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In this paper, we discuss some interesting properties of the electromagnetic potentials in the quantum
domain. We shall show that, contrary to the conclusions of classical mechanics, there exist effects of poten-
tials on charged particles, even in the region where all the fields (and therefore the forces on the particles)
vanish. Ke shall then discuss possible experiments to test these conclusions; and, finally, we shall suggest
further possible developments in the interpretation of the potentials.

1. INTRODUCTION

N classical electrodynamics, the vector and scalar
&- potentials were first introduced as a convenient
mathematical aid for calculating the fields. It is true
that in order to obtain a classical canonical formalism,
the potentials are needed. Nevertheless, the funda-
mental equations of motion can always be expressed
directly in terms of the fields alone.

In the quantum mechanics, however, the canonical
formalism is necessary, and as a result, the potentials
cannot be eliminated from the basic equations. Never-
theless, these equations, as well as the physical quan-
tities, are all gauge invariant; so that it may seem that
even in quantum mechanics, the potentials themselves
have no independent significance.

In this paper, we shall show that the above conclu-
sions are not correct and that a further interpretation
of the potentials is needed in the quantum mechanics.

2. POSSIBLE EXPERIMENTS DEMONSTRATING
THE ROLE OF POTENTIALS IN THE

QUANTUM THEORY

In this section, we shall discuss several possible ex-
periments which demonstrate the significance of poten-
tials in the quantum theory. We shall begin with a
simple example.

Suppose we have a charged particle inside a "Faraday
cage" connected to an external generator which causes
the potential on the cage to alternate in time. This will
add to the Hamiltonian of the particle a term V(x,t)
which is, for the region inside the cage, a function of
time only. In the nonrelativistic limit (and we shall

assume this almost everywhere in the following dis-
cussions) we have, for the region inside the cage,
H=Hp+V(t) where Hp is the Hamiltonian when the
generator is not functioning, and V(t) =ep(t). If
leap(s, t) is a solution of the Hamiltonian Hp, then the
solution for H will be

&=/pe '«&, S= —
V(t)dt,

which follows from

8$ ( Bfp 85)
i jt =

I
i jt —+pp—1

e 'sty= 1tH p+ V (t)]Q= HQ.
a~ E a~ at &

The new solution differs from the old one just by a
phase factor and this corresponds, of course, to no
change in any physical result.

Now consider a more complex experiment in which a
single coherent electron beam is split into two parts and
each part is then allowed to enter a long cylindrical
metal tube, as shown in Fig. 1.

After the beams pass through the tubes, they are
combined to interfere coherently at F. By means of
time-determining electrical "shutters" the beam is
chopped into wave packets that are long compared
with the wavelength ), but short compared with the
length of the tubes. The potential in each tube is deter-
mined by a time delay mechanism in such a way that
the potential is zero in region I (until each packet is
well inside its tube). The potential then grows as a
function of time, but differently in each tube. Finally,
it falls back to zero, before the electron comes near the
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Fn. 1. Schematic experiment to demonstrate interference with
time-dependent scalar potential. A, 8, C, D, E: suitable devices
to separate and divert beams. 5'I, W2. wave packets. Mi, M'g.'

cylindrical metal tubes. F: interference region.

other edge of the tube. Thus the potential is nonzero
only while the electrons are well inside the tube (region
II). When the electron is in region III, there is again no
potential. The purpose of this arrangement is to ensure
that the electron is in a time-varying potential without
ever being in a fmld (because the 6eid does not penetrate
far from the edges of the tubes, and is nonzero only at
times when the electron is far from these edges).

Now let P(x, t) =iti'(x, t)+Ps'(x, t) be the wave func-
tion when the potential is absent (Pi' and its' repre-
senting the parts that pass through tubes 1 and 2,
respectively). But since U is a function only of t
wherever it is appreciable, the problem for each tube
is essentially the same as that of the Faraday cage. The
solution is then

f—$ oe isi///+p oe —/ss/s—

Fzt".. 2. Schematic experiment to demonstrate interference
with time-independent vector potential.

suggests that the associated phase shift of the electron
wave function ought to be

e
AS//'t= —— A dx,

CS

where gA dx= J'H ds=p (the total magnetic flux
inside the circuit).

This corresponds to another experimental situation.
By means of a current Qowing through a very closely
wound cylindrical solenoid of radius E., center at the
origin and axis in the s direction, we create a magnetic
field, H, which is essentially confined within the sole-
noid. However, the vector potential, A, evidently,
cannot be zero everywhere outside the solenoid, because
the total Qux through every circuit containing the
origin is equal to a constant

where

Sy=e ~ pydt, 52=8 yqdt.
yp —— H ds=)IA dx.

It is evident that the interference of the two parts at
E will depend on the phase difference (Si—Ss)/It. Thus,
there is a physical eGect of the potentials even though
no force is ever actually exerted on the electron. The
eGect is evidently essentially quantum-mechanical in
nature because it comes in the phenomenon of inter-
ference. We are therefore not surprised that it does not
appear in classical mechanics.

From relativistic considerations, it is easily seen that
the covariance of the above conclusion demands that
there should be similar results involving the vector
potential, A.

The phase difference, (Si—Ss)/5, can also be ex-
pressed as the integral (e/It)gpdt around a closed
circuit in space-time, where q is evaluated at the place
of the center of the wave packet. The relativistic gener-
alization of the above integral is

e ] A
rpdt dx- —

/s E c i '

where the path of integration now goes over any closed
circuit in space-time.

As another special case, let us now consider a path
in space only (t=constant). The above argument

To demonstrate the eGects of the total Qux, we begin,
as before, with a coherent beam of electrons. (But now
there is no need to make wave packets. ) The beam is
split into two parts, each going on opposite sides of the
solenoid, but avoiding it. (The solenoid can be shielded
from the electron beam by a thin plate which casts a
shadow. ) As in the former example, the beams are
brought together at J (Fig. 2).

The Hamiltonian for this case is

$P—(e/c) Aj'

In singly connected regions, where H= V&(A=O, we
can always obtain a solution for the above Hamiltonian
by taking it =itse 'e/", where ps is the solution when
A=O and where V'S/5= (e/c)A. But, in the experiment
discussed above, in which we have a multiply connected
region (the region outside the solenoid), fee 'e/" is a
non-single-valued function' and therefore, in general,
not a permissible solution of Schrodinger's equation.
Nevertheless, in our problem it is still possible to use
such solutions because the wave function splits into
two parts P =Pi+fs, where Pi represents the beam on

' Vniess go ——eigc/e, where e is an integer.
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one side of the solenoid and Ps the beam on the opposite
side. Each of these beams stays in a simply connected
region. We therefore can write

$i f—oe i sl—la p —f Og i8s/a

where Si and Ss are equal to (e/c) j'A dx along the
paths of the first and second beams, respectively. (In
Sec. 4, an exact solution for this Hamiltonian will be
given, and it will confirm the above results. )

The interference between the two beams will evi-
dently depend on the phase diGerence,

(Si—Ss)/k= (e/kc) A dx= (e/bc)itis

This eGect will exist, even though there are no magnetic
forces acting in the places where the electron beam
passes.

In order to avoid fully any possible question of
contact of the electron with the magnetic field we note
that our result would not be changed if we surrounded
the solenoid by a potential barrier that reQects the
electrons perfectly. (This, too, is confirmed in Sec. 4.)

It is easy to devise hypothetical experiments in which
the vector potential may inQuence not only the inter-
ference pattern but also the momentum. To see this,
consider a periodic array of solenoids, each of which is
shielded from direct contact with the beam by a small
plate. This will be essentially a grating. Consider first
the diGraction pattern without the magnetic Geld, which
will have a discrete set of directions of strong con-
structive interference. The eRect of the vector potential
will be to produce a shift of the relative phase of the
wave function in diGerent elements of the gratings. A
corresponding shift will take place in the directions,
and therefore the momentum of the diffracted beam.

magnitude has to be of the order of Ps = 2m.ck/e 4X 10 r

gauss cm') by means of fine permanently magnetized
"whiskers". ' The solenoid can be used in Marton's-
device, ' while the whisker is suitable for another experi-
mental setup4 where the separation is of the order of
microns and the whiskers are even smaller than this.

In principle, we could do the experiment by observing
the interference pattern with and without the magnetic
Qux. But since the main effect of the Qux is only to
displace the line pattern without changing the interval
structure, this would not be a convenient experiment
to do. Instead, it would be easier to vary the magnetic
Qux within the same exposure for the detection of the
interference patterns. Such a variation would, according
to our previous discussion, alter the sharpness and the
general form of the interference bands. This alteration
would then constitute a verification of the predicted
phenomena.

When the magnetic Qux is altered, there will, of
course, be an induced electric Geld outside the solenoid,
but the eGects of this Geld can be made negligible. For
example, suppose the magnetic Qux were suddenly
altered in the middle of an exposure. The electric field
would then exist only for a very short time, so that only
a small part of the beam would be aGected by it;

4. EXACT SOLUTION FOR SCATTERING PROBLEMS

Ke shall now obtain an exact solution for the problem
of the scattering of an electron beam by a magnetic
field in the limit where the magnetic Geld region tends
to a zero radius, while the total Qux remains fixed. This
corresponds to the setup described in Sec. 2 and shown
in Fig. 2. Only this time we do not split the plane wave
into two parts. The wave equation outside the magnetic
field region is, in cylindrical coordinates,

3. A PRACTICABLE EXPERIMENT TO TEST FOR
THE EFFECTS OF A POTENTIAL WHERE

THERE ARE NO FIELDS

As yet no direct experiments have been carried out
which confirm the effect of potentials where there is no
Geld. It would be interesting therefore to test whether
such effects actually exist. Such a test is, in fact, within
the range of present possibilities. ' Recent experiments' 4

have succeeded in obtaining interference from electron
beams that have been separated in one case by as much
as 0.8 mm. It is quite possible to wind solenoids which
are smaller than this, and therefore to place them
between the separate beams. Alternatively, we may
obtain localized lines of fiux of the right magnitude (the

'Dr. Chambers is now making a preliminary experimental
study of this question at Bristol.

'L. Marton, Phys. Rev. 85, 1057 (1952); 90, 490 (1953).
Marton, Simpson, and Suddeth, Rev. Sci. Instr. 25, 1099 (1954).

4 G. Mollenstedt, Naturwissenschaf ten 42, 41 (1955); G.
Mollenstedt and H. Dnker, Z. Physik 145, 377 (1956).

where lr. is the wave vector of the incident particle and
ct= —ep/ch. We have again chosen the gauge in which
A„=O and As=&/2~r.

The general solution of the above equation is

4 = Z e'"'L~-J-+-(kr)+b-J (-+-&(kr)3 (2)-

where a and b are arbitrary constants and J~ (kr)
is a Bessel function, in general of fractional order
(dependent on d). The above solution holds only for
r) R. For r(R (inside the magnetic Geld) the solution
has been worked out. ' By matching the solutions at
r=R it is easily shown that only Bessel functions of
positive order will remain, when E approaches zero. -

s See, for example, Sidney S. Brenner, Acts Met. 4, 62 (1956).' L. Page, Phys. Rev. 36, 444 (1930).
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This means that the probability of Gnding the particle
inside the magnetic Geld region approaches zero with R.
It follows that the wave function would not be changed
if the electron were kept away from the field by a barrier
whose radius also went to zero with R.

The general solution in the limit of R tending to zero
is therefore

As a result, we obtain

rllp i 1
( Z)m +a+1J, pi(m'+1)8m'+a

Qf 2 m'=0

00

( Z)m'+a —iJ, ei(m' —i&8

2 m»=2

ttm JIm+aIe'

We must then choose iz so that t/r represents a beam
of electrons that is incident from the right (0=0). It is
important, however, to satisfy the initial condition that
the current density,

A (i/r*V't/r sly%'tlr*) —e
3= At/dies—fr,

—
2iyn

shall be constant and in the x direction. In the gauge
that we are using, we easily see that the correct incident
wave is t/;„=e ~*e ' '. Of course, this wave function
holds only to the right of the origin, so that no problem
of multiple-valuedness arises.

We shall show in the course of this calculation that
the above conditions will be satisfied by choosing
a = (—i) I + I, in which case, we shall have

oo

(—i)m'+aj ~ eim (8—Ze++i ie +)
2 m'=1

+-', (—z) [J.+1—ie"'J.].

&i/, /itr'= i c—os+ 1+-', (—i) (J.+1—iJ.e '

).

This differential equation can be easily integrated to
give

~l

eir' cosH[J zJ ei8]dr
0

where
r

( Z)ae ir' cosH-

The lower limit of the integration is determined by the
requirement that when r' goes to zero, P, also goes to
to zero because, as we have seen, Itri includes Bessel
functions of positive order only.

In order to discuss the asymptotic behavior of P&,
let us write it as it i=A[Ii —Iz], where

(—i)Im+aIJIm+ Ie'~ Ii Je'"' -"——[J ie"J ]dr', —
0

It is convenient to split iP into the following three parts:
0—t/rl+t/rz+t/rz where

I eir' cos8[J ZeiH J

—Z)m+aj e'8
m=1

( Z)m+a J eimH

( Z)m
—aJ e—imH (5)

m=1

6= (—z) I I JI-I.

Now it t satisfies the simple di8erential equation

The first of these integrals is known':

&i[aarc sin(P/k)]
eittr J (Pr)—

In our cases, P= cos8, k=1, so that

"gaia( Ã—j8() gi(a+1) (~Ã—(e()-I— gg ie

f
sine/

/
sin8/

(10)

Because the integrand is even in g, we have written the
Anal expression for the above integral as a function of
~il( and of [sin8~. Hence

( Z)m+a J reim8

m=1
—&ia(+zr—(8 J )1

ie—'~'~ —ie"

/
sine/

Jm+a —1 Jm+a+1
( Z)

m+a . e 'mH r —P» (6)
m=1

=0 for 8&0,

=e—"'2s for 0&0,

where we have used the well-known formula for Bessel where we have taken 8 as going from —
m to m.

functions:
r See, for example, W. Grobner and N. Hofreiter, IrttegroltafeldJ, r dr= ', J, ,—J,+, . -

(Springer-Verlag, Berlin, 1949).
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%e shall see presently that I~ represents the largest
term in the asymptotic expansion of ])[r. The fact that
it is zero for 8(0 shows that this part of fr passes
(asymptotically) only on the upper side of the singu-
larity. To explain this, we note that Pr contains only
positive values of m, and therefore of the angular
momentum. ft is quite natural then that this part of Pr
goes on the upper side of the singularity. Similarly,
since according to (5)

Ps(r', 8,n) =]tr(r', —8, —n),

we 6nally obtain

(—i) +'
]

(2~)& [r'(1+cos8)s]&

e '"'
eir' cos8 (16)

(2~)& [r'(1—cos8)s]-:

—i
D=

(2~)& [r'(1+cos8)s]&

eir' cos8( i)e(8 (17)
it follows that fs will behave oppositely to Pr in this e '"'
regard, so that together they will make up the correct
incident wave. (28r) & [r'(1—COS8) s]&

Now, in the limit of r'~ we are allowed to take
in the integrand of ls the first asymptotic term of g s Now adding (16) and (17) together and using (13) and

namely J ~ (2/8rr)I cos(r rn r8r) ~e obtain (9), we find that the term of 1/(r')' in the asymptotic
expansion of lfr is

where

e'"' -"(J+i ie~J )d—r' —+ C+D, (12) (—i)& e—'"' 1—e"
(—1) +i

2(28r) & (r') & 1+cos8 (r') & 1—cos8
(18)

dr (2) [
e'"' "~[cos (r' ——',- (n+1)8r —-', 8r) ] Using again the relation between Pr and ]]rs we obtain

for the corresponding term in [Is

dr' f2q
&

e'"' "' cos r' —-'n —-'m. — —i e"
(13)

(—i)& e'" 1+e ~ e '"' 1—e 8'

, (—1) +i, ,
2(28r)' (r')& 1+cos8 (r')'* 1—cos8

(19)

Then

f eir' cos8[ei[r'—', (a~()c—', s]

+e—i[r'—-', (a+1)s—[s]]
(28rr') l

Adding (18) and (19) and using (11),we finally get

( i)& ie—'"' e"' COS(8m ——',8)
4(+]][8~ (2)I-("): (")I -(l8)-

+e—s(r' cos8+a8) (20)

(2)' (—i) +l
exp (+is')ds

~8r) (1+COS8)* ~ [r'(i+cos8)]'

There remains the contribution of fs, whose asymptotic
behavior is [see Eq. (12)]

21* i+* I'" . (2 )'
exp( —is')ds, (14) (—i)] ~J] ](r) —+ ( z)~ ]~ I

cos(r' —-'„m.—-'~n~x).
Elr) (1 COS8) * ~ [r' (i-cos8)] '

& ~r')

where we have put

s= [r'(1+cos8)]'* and s= [r'(1—cos8)]&,

Collecting all terms, we hnd
e'"' e

—i8/2

i exp( i—u')—
exp (—is') ds —+—

2 a

(15)

E. Jahnke and F. Emde, Tables of FNricrio~s (Dover Pub-
lications, Inc. , New York, 1943), fourth edition, p. 138,' Reference 8, p. 24,

respectively.
Using now the well-known asymptotic behavior of

the error function, '

i exp(iu')
exp(is')ds ~——

2 8

4'=4'i+A+ps ~ e ""8+"-")+ sin8rn
(28rir') '* cos(8/2)

(21)

where the & sign is chosen according to the sign of n.
The first term in equation (21) represents the incident

wave, and the second the scattered wave. "The scat-
tering cross section is therefore

sin'en
(22)

28r coss(8/2)
'0 In this way, we verify, of course, that our choice of the a for
q. (3)„satisfies the correct boundary conditions.
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When o, =e, where e is an integer, then 0 vanishes.
This is analogous to the Ramsauer eGect." o- has a
maximum when n= e+—',.

The asymptotic formula (21) holds only when we are
not on the line 0=~. The exact solution, which is needed
on this line, would show that the second term will
combine with the first to make a single-valued wave
function, despite the non-single-valued character of the
two parts, in the neighborhood of 0=+. We shall see
this in more detail presently for the special case n =n+-,'.

In the interference experiment discussed in Sec. 2,
diffraction effects, represented in Eq. (21) by the scat-
tered wave, have been neglected. Therefore, in this
problem, it is adequate to use the first term of Eq. (21).
Here, we see that the phase of the wave function has a
di6'erent value depending on whether we approach the
line 8=&m from positive or negative angles, i.e., from
the upper or lower side. This confirms the conclusions
obtained in the approximate treatment of. Sec. 2.

Ke shall discuss now the two special cases that can
be solved exactly. The first is the case where n =e. Here,
the wave function is lt =e "*e ' ', which is evidently
single-valued when n is an integer. (It can be seen by
direct differentiation that this is a solution. )

The SeCOnd CaSe iS that Of rr=e+-', .BeCauSe J l„+,*& (r)
is a closed trigonometric function, the integrals for P
can be carried out exactly.

The result is

~ g [r'(1+cos8)] &

i ( ', 8+r'—coss-l

K2 6 p

exp (is') ds. (23)

This function vanishes on the line 0=&. It can be seen
that its asymptotic behavior is the same as that of Eq.
(2) with rr set equal to e+—,'. In this case, the single-
valuedness of lt is evident. In general, however, the
behavior of P is not so simple, since P does not become
zero on the line 8=x.

"See, for example, D. Bohm, QNuetuin Theory (Prentice-Hall,
Inc. , Englewood ClifYs, iVew Jersey, 1951).

5. DISCUSSION OF SIGNIFICANCE OF RESULTS

The essential result of the previous discussion is that
in quantum theory, an electron (for example) can be
influenced by the potentials even if all the field regions
are excluded from it. In other words, in a field-free
multiply-connected region of space, the physical proper-
ties of the system still depend on the potentials.

It is true that all these effects of the potentials depend
only on the gauge-invariant quantity gA dx = J'H ds,
so that in reality they can be expressed in terms of the
fields inside the circuit. However, according to current.
relativistic notions, all fields must interact only locally.
And since the electrons cannot reach the regions where
the fields are, we cannot interpret such eGects as due
to the fields themselves.

In classical mechanics, we recall that potentials
cannot have such significance because the equation of
motion involves only the field quantities themselves.
For this reason, the potentials have been regarded as
purely mathematical auxiliaries, while only the field
quantities were thought to have a direct physical
meaning.

In quantum mechanics, the essential difference is that
the equations of motion of a particle are replaced by the
Schrodinger equation for a wave. This Schrodinger
equation is obtained from a canonical formalism, which
cannot be expressed in terms of the fields alone, but
which also requires the potentials. Indeed, the poten-
tials play a role, in Schrodinger s equation, which is
analogous to that of the index of refration in optics,
The I.orentz force Lem+(e/c)vt&Hj does not appear
anywhere in the fundamental theory, but appears only
as an approximation holding in the classical limit. It
would therefore seem natural at this point to propose
that, in quantum mechanics, the fundamental physical
entities are the potentials, while the fields are derived
from them by differentiations.

The main objection that could be raised against the
above suggestion is grounded in the gauge invariance
of the theory. In other words, if the potentials are
subject to the transformation A„—+A„'=A„+elf/rlx„,
where P is a continuous scalar function, then all the
known physical quantities are left unchanged. As a
result, the same physical behavior is obtained from any
two potentials, A„(x) and A„'(x), related by the above
transformation. This means that insofar as the poten-
tials are richer in properties than the fields, there is no
way to reveal this additional richness. It was therefore
concluded that the potentials cannot have any meaning,
except insofar as they are used mathematically, to
calculate the fields.

We have seen from the examples described in this

paper that the above point of view cannot be main-
tained for the general case. Of course, our discussion
does not bring into question the gauge invariance of
the theory. But it does show that in a theory involving

only local interactions (e.g. , Schrodinger's or Dirac's
equation, and current quantum-mechanical field the™
ories), the potentials must, in certain cases, be con-
sidered as physically effective, even when there are no
fields acting on the charged particles.

The above discussion suggests that some further
development of the theory is needed. Two possible
directions are clear. First, we may try to formulate a
nonlocal theory in which, for example, the electron
could interact with a field that was a finite distance
away. Then there would be no trouble in interpreting
these results, but, as is well known, there are severe
diKculties in the way of doing this. Secondly, we may
retain the present local theory and, instead, we may
try to give a fur&h|;r nqw interpretation to the poten-



tials. In other words, we are led to regard A„(x) as a
physical variable. This means that we must be able to
define the physical difference between two quantum
states which dier only by gauge transformation. It will
be shown in a future paper that in a system containing
an undefined number of charged particles (i.e. , a super-
position of states of difFerent total charge), a new
Hermitian operator, essentially an angle variable, can
be introduced, which is conjugate to the charge density
and which may give a meaning to the gauge. Such
states have actually been used in connection with

recent theories of superconductivity and superQuidity12
and we shall show their relation to this problem in more
detail.
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The formula given by Moliere for the scattering cross section of a charged particle by an atom, on which
has been based the formula for the "screening angle" x in his theory of multiple scattering, has been
examined and found to contain an inconsistent approximation in all orders of the parameter n~= sZ/137p
except the lowest (the first Born approximation). In the present work, the correct expression of Dalitz is
used for the single-scattering cross section of a relativistic Dirac particle by a screened atomic field up to
the second Born approximation. It is found that the effect of the deviation from the first Born approximation
on the screening angle is much smaller than Moliere's expression for this quantity would lead one to believe.
This is so because the deviation from the first Born approximation is very small at the small angles that go
into the definition of the screening angle. In Moliere s work, all the effect of the deviation from the erst
Born approximation on the distribution function f(0) for multiple scattering is contained in the quantity 8
which depends only on x . In the present work, it is shown that in a consistent treatment of terms of various
orders in nr, there exist additional terms of order sZ/137 in the distribution function. These terms, which
represent the second Born approximation, become important at large angles. Calculations have been
carried out for the scattering of 15.6-Mev electrons by Au and Be.The 1/e widths of the distribution function
obtained are in good agreement with the experimental result of Hanson et al. , whereas Moliere's theory
gives too great a width compared with the experimental value in the case of Be.

I. INTRODUCTION

'HE theory of scattering of fast charged particles
by atoms is of importance for the analysis of

such experimental results as the scattering of high-
energy mesons and electrons in going through sheets
of matter. An "exact" theory of multiple scattering has
been given by Goudsmit and Saunderson. ' Its applica-
tion to a specific scattering problem invokes the knowl-
edge of the law of single scattering by an isolated atom.
In a paper in 1947, Moliere' gives a, (nonrelativistic)
formula for the scattering of a fast charged particle by
a screened Coulomb field, in which an approximation
higher than the usual first Born approximation is
attempted. In a second paper Moliere' gives a theory
of multiple scattering which has later been shown by

*National Research Council Postdoctorate Fellows.' S.A. Goudsmit and J.L. Saunderson, Phys. Rev. 57, 24 (1940),
and 58, 36 (1940).

2 G. Moliere, Z. Naturforsch. 2a, 133 (1947).' G. Moliere, Z. Naturforsch. 3a, 78 (1948).

Bethe4 to be obtainable from the theory of Goudsmit
and Saunderson by making certain approximations.
For the single-scattering law to be used in the theory of
multiple scattering, Moliere uses the result he obtained
in his earlier paper. '

Hanson et al. ' have measured the scattering of 15.6-
Mev electrons by gold and beryllium foils and compared
their experimental results with those calculated accord-
ing to Moliere's theory. The calculated "1/e width" of
the distribution has been found to be in excellent agree-
ment with the observed value in the case of gold, but is
somewhat too large in the case of beryllium.

In the case of the scattering of p, mesons (in cosmic
rays) by matter, the rather scanty data' (for large
scattering angles) seem to be in agreement with
i&moliere's theory. Here, for high enough energies of the

' H. A. Bethe, Phys. Rev. 89, 1256 (1953).' Hanson, Lanzl, Lyman, and Scott, Phys. Rev. 84, 634 (1951).
6 George, Redding, and Trent, Proc. Phys. Soc. (London) A66,

533 (1953);I. B. McDiarmid, Phil. Mag. 45, 933 (1954); 46, 1/7
(1955).


