessel function. That the expression
(19) for Ci=niC(p) is in actual fact the first Born

(12) approximation, Eq. (12), can be seen either from Eqs.
(2.1)—(2.2) of Moliere's paper( or from a comparison
with Eq. (12) which gives

f(x)sorn = m
~e's &"—"'& 'V (r)d'r

1
,s, &o&=, k—Q, I

1+
2ko j (21)

=2sZe'm/k'(&i'+X'), q=2k sin(x/2). (13) where Q& is the Legendre function of the se&:ond find.
Since p is a continuous variable and l discrete, the

For the Coulomb field, one obtains, on letting l&~ 0, equivalence of in (20) of Moliere and b&& & is best seen
the exact result which is also the Rutherford formula by noting

lim Q&(cosh(y/l) )=Ep(y),
I f(x) ~

I

'=
I f(x)s-- I'

fsZe m't 1 (2oi) 1
(14)

& 2k'ko) sin4(x/2) ( k ) L2 sin(x/2)$4

The second term in Eq. (8) gives the second Born
approximation and is of order &pi since f(x)n„„ is of
order n~.

III. MOLIERE'S APPROXIMATION

so that

(
lim QiI 1+ I =Eo(l&l/k) =Eo(l&p),

2k')

(22)

The expression (18) obviously differs from the
Rutherford formula, and Moliere proposes to make
in Eq. (18) the replacement

From the exact theory above, it is very simple to
obtain the results of Moliere as approximations. Thus
on making in Eq. (1) the replacements

x r x

sinx k2 sin(x/2) J
(23)

J'i(cosx) by (x/»nx)'Jol (i+p)x],

Q) (2l+1) by 2 ~ldl,

so that the "adjusted" f(x),~r leads to his expression
in Eq. (4.6),

(16) (kx) '
I f«)- I'=

I f(x)~ I'
4n~'

of the exact theory, and introducing the parameter p by

/5= pkk,

one obtains directly from Eq. (1) Moliere's formula. s

LEqs. (4.5) and (4.6) of Moliere's paper')

"o
pdpJp(B&p)(e'~&» —1) . (24)

f(x),M I I
2ldl Jp(lx) (e'~' 1)—1t'x)*

2ik &sinx&

sZe"
V(r) = —— &p(r&o), &o=Z'/0. 885ao,

r
(25)

where ap= Bohr radius=0. 5292)(10 ' cm, the quantity
C(p) in Eqs. (19) and (20) becomes

k fx) ' r'"'
pdp Jo(pkx)(""' 1)—

i &sinxJ ~p
&p(rXp)

C (p) =2 dr,
( '—p')'

(26)
where C ~ is Moliere's notation for 28~. In Moliere's paper,
wherever calculations are explicitly carried out I see
Eqs. (2.2) and (6.2), (6.4) of Moliere's paper'j, for the which of course is still the first Born approximation as
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shown above. On introducing

Xo=&&o/P=&o/&, y=p&o=l&o/k,

Eqs. (26) and (24) become

(ii) Substituting for C (y) from Eq. (32) into Eq. (28),
neglecting 1 in comparison to the exponential term,
and setting x=yx/xp, f(x))s in Eq. (28) is obtained
from Lsee (37) below)

" (o(r')dr'
C'(y) =2J

I
f(x)~I' 1 r

~ '
(26') xdxJ (x) x ""+

I f(x) z I' (x/xo)'

(x)'
I
f(x)~l'=

I f(»~ I'
x

&&
I
-0.81-2.2»n

(x/x.))

I f(x) Is I'

If(x)~f'
1+nlsX2.303 logip

(x/xo)'-which is Eq. (6.6) of moliere's' paper and is the one
used in obtaining his final formula, Eq. (8.4), given
in the Summary of his paper.

It is clear from this simplified treatment of Moliere's'
derivation that the result, Eq. (28), contains the
approximations (15) and (16) together with theartifice
(23) as a compensating approximation. If Eq. (19) or
(26) is used, which are the first Born approximations,
then (28) can yield a consistent first Born approxima-
tion but not the higher Born approximations.

0.00072y4
x/

L. (0.13+tsnls+n)4)Xo')

which forms the basis of his theory of multiple scattering.

V. REMARKS ON MOLIERE'S RESULT,
EQ. (34}

(A) We shall now show that the above method and
hence the resulting Eq. (34) for the ratio (fss/fr() is
incorrect except to the order involving the zeroth
power of (II.Is In using the first Horn approximation,
Eq. (26) or Eq. (26'), for the calculation of C (y) = 2(rib((o)
in Eq. (30), the scattered amplitude f(x)sr is essentially

IV. MOLIERE'S FORMULA FOR SINGLE
SCATTERING (THOMAS-FERMI FIELD)

In applying Eq. (28) to the scattering of a charged
particle by an atom with the screening due to atomic
electrons taken into account, Moliere represents the
Thomas-Fermi function (o(rkp) in Eq. (25) by

f x l, s, this leads, upon integration, to the final result

o Exo ) 885

(29)

where a, and b, are constants. On using Eq. (26'), one
obtains as ill Eq. (20),

C(y) =2 Q a;Ep(b,y),
i=1

(30)

where L&p(x) being denoted as Ip(x) ill Aloliere's

Eq (&2)j

if'o(x) = —I p(x) ln(x/2)

Here Ip(x), P(m+1) are the Bessel function and logarith-
mic derivative of the gamma function, "respectively.

The crucial steps taken by Moliere are then the
following:

(i) C(y) in Eq. (30) is expanded, after using the
numerical va, lues of a, and b, in Eq. (29),

C (y) =0.516—2 lny —0.81y'—2.21y' lny+ . (32)
» G. N. Watson, Theory of Besse/ PNNelsorss (Cambridge

University Press, Cambridge, 1948).

f(x)~=-2 (21+1)r:~b "'+s( b "')'
k L ——,(nlbI(p))'+ ]PI(cosx), (35)

which is obtained from Eq. (/) by dropping all the
higher order phase shifts 8~&'&, b~"), etc. It is for this
reason that in Eq. (34), no term of order (II appears,
which would have been there if ()I")+i(bI(")' which
are both of the same order in al, were used as in Eq. (7),
instead of s(b((o))' in Eq. (35). For the same reason, the
term of order ni' in Eq. (34) is incorrect since

bi(s)+2sb((p)$ (I) e
($ (p))s

must be used instead of —es (bI(o))s. Thus the calculation
in Eqs. (30), (33), and (34) involves an inconsistent
approximation in which not all the terms of the same
order in 0!& are included in each order except the 6rst,
Reference to Eqs. (7) and (8) shows that the correct
formula for

I f(x) I'/I f(x)reIs contains a term of order
(II coming from bl(i) in Eq. P).

» The discussion in Sec. V appears in the mimeographed notes
of lectures given by T. V. Wu at the Joint Conference of the
Canadian Mathematical Congress and the Theoretical Physics
Division of the Canadian Association of Physicists, held at the
University of Alberta in August, 1957. That the expression (34)
cannot be correct in its dependence on o,1 is most easily seen by
comparing it with the correct expression (40) for a~(y) given by
Dalitz-in which one passes to the nonrelativistic case by making
p~0.
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g2 go 4.425 P p—Z ~i—--= — —(j.
lio' ' b;2+(q/)~0)' (q/lio)' q

so that by using Eq. (39) one obtains Eq. (38) for x)x,.
(C) The correct expression for

i f(x) i' up to higher
orders of e& can be obtained by the method of 8'I" and
of Jost and Pais."In fact

i f(x) i' has been calculated
for the potential (11) in the relativistic theory by
Dalitz. "A direct calculation of

i f(x) i

' for the Thomas-
Fermi potential (25), or the "actual" potential V(r),
would be more complicated. , but as we shall see in Sec.
VII below, such a calculation is not necessary, and one
can extend to any screened field V(r) the result obtained
by using the exponential screening. For high-energy
particles scattered through large angles (where the
agreement between the observed p,-meson scatterings
and the theoretical values seem to be in question), the
effect of screening by the atomic electrons can be
neglected, but then the charge distribution over the
finite size of the nucleus must be taken into account.
Many calculations have recently been made along this
line. I These correct results instead of Eq. (34) for the
single scattering must be employed in the exact theory
of multiple scattering, ' and for the comparison with
the experimental data.

Eo(x) —+ —lnx~ ~ a,s x —+0,

ICO(x) —+e ~0 as x~ ~; (36)

when the expression (32) containing terms only up to
y' is used for C (y), it is seen to be incorrect for large y.
Since the integration in Eqs. (28) or (33) is over the
range

the resulting Eq. (34) arising from the integration in

Eq. (33) cannot be correct.
Equation (33) involves the further expansion of

e'"'~&"' = exp{—ivi[0.516—2 lny
—y~(0.81+2.21 lny)])

=Ay "~' exp[ —iniy'(0. 81+2.21 lny)]
=Ay "~'[1—iaiy'(0 81+2.21 Iny)]. (37)

A consistent calculation at this point would require an
expansion of y

" ', and the retaining of terms up to
order nj. If this is done, then one would have obtained
a term of order nP in Eq. (34) [which is however in-
correct since terms of the same order from b~"', 6~&')

have been forgotten, as discussed in (A) above]. The
use of the full expression y

" ' in Eq. (37) implies

Eq. (35) for this part [i.e. , with (32) for C(y)] of
exp[io. IC(y)]. Thus, on retaining y

—" ' completely,
while retaining terms only up to ni in exp[ —iaiy'
X (0.81+2.21 lny)] in Eq. (37), one obtains Eq. (34)
which is incorrect in the higher orders in n& in the
logarithm.

From this it is clear that the formula, Eq. (34), is
incorrect to all orders of o.i except the zeroth and this
correct part

VI. DISTRIBUTION FUNCTION, TO SECOND
BORN APPROXIMATION, FOR

SINGLE SCATTERING

In the previous sections it has been shown that the
expression for the single-scattering cross section given
by Moliere is correct only to the first Born approxima-
tion. In this section we rederive an expression for the
distribution function f(e, t) for multiple scattering using
the relativistic formula for the scattering cross section
derived by Dalitz" for the exponentially screened po-
tential (11).We do not, in this paper, take into account
the complications introduced by the charge distribution
over the finite size of the nucleus, but shall simply treat
the nuclei as point charges.

The formula for the single-scattering cross section
given by Dalitz for the scattering of a particle with
charge se, mass m, momentum p, energy E, on a point
nucleus of charge Ze (screened exponentially) is

I f(x) i'
(38)

if(x)zi' (x/xo)'

can be obtained very simply by making use of the
familiar result, Eq. (13),

The statement (at the end of Sec. 6 of Moliere's one obtains by direct calculation
paper) that the scattering is independent of the sign
of the potential is also seen to be correct only if one
neglects the higher-order 81&1& in Eq (.8).

(8) The detailed calculations in Eqs. (32)—(34) are
objectionable for the following reason. The Bessel func-
tion E'0(x) in Eqs. (30) and (31) has the following
asymptotic behaviors,

f(x) =f(x)IIXq'P
' q'+(b, Xo)'

which passes again to the Rutherford f(x) II if b, in Eq.
(39) approaches zero, i.e., for an unscreened Coulomb
field. For the set of c;, b, of Moliere,

4n2h2E'
[1—P' sin'(x/2)]

c'[II'x'+4p' SIII (x/2)]

X 1—[59.'+4p' sin'(x/2)] ——Re(I+I)
%-2

ay=0. 1,

by=6,

a2=0.55, a3= 0.35,

b2= 1.2, bg =0.3,

lio as given in (25),

Q—(1—p') —[891'+4p' sin'(x/2)] —Re(I—I), (40)
7r2

"R.Jost and A. Pais, Phys. Rev. 82, 840 (1951).
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wh'ere

—Re(Iw J)=-
X2

h9.'+2p'
1&

sin(x/2)(h9. '+4p'Lh9, '+p' sin'(x/2)]}& 2p' cos'(x/2)

t' h}I,p sin(y/2) q 1 (2pq 1
xtan '1 tan-'1 —1—

&(h9'+4p't h9P+ p' sin'(x/2)]}'*] 2p' cos'(x/2) (Ai sin(x/2)

t'p»n(x/2) ~

E hy )

Q

)&Lh9.'+4p' sin'(x/2)]- —Re(I+J)
Ã2

1—(1—P')—Lh9, '+4P' sin'(y/2)] —Re(I—J) . (44)
7r2f(8,t) =2 (t+-',)I' (- 8)

lM
In order to evaluate the integral on the right-hand side
of Eq. (42), following Bethe, we break up the integral

+'( osy)]
1

(42) iilto two parts, froIn 0 to k and from k to 7r, where we
choose k such that

Here }I is the screening parameter introduced in Eq. (11) ( 4p' »n'(x/2)
alld which we Ilow take to be tI(Z /0. 885a ) (Go=Bohr q(x) =1

P SIII
radius=0. 5292)&10 ' cm) in this paper; tI is a constant
of order unity (see Sec. VII).

In deriving the multiple-scattering distribution, we

follow the simpli6ed method of Bethe. 4 According to
Goudsmit and Saunderson, ' the angular distribution,
for any angle small or large, is given exactly by

where f(8,t) sin8d8 is the actual number of scattered
particles between 8 and 8+d8. Here t is the actual
distance travelled along the path of the scattered
particle; however, we shall make the approximation
of taking t to be the foil thickness. )V is the number of
scattering atoms per cm'. Now our purpose is to
simplify the right-hand side of Eq. (42) and find an
expression for f(8,t) using the cross section p.D(x) given

by Dalitz. We shall write

xp«k«1/t,
where, as in (27),

xp= M,/p.

Let us write the exponential in Eq. (42) as

«PL-QI -QI ]
where

QI' ——St~ p D(y) sinxdxL1 —PI(cosy)]
0

(45)

(46)

1AoD(x) =2x,' q(x),
4(1—cosy)'

where we have introduced4

y.'= 4n.Me4Z(Z+1)s'/(PcP) P,

(43) QI"——Xt aD(y) sinydyL1 —PI(cosy)]. (47)
~1

Consider the evaluation of QI' first. If we write 1VtoIl(y)-
in the form given in Eq. (43), we see that q(x) will occur
in the integrand. Substituting the values of Re(I+J)
into Eq. (44), we can write q(x) in a somewhat different
for IQ:

2 (1—cosy)

yp +2(1 cosy)

( xp
1—p' sin'(x/2)+2 —

1 1 +4 X tan —1(xpx)+npLxpp+4 sin'(x/2)]
P & sin(x/2) )

where

p 1t' xp )' 1 |'2q 1
--

1
—.1 X tan '(x X)——tan '1 —I—

2 (sin(x/2)) 2 Exp) sin(x/2)

X—sin(y/2) (x,'+4LxpP+ sinP (x/2) ]}—l

(sin(x/2) )
1 1, (48)
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x', px)
dx (1+-'I.x') tan —'

(

In the region where p is small, 0(p(k, we can replace It is easy to see that
sin(x/2) by x/2 itself and the arctan by its argument,
thus obtaining

x' ) ' p'x' ~ xo(xo'+x')
q(x)=i i

1— +2-
~xo'+x'& 4 p xo'+4x"+x'

(kq tk)
I
—2x. »l

&2xo& ~2xo&

xo (xo' x')
+ p(xo'+x')

xo4+4xo'+x' & 2 4 &

~Ic/2Xp
—2xo)

p

tan —'x —ypI.k'
1+4x'

1t' 2 2——
/

tan '———tan —'
I . (49)

xo x 2xo)

Also we may use for y small the relation

( x' x')
I'if 1——+—

I

2 24)

+higher order terms. (52)

The integral occurring on the right-hand side of Eq. (52)
has k/2xo as its upper limit. Now k/2xo is a large
quantity and most of the value of the integral comes
from the lower limit only. Thus we can replace the
upper limit in this integral by ~, with practically no
error. Thus we have

k' k'(+ ) ( ( )& x'
Q, x )()+1)»~ ~;+L (p+. p)

)4 Xp 8 8

Using (43) and the simplified expressions (49) and (50)
in Eq. (46), we have

Qi'= kx.'~(~+1)

2n ]kg k'
+—xo in~ —I+L x ln2- —

p . &xo&

7r ~kg k'
+W -k —2xo —2«»l I

—xoL—
2 E2xo& 4

q" dx (1 &(~+1)) x'
X, —~(x) 1+I — I

— (51)
Jo x I6 4 )4 2Xp

~, 1+4~2
tan 'x t. (53)

The integrals occurring in Eq. (51) are all elementary.
We shall evaluate them up to terms of order k'. Since
xo=kX/p is of the order of 10 ' to 10 ' for electrons of a
few Mev energy, we shall keep only terms of order gp
and yp lnxp in the 6nal result and neglect xp' and other
higher-order terms. "Then we obtain

pkp O' P'k'
Q, '=-,'x,'i(t+1) ln~ —

I
;+L——

I Ex,& 8 8

2nxo t' k ) k' k'
+ ln~ —(+L———; ln2 —mnp-

p (xo&

~'dx x', 1 (x l
+np — (1+-,'L,x')- tan-'~

2x

Now let us proceed to the evaluation of Qi". In the
range k&x&m, the expression (48) for g(x) can be
simplified by expanding it in powers of $xo/2 sin(x/2) j
since this is a small quantity now. It is easy to show that
to terms of order yp,

q(x) = 1—p' sin'(x/2)

1+nPt sin(x/2) —sin'(x/2) j+2(a/P)xo 2aPxo,

and from (43), (47),

slnx
Q "=-'x' dx

(1—cosx)'

X 1—P' sin'(x/2)+mnP(sin(x/2) —sin'(x/2) j
20!+p

+ (1-P') L1-I'(- x)j.

where L stands for f6 —~l(l+1)1 in this expression. The
last integral occurring in Qi', can be written in such a
way as to separate out its strongly k-dependent terms.

"It is for this reason we cannot go to the limit P -+ 0 in the
expressions that follow. If we want to include the limiting case
of p-+ 0 also, we should keep y04in X and also the other dominant
terms in the evaluation of Q~' and QE".

The integrals occurring in this expression, except the
one involving ~nP sin(x/2), can be easily evaluated
without any further approximation for the integrand"
by the method developed by Bethe. ' The integral in-
volving the term mup sin(x/2) in the integrand can be
easily evaluated by using the generating function for the

"The only restriction we have here again is that k &1/l.
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sinX
dy [1—Pi(cosy)]

(1—cosy)'

l(l+1) -
t2q ~ 1 k

2»1 —
1

—21 —',+-', + "+-1 L -+-",
Ek)

1 1 2n
in—=1n——yp(lnyo+-', »2)

y- yp p
tan 'x

—2nPyo 1+, dx
1+4m'

—inyp, (55)

Legendre polynomials. Thus we find, to terms of In this expression, we are now in a position to introduce
order k'. the screening angle y which will take care of all the

contribution from the small angles. If we let

r sin'(y/2)
dy siny [1—Pi(cosy)]

(1— sy)'

l(l+1)
=( 1+-;+-.'+ "+-1- k'+

l) 8
and

sin(y/2)
dy siny [1—Pi(cosy)]

(1—cosy)'
l(l+1)

=23- k+

Assembling the terms, and introducing 4'(l)+C=1+s
+s+ .+(1/l), where 4(l) is the logarithmic deriva-
tive of the I' function and C is Euler's constant=0. 577

w'e 6Ild

(2y k'
Qr" =-'yop ~ l(l+1) 1n1 —

1
L +1 4—'(l)—C— —

(k) 8

k' k
+ (ps+vrnp) 7rnp——

8 2

(1—P') t 2 k'
+2nyp

1
ln ——L—+1—4'(l) —C

1)p E k 8

then Qi'+Qi" becomes

2
Qi'+Qi"=py. ' l(l+1) &n———,

'

t'
+I:1—+(l)—C]1 1+2-y (1—p')

1

- (Po+,P)[~(l)+C]+2.nPl . (56a)

From Eq. (55), we find

1 0.2310
y-=yp 1+2nyo -»yo+

rr p" tan 'x

+Pl 1+ il* —»yo
1

. (55a)

Numerical integration of the integral occurring in this
expression leads to the value 0.4480. Thus,

(1—p'~
y.'=yo' 1+4nyo

I 1»yo
I

0.2310
+ +1.4480P, (55b)

(P'+wnP) 54—(l)+C]+2wnPl .
where

Combining Qi' and Qt", we easily see that all the k-de-
pendent terms cancel up to the order to which we have
retained them. '~ In fact we have

P

Qi'+Qi"=oy. ' l(l+1)»—+p —+(l) —C
XO

2nyp ( 2
+ 11n———;»2 I

p E y )
—2yonP+2ypnP 1nyp

tan x—2ypnP dx
1+4m'

20!+p
+ (1—P') [1—+(l)—C]

(Ps+ nP)(eg)+C—]+2~nPl . (54)

'7 This expression for Ql'+Ql" is valid for /y0&1 where
Ql'+Ql")0. Of course when I is large, the upper limit in the

y '= yp'[1 13+3 76n'/p'] " (55c)
integral occurring in the square bracket of Eq. (55) can no
longer be inanity but a suitable 6nite upper limit has to be sub-
stituted. The numerical value of the integral will will then be
somewhat less than 0.4480 Lsee Eq. (55b) j.

"The coefFicient 1.13 results from the use of the sum of three
exponentials (29), (29a) to represent the Thomas-Fermi potential.
In (55b) we obtain 1 instead of his 1.13 because we are using a
single exponential only to represent the screened atomic. potential
(see Sec. VII). The yo in Kqs. (55b) and (55c), however, are not
the same.

yp ——(k/P) (yZ&/0. 885uo), p=0(1).
This relation between y and yp is true to the erst order
in n=sZ/137. We see that the term proportional to n
arises due to the deviation from the erst Born approxi-
mation. In the screening angle x, a occurs in the form
ngp, which makes this entire correction very small in
comparison with unity. This is as it should be, because
at very small angles the deviations from first Born
approximation are very small and thus p and pp
should not differ very much from one another. Moliere2
gets, instead of (55a),
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TAaLE I. Comparison of Moliere's and our
correction term to (x s/xos).

Also, we have approximately

&t(co»)=Jo((~+s)d) =Js(tI3/X. )

Moliere
P 3.76 a~/P

Z~4
From Eq. (55b)

4aXot:
p=i

Moliere
3.76 a&/P~

Z =79

Thus f(8,t) can be expressed as

0.7
0.8
0.9
0.99
0.999

6.54X10 '
5.01X10 3

3.96X10 3

3.27X10 '
3.21X10 3

—2.81 X10 '
—0.76 X10-3
+0.36 X10 '
+033 X10 8

+0.114X10 '

2.617
2.004
1.5832
1.3084
1.2513

—8.96X10 '
—1.32X10 ~

+2.77X10 '
+1.82X10 '
+0.61X10~

1
f(tt, t) =— g(3)dy,

x.'~o

where g(y) is given by

(58)

in which

xs = (It/p) (Z&/0. 885ae) .

(8 q y'
g(y)=yjsl ~ I exp —-',y' &—(»—

Ex, )
(55c) has been obtained from (34) and is claimed by
Moliere to be valid for all values of 0,, i.e. , to all orders
of deviation from the first Born approximation. Equa-
tion (34), however, has been shown in Sec. V to be
incorrect, and it is now obvious that (55c) is not
correct even to the second Born approximation. In
Table I, we compare Moliere's correction term with
ours as a function of p and Z of the scatterer and it is
seen that Moliere's correction term (n'/p') is wrong
even in the order of magnitude for large o. His large
coefficient of this term can perhaps be traced to the
use of the expression (32) up to the y' terms in the
evaluation of (28). See discussions under (8), Sec. V,
above.

Now in Eq. (56a) let us introduce z„' by the relation

, , (Xexp s&,' sl f —$»—
I

—«pl 2——1
I4) &,, )

+(p'+~~p)I c+in—
I . (59)

(
x,)

oa

f(g, t) = I

g (u)du
x,'8 &0

(61)

Following Moliere and Bethe, 4 we make the trans-
fol matiOn

(60)

and introduce the variable N=B&y; then we obtain

2 2
ln—=ln —-', +C—

1
ga ga

then we can write

2(xXo

(1-P') (& —C) with g(u) given by

(u)=ufsl u
I exp

&&,gB ) 4B
Qt'+Qt" = 2x'(~(~+1)Dn(2/x-') —~(1)]

-I-2s-crpl —(p'+ s-np) [4(l)+C]}, I' u ) Ir 2u
&«xp lx.' ll B t»—

I
~—~pl

&„,gB )

AVe know that for large l, asymptotically,

4'(l) ln(l+-', ).

Let us introduce the parameter b by the relation

S= P in(x, s/4) —in(x. 's/4),
and let

y= (&+s)X'

Now the distribution function f(e, t) is given by

(56b)

(5&)

f u
+(p'+~~p)l (:+» I . (62)

x.+B)-
The expression for g(u) can be rearranged and simp1ified
to the form"

a(u) =«xp&E1+lx.'(P'+ P —lE)]»u}

Xfsl u
I exp( —u'/4)

f(e,t) =Z (~+l)&t(costI) expl: —Qt' —Qt"]
L=O

According to the Euler-Maclaurin summation formula,

1 t" 1
P g(&+-')=—

i
4' g(y)+—a'(o)+

t=o 24

Q 2t

)&exp g ln——vruPx. u, (63)
4B 4 QB

"For txo) 1, P ',e'+f(u'/4B) In(u'/4) —m—nP-x, (1/QB)ug in
Eq. (63) becomes positive, so that f(tt, t) deiined by Eq. {61)
diverges. Strictly speaking, in view of our reference just preceding
Eq. (54), the integral should have been extended only up to
I~1/xo and so this divergence is spurious (see reference 4).
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where E is a constant whose value is

Making an expansion of the last exponential in Eq. (63)
in powers of 8: rather than 8 ' as previously done,
we can write, after making some slight rearrangements,

f(tf t) =
E

du exp{[1+,'X,s-(P'+en' -A&—)]lnl)
x.'».

8 ) ( rt' q

XJol u
I expl ——

I

&x,+8 i & 4&

1 Q I
X 1+——m.&rP&&.+8st+~ ln—

8 4 4

11 Q Q
+—— 2w&rPx—,+8N~ ln—

2I 8'

( its Ns) 2

+l 6-»—
I

+.. . (65)

I.et us compare the expression (65) with the corre-
sponding expression obtained by Bethe LEq. (25) in
reference 4$. The term in P' in the exponent of I comes
from the spin of the particle. The difference of $ from 1
L'see Eq. (56b)) and the terms in &r&c,+8 represent the
contribution from the second Born approximation,
which also appears in the dependence of 8 on &r =BZ/137
through Eqs. (60), (57), and (55b). In the work of
Moliere and Bethe, the spin term is neglected; (=1;
the terms in o&g.+8 are missing; and the relation (55b)
is replaced by the incorrect relation (55c) of Moliere.
The two terms in &rx,+8, being proportional to y„are
not as small as the correction &r)f&) in (55b), and for o&

8X,' Ss-&rP ln2
E=exp 1+ +2,"

16 8 8
(t3'+ t3)

+8 (C—lnx, +8) . (64)
8

not too small, become appreciable for scattering angles
~&8'x'

VII. COMPARISON WITH EXPERIMENTAL f(6,t)

To compare our result (65) with the experimental
data and with the result of Moliere, we have carried
out a calculation for two sets of values of the param-
eters Z, y„ t that correspond to the experiments of
Hanson, Lanzl, Lyman, and Scott' on the scattering of
15.7-Mev electrons by gold and beryllium foils. The
data are shown in Table II.

Corresponding to these values of x, (see Table II),
the exponent of I in the integrand in Eq. (65) can be
taken as unity for the purposes of our present calcula-
tion. For these energies, P=0.9995, $~1, and Eq. (65)
can be written in the form

E 1
f(g t)= f& )+ (f& )'+f& ))

y,'8 8

+ (f"'+f"')+. . (65 )
2 ~8'

where f&'&, f&", and f&'& have already been computed
by Moliere' and Bethe' and the f"" and f&"' arise
from the second Born approximation. We have been
able to compute f""from the values of the confluent
hypergeometric function" up to 0/x, +8=4. Beyond
this value of 8, the labor involved in summing the series
for the hypergeometric function is excessive and we
have not gone any farther. The integral f&'&' does not
seem to be expressible in terms of known functions in
simple forms, and its evaluation will have to await some
help from computing machines.

From Eq. (65), it is seen that the distribution func-
tion f(e, t) depends, through 8 in Eqs. (60) and (55),
on the "screening angle" x introduced in Eq. (55),
which gives its dependence on n and on yo, the screening
angle to the first Born approximation. For any screened
field V(r) whose scattering cross section is given by
Eq. (43), the x is given by'

TABLE II. Experimental data~ and calculated "I/e width" t) for
the multiple scattering of 15-Mev electrons by Au and Se foils.

I' v(y)
ln———,

' =
~ dy, y = sin(x/2).

x.
' ~. y

(66)

Au Be For the first Born approximation, we have
t Target thickness (mg/cm~)
E Average energy of electron in

foil (Mev)
x, defined in Eq. following (43)

(degree)
i& observed (degree)

e„,Moliere'sB, with f&') f&'& f&'&

(degree)
8„, the present work, (65a), with

p.=1.12 in (68) (degree)
8„, the present work, (65a), with

p=1.80 in (68} (degree)

a See reference 5.

37.20

15.67

1.55
3.78

491.3

15.24

1.52
4.33

4.096

3.80

4.60

4.35

3.83(3.90) 4.36(4.60)

&" qB(y)
(66a)

Xo =}'i}&/p, (67)

and X is given by Eq. (55). For the Thomas-Fermi

where gB(y) is the ratio of 6rst Born approximation
&rB(y) for the field V(r) to the Rutherford &rE(y) for the
unscreened field. For an exponential screening e ""as in
Eq. (11),Eq. (66a) gives
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fieM —(sZe'/r)to(Xor) in Eq. (25), Eq. (66a) gives'"
upon numerical integration,

xp 1.12(Qo/p), Xo=Z'/0. 885as. (67a)

In our present work, we use the Dalitz formula for
on()t) for an exponentially screened field, Eq. (11),and
for this field, xo is given by Eq. (67) where X is yet to be
adjusted to give the closest representation of the actual
field V(r). We may therefore write

where p is a constant of order 1. It is clear that as long
as we have not assigned any assumed value to p, , Eq.
(68) amounts to only a change of notation and in-
volves no new assumptions.

It is important, however, to note the following. As
mentioned in the preceding paragraph, for the screened
field in Eq. (11) go and x are given by Eqs. (67) and
(55), respectively. For the "actual" field V(r) xo aild
x„are given by the relations (66a) and (66), respec-
tively, of which (67) and (55) are the respective special
cases. Thus, by dissociating xo in (55) from the special
form (67) and writing it in the form (68), we may
consider the result of the preceding section, calculated
explicitly for the field (11),as having been extended, or
generalized, to the field V(r). This extension is a
perfectly consistent one from the point of view of
successive Born approximations in the problem of
multiple scattering.

Turning now to the actual numerical calculation,
using Eq. (68) in (55b), we have, up to the second
Born approximation,

) B,oy
' ( hXoP

1+4~I tp) ' ( pj
1—P' |t' Q o) 0.2310

ln
~

tt ~+ +1.4480P . (69)
p ( p) p

With tt=1.12 as in (67) corresponding to the Thomas-
Fermi potential, the calculated "1/e width" 0 of f(0,t)
from (65) does not agree very well with the observed
value for either Au or Be, as shown in Table II. If,
however, we choose for p a value, namely

@~I.80,

TABLE TII. Numerical values of the distribution function.

0/ V&x.
fO)

(& =1.80)

f(')+,(1l&)
X (f")'+f('))

(p, =1.80)
Bethe-Moliere
f")+(1l&)f"'

tribution function by fitting a Gaussian with a width
slightly narrower than the width QBx, of the gaussian
term ftoi. This width according to them is (8 1.—2)*)t,.
In our calculations we have calculated e„by obtaining
the full distribution function f=ft'&+(1/8) (f""+fo&)
and finding the value of 8 at which the intensity drops
to 1/e of its central value. We find that H„calculated
in our way are slightly broader than the O„calculated
according to Hanson et al. To give an idea of the
magnitude of this difference, the H„calculated according
to our method are given in parenthesis along with
Moliere's value in row 5 of Table II. The other values
of O„quoted in Table II are calculated according to our
method only.

In Table III are given the values of f"&, fo~, J""of
(65a) and (65) for tt=1.80, together with the values
of fto', fo) given by Bethe' on the basis of Moliere's
treatment. It is seen that for scattering angles some-
what beyond the "Gaussian" region (8/QBx, 3 in
Table III), the present result (65) predicts an f(e)
greater than that according to Moliere and Bethe by
about 20%. This greater f(8) arises from the contribu-
tion from the second Born approximation. A more
exact calculation, however, has to include the f""
which we have neglected in Table III.

If, as shown by Bethe, 4 the distribution function at
large angles goes over into the cross section itself, the
increase in the distribution function of 20% at angles
8 15' is consistent with the increase of the cross
section o.&(e) itself by about 20% over the 6rst Born
approximation value at these angles. In this connection
it may be pointed out that the curves given in Mott
and Massey's book,"for the cross section in the second
Born approximation as a function of scattering angle,
are from the calculations of Bartlett and Watson" based
on the early incorrect formula of Mott, and give too
large an increase over the first Born approximation cross
section. The correct Dalitz formula" gives an increase
of only about 20% at scattering angles 0~15'.

While the use of the same empirical value p, = 1.80 in
Eqs. (68) and (69) brings the theoretical e according

such that the calculated 8„ for Au agrees with the
experimental value (see Table II), we then find that
the same value p = 1.80 leads, for Be, to a value O„also
in good agreement with the experimental value (see
Table II). It may be mentioned in connection with
Table II that Hanson et a/. in calculating 8„ take
account of the effect of the terms ft', f '& in the dis-

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0

2
1.9216
1.7214
1.4094
1.0546
0.7338
0.4738
0.2817
0.1546
0.0783
0.0366
0.00025
2.3)&10 7

0.8456
0.7038
0.3437—0.0777—0.3981—0.5285—0.4770—0.3183—0.1396—0.0006

+0.0782
+0.0455
+0.0106

—0.4584—0.3744—0.2822-0.2041—0.1341—0.0717-0.0153
+0.0374
+0.0898
+0.1471
+0.0295
+0.0070
+0.0026

2.0555
1.9688
1.7302
1.3690
0.9783
0.6478
0.4033
0.2415
0.1475
0.0993
0.0520
0.0080
0.0019

2.116
2.018
1.768
1.400
1.050
0.661
0.408
0.238
0.136
0.078
0.047
0.006
0.0014

so
¹ F. Mott and H. S. W. Massey, Theory of Atomic Collsssorts

(Oxford University Press, Oxford, 1949), second edition, pp. 188—
190, 196—198. The 8; there is defined by' the following relation
instead of (66), ~j'oLg(y)/yjdy=ln(2/Hmlg)i so tllat Hmin e&xo.

2' Reference 20, p. 81.
'~ J.H. Bartlett and R. F, &gtgon, Proc. Am. Acad. Arts Sci. 74,

53 (1950).
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to Eq. (65) into satisfactory agreement with the
observed 8„ for both Au and Be, the question may be
raised as to why the value p j.80 seems to di6'er so
much from the value p 1.12 in Eq. (67) calculated
from the Thomas-Fermi potential (erst Born approxi-
mation). A tentative answer is that the Thomas-
Fermi potential, while satisfactory in a qualitative way
in dealing with certain properties of the atom, may not
be sufficiently good for the screening effect for very
small scattering angles. "To see if this is the case, a
calculation of yo has been carried out for the Be atom
for which the Fock field is available. '4

on using for the wave functions of Pock and
Petrashen'4

the field V(r) due to the 1s' 2s' configuration can be
calculated analytically. From this V(r), the scattered
amplitude fbi(x) (13) can be obtained, and finally the

qz(z) and yo of (66a) are obtained by integrations. It is

found that
(xo)H. i..= 2.18(Q 0/p), (71)

corresponding to (p)H. F.=2.18 in (68).
This value p, =2.18 is in much better agreement with
the empirical value @=1.8, and shows that the value

"Mott and Massey, reference 20, p. 196, do remark that the use
of Hartree field leads to a 8; di6ering slightly from the 8;
from the Thomas-Fermi field. No numerical comparison, however,
is given and the difference is dismissed as "unimportant". We are
here just concerned with this difference.

24 Fock and Marie Petrashen, Physik Z. Sowjetunion V. 8, 359
(1935).

p=1.12 from the Thomas-Fermi field is too low. The
small difference between 2.18 and 1.8 may be due to (i)
the approximate nature of the Hartree-Fock field itself,
(ii) the further approximation (70) for the wave func-
tions, and/or (iii) uncertainities in the empirical value
p, =1.8. Thus the situation of the present result of the
theory of multiple scattering may be regarded as
satisfactory.

We shall finally consider the comparison' between
the results on Au and Be based on Moliere's treatment
and the experimental results of Hanson et al. ' There
the relation between x and zo is given by (55c) in
which the term linear in e corresponding to the second
Born approximation is missing and the coefficient of o.'
is incorrect by a few orders of magnitude. However,
by some mysterious coincidence, the 3.76a' term in
(55c) for the case of 15-Mev electrons scattered by Au,
together with the term 1.13 t which according to Goud-
smit and Saunderson, ' Mott and Massey" should have
been (1.12)', as given in (67)g, gives for x„' the value

y '~2.53yo' that leads to a calculated 8„ in good agree-
ment with the observed value (see Table II). This
fortuitous agreement, however, does not obtain in the
case of Be for which the n' term in (55c) is entirely
negligible and y '~1.13yo' leading to a Inuch too large
ca,lculated 8„(see Table II).
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