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Elastic scattering of electrons from nuclei is influenced by the possibility of virtual transitions to excited
nuclear states in intermediate states. Such dispersive corrections to electron-deuteron elastic scattering
are calculated in second order Born approximation for incident electron energies from 200 Mev to 500 Mev
for various values of the momentum transfer. The static second-order Born formulas are also evaluated.
Similar, but less accurate, calculations are carried out for He4, C'2, and some heavier elements. These
results are used to find small corrections to nuclear radii obtained from an analysis of the Stanford experi-
ments.

Dispersive effects on the energy level shifts in bound s states of hydrogenic atoms are also calculated,
using second-order perturbation theory for the deviation of the nuclear charge distribution from a point
charge. These small shifts are evaluated for deuterium and He4 and, less accurately, for other nuclei with
Z(50.

I. INTRODUCTION
' PROBLEMS involving Coulomb interactions be-

tween electrons and nuclei have reached a stage
of considerable experimental sophistication. Electron
scattering has been developed into an increasingly
delicate instrument by the Stanford researchers, ' and
the energy of low-lying bound states in certain atoms
has been determined with amazing accuracy following
the original work of Lamb. '

The interpretation of these experiments has been
based on a picture of the nucleus as a static charge
cloud. ' The Stanford workers have determined electron

scattering from such a model with almost infinite

accuracy, using a phase-shift analysis and numerical

techniques, and the "nuclear size" correction to the
Lamb shift has also used a static picture of the nucleus. '

In view of the importance of electron scattering in

directly measuring the deuteron wave function and the

charge distribution of heavier elements, and in view of

the continuing interest in the Lamb shift, it is of
interest to examine these phenomena —elastic scattering
and Lamb shift —for the effects of virtual nuclear states
other than the ground state.

The present work examines accurately electron-

nucleus elastic scattering in second Born approximation,

and the shift of 2S levels due to nuclear structure in

second order perturbation theory. In both cases the

formulation contains a sum over possible intermediate

states of the nucleus. When this intermediate state is
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not the ground state, we have the contribution from
effects ignored in state pictures of the nucleus. These
are termed dispersive effects, and have previously been
the subject only of qualitative evaluation. 4 Here we
will discuss, in Sec. II, a method for dealing accurately
with the sum over intermediate states in a semi-

numerical fashion, and use this method to derive cross
sections for electron-deuteron scattering in first and
second Born approximation at energies from 200 Mev
to 500 Mev for large momentum change, and for
electron scattering from other elements (He', C", Ca4',

Bi'") at fewer combinations of energy and angle. A

similar method for the bound state problem is discussed
and used in Sec. III to evaluate the shift in 25 levels

due to nuclear size and structure for all nuclei up to
Z= 50.

A discussion of the results from electron scattering,
their interpretation in terms of nuclear sizes, and their
significance for earlier calculations of the bound state
problem will be presented in Sec. IV.

II. ELECTRON SCATTERING

The Born approximation for Coulomb scattering
from a point charge, to second order, has been clearly
and correctly expounded by Dalitz, ' and the formalism

in his paper can be extended' to include scattering from

an extended charge source or from a real nucleus

containing nucleons which may occupy virtual states
other than the ground state during the interaction. In
terms of incoming and scattered electrons of momentum

p& and p2, intermediate states of plane wave electrons
of momentum p, the electron mass m, and intermediate
nuclear states P„, the amplitude for electron scattering

'L. I. Schiff, Phys. Rev. 98, 756 (1955); H. S. Valk and B. J.
Malenka, Phys. Rev. 104, 800 (1956).' R. Dalitz, Proc. Roy. Soc. London 206, 509 (1951).

'N. A. Krall, Ph. D. thesis, Cornell University, 1959 (unpub-
lished). This work contains complete details concerning methods
and results indicated here.
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with momentum change if= Pp
—pi is, with P= p„v",

M= —ie9(&,—&,)Sir'&'pp, F(q)/q' e'(—2or') ' '

O'P

X&(p4 —oi)(Po —P) '(P —Pi) 'E.(e'" "')o

I

The remainder is then evaluated, using appropriate
approximations, and will, of course, give its biggest
contribution from the region p near pp. To see best the
approximations used to get the remainder, we restate
the problem in terms of the cross sections, after spin
sums have been taken, obtainable in a well-known
fashion from the amplitude M,

X(e'(y—») "),(F„—Ep+p —m) '7 Ni. (1) do/dO, =
t cos'(8/2) je'F q '+(csc(t)/2) —1)e 7rF'q '

—2eom'For 'q 'E. (4)

The matrix elements (e'P'R)p„are taken between the
nucleon ground state )IP0 and the state )p„, and the
scattering has been derived, for simplicity, from the
potential due to a single nucleon whose coordinate is

R, U= —e'/~r —R~. The restriction to one nucleon is
lifted for complex nuclei by summing over protons,
U= —P; e'tr —R, ~; for the deuteron the one-nucleon
formula, is, of course, the proper formulation. The
expression (1) is exact in the first two terms of the
Born expansion retained, and the usual notation
F(q)=—(e"")00 has been used to define the nuclear
form factor.

The problem in evaluating (1) centers on evaluating
the sum over nuclear states. A simple means of dealing
with the sum would be to ignore E„—E0 in the denomi-

nator, and use closure:

p (E Ep+p —m)
—&(e~iyo—y) R)0 (e(iy—PO )

0 —=(p —m) '(e*" '" ")oo (2)

where the first term is the first Born approximation
result, the second term is the contribution from the
crude approximation represented by (2), and the third
term is the remainder —the diRerence between the
exact second Born statement and the crude approxi-
mation stated in (2). Writing Ep„=E„Ep, w—e ha—ve

&=( p~/2~)y&'p(p p) '(p —pl) '2 (p' p') '—
n 1

(ppo p Ep +2mEO ) (e& P2 y )

X(e' P P' '")„0{E0„(2m—Eo )(pi+Po)

(p +p +2p)(m) '+4Eo-(Po' —P')) (5)

E=—(—pp/2m) f(p) dp;

—= Cauchy principal value. (6)

This approximation has been used often before, 4 and is
based on the following considerations. If there is
approximate momentum balance in the intermediate
state, the nucleon momentum will be near y, then
E„p'/M, where M is the nucleon mass, compared to
the electron energy 0 of about ppc; then E„/pp ppc/Mc',
a small number for electrons of 200 Mev/c. This implies
that E„—E0 may be ignored in the denominator for
most electron intermediate states. However, when

p= p, , the electron part of the denominator vanishes,
and it is clear that neglecting E„—E0 in the denomi-
nator is a bad approximation there. The integral over

p depends strongly on the region p near pp, so while it
is clear why (2) might be used, for simplicity, to give a
first approximation, this approximation gives only a
very qualitative result. The procedure used in the
present quantitative treatment is to write

P (E E +.P m)
—1(ei(yo—P) R) (ei(P—Pl) R)

0

As indicated in Eq. (6), we shall carry out the integra-
tion over the absolute value, p, of the electron momen-
tum after the other operations. It should be noted that
in the cross section (4) we have only retained terms of
order e', the interference terms between the first and
second Born amplitudes, besides the pure first-order
term in e'. The terms in e' which we have omitted, the
square of the second Born amplitude, should be smaller

than our terms in e' by a factor of the order of Z/137
except at angles where the form factor F is unusually

small.
To evaluate R we divide the integration over p into

three regions: (i) p large enough (p&1.05pp) so that
we can ignore Ep„ in the denominator, (ii) p small

enough (p&0.95pp) that we can also ignore Ep„ in the
denominator, and (iii) p p' —p' small enough that it may
be ignored in the denominator, retaining only the terms
in E0„.Using this division, the operator representation
E (A)p =(AHp)p, and the sum rule

=Pf(P —m)
—' —(E —Eo) (P—m) '(E —F.o

0 gf(E )(A)0 (8) 0=(A f(H0)B)00,
0

= (p —m) 'F(q)+remainder. (3) we can write the integrand of (6) in the three regions
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of p as follows:

I p —
Pol &0 o5Po:

f(P)= «P'(Po' —P') '(p —p) '(p —yt) '

o't)

f 'i

X(e"y' y '
f (Ho —Eo)(2m —Ho+Eo)(ps+pt)

.(ys+yt+2y)tty '+4(Ho —Eo)(Po' —P'))

Xe" '"'")oo' (7) 4-

pp(1+~ /2)

f(p) =& ' -dp «P'(p+yt)
yp(1—b, /2)

(y+y+2y)(p' —P) '(P —P) '(p —p) '

X [(ero R) (e (ys—~y) R) (etly —yl}.R) ] (g)

The reason the regions in which we may neglect Eo„
in the denominator extend so close to p=po is as
mentioned earlier, that the important nuclear inter-
mediate states are those where approximate momentum
balance is achieved, and Eo (poc)'/Mc' 40 Mev for
po 200 Mev/c. Then p' —po' is five times as big as
(E„—Eo)' even for p=1.05po. The matrix elements
(e"y' y'")o„were also examined explicitly, and con-
6rmed the intuitive feeling that the important nucleon
states' were actually those with E„&50 Mev. The
matrix elements in (7) are solved by simply deducing
the commutation relations between e"& I' " and
Ho= —&'(R)/2M+ V (R); the resulting matrix element
is then an expectation value over the ground-state wave
function of the nucleus considered. The angular inte-
grations in this erst integral are involved but standard;
then in this region f(p) reduces to a combination of
analytic expressions multiplying matrix elements such
as (e'o'"2i cosedV/dR)oo, which depend on the nuclear
ground-state wave function. and on the assumed nuclear
potential, and which may be evaluated analytically in
simple cases, such as a Hulthen deuteron, or by high-
speed electronic comput: er in more complicated cases.

In the central region p-po, the matrix elements for
the selected nuclear ground state give complicated
functions of (y —pt) and (ps —y), and the angular
integration dQ was done on the IBM 650 computer for
all cases considered. These regions were joined by a
smooth curve and R was evaluated by numerically
integrating under the curve.

The major error in this procedure comes in joining
the regions ~p

—po~)005po with the region p-p, .

I I I

0.8Po 0.9Po Po I IPO

P

I.2po

Fro. 1, f(p) in arbitrary units ys p, from ft.'= (—e/2m) &f(p)dp,
showing the joining of regions

~ p —ps~ )0.05ps and the region
p= ps, for electron-deuteron scattering, with ps=400 Mev/c, and
q=2.2 f '.

Figure 1 gives a typica, l demonstration of what f(p)
generally looks l.ike. It is clear that the big contribution
to E comes from electron intermediate momenta near
p„especially

~ p —
po~ &1.2po. An error of about 10%

comes from this joining of the two regions. This
remainder itself is generally larger than, or at least
comparable in size to, the crude approximation (2).

It is worth noting here that the remainder, containing
containing Eo„as a factor in the numerator, contains
only dispersive effects (intermediate states other than
the ground state), while the crude approximation
contains a static part (II=0) as well. To obtain the
part of the second Born approximation due only to
dispersion (the part ignored in a static charge picture
of the nucleus), we write the second Born approximation
to scattering from a static charge and subtract it from
the total second Born formulation just described:

(dtr/dQ)static charge= [cos'(ff/2)]e4F'tI ' 2eoyyy'Frr 'q —'S,

S= d'p F(ps —p)F(y —pt)(po'-—p'+it) '

X (ps —y)
—'(p —pt)

—'[2ps'ytt —' cos'(0/2)

+Porn 'p (p+yt)] (~)

This, integral is very similar to the one encountered
in f(p) for p po, and. was evaluated numerically in the
same fashion on the IBM 650.

For the case pgpp, the denominator of (6) vanishes at large
E~. The principal value of the sum over this singularity gave a
contribution an order of magnitude smaller than the sum over
the regions where E could be safely ignored. The integrations
over such singularities for the second Born amplitude also lead to
terms involving residues at each pole but these terms are purely
imaginary and do not contribute to the erst-second Born inter-
ference terms of order e' which we retain in our Eq. (4) for the
cross section.

Deuteron —Electron Scattering

For the deuteron the Hulthen wave function and
potential was used to evaluate F(q) and the nuclear
matrix elements appearing in f(p). The calculation was
done at 7 combinations of energy and angle, with
reSultS fOr tT1q 02' Odispersive~ Ostaticr Ocrude~ and Oremainder
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TABLE I. Results of the electron-deuteron scattering calcu-
lation, where (ds./dQ)t ——first Born approximation in cms/sterad
(ds./dQ)s=second Born approximation= (de/dQ)crude+{de'/dQ)z
= {de/dQ)static+ (ds/dQ)dispersive. P is the deuteron form factor,
and ds/dQ=S&&&10 ss cm'/sterad.

Po
(Mev/c) (f ') S1 Scrude Sz S2 Sst a t ie Sd ispersi ve

188 1.0 134 1.08 —2.04 —0.96 0.13 —1.1
1.35 29.2 0.67 —0.061 0.054 —0.095 0.15

400 1.0 690 1.69 —11.3 —7.8 0.22 —8.0
1,35 243 1.36 —5.6 —4.3 —0.66 —3.6
2.6 11.3 0.101 —0.46 —0.36 0.12 —0.49

500 1.35 380 1.82 —9.7 —7.8 —1.6 —6.2
2.6 22.6 0.174 —1.0 —1.0 0.05 —1.1

listed in Table I. The exact choice of model and wave
function parameters must be of little importance in
present application of this method, since this is such a
small correction. A partial repeat of the calculation
using a square-well nuclear potential indicates a change
in as of about 10%%uq.

Other Elements

P(E„—Eo+P—m) '(P exp(iA R,))o„(gexp(iB Ri)„o
0 l

=Z g(E —Eo+P—m)
—'(exp(iA R))o„

0

X(exp(iB ~ R))„o+Z(Z—1)(p —m)

X(exp(i AtR))oo(exp(iB R))oo (10)

The shell model was used to apply the formalism to
complex nuclei, after extending it to include more than
one nucleon. This extension was accomplished by the
replacement, in formula (1),

(exp(iA R))o„(exp(iB R))„o~
(P~' exp(iA' R '))o (P[ exp(iB ' Ri)) o.

For states e/0, if only single-particle excited states
are considered, ' the excited nucleon must be the same
nucleon in both matrix elements, and

(P, exp(iA R,))o„(gt exp(iB Ri))„o
=P,(e xp(i AR, ))o„(exp(iB R,))„o

=Z(exp(iA R))o (exp(iB R))„o.

For the ground state, independent nucleons may appear
in either matrix element, and a term appears here that
was not present for the deuteron:

mentioned for the deuteron case. There are two diGer-
ences between the complex nucleus calculation and the
deuteron calculation. First the ground-state wave
functions —and potential —are chosen differently, and
secondly, the static second Born contribution exhibits
a Z' dependance, compared with a Z dependance for
the dispersive part. The latter feature, of course, is
concealed in the deuteron calculation.

In Table II we list cross sections calculated from this
formalism, at several angles and energies for He4 and
C" and at fewer points for heavy nuclei Ca40 and Bi"'
The last two were included to exhibit the eGect of the
extra power of Z in the static part, namely that an
accurate static charge calculation for heavy nuclei
contains only completely negligible errors (fractions of
a percent) due to ignoring dispersive effects. Table II
lists o 1, 0 2 Odispersive~ and 0 static along with other cross
sections. The term in Z(Z —1), which did not appear in
the deuteron calculation, is termed the cross term, 0-,~.

III. NUCLEAR STRUCTURE AND THE LAMB SHIFT

The problem of determining the energy levels of
bound atomic S states is formulated in perturbation
theory, using Vo ———Zes/r as the unperturbed potential,
and Vi ——P;—e'/~ r —R, ~+Ze'/r as the perturbation,
with R; the displacement of the ith proton, r the
displacement of the electron, and Z the nuclear charge;

so+/2Et+/2E2, static+~E2, dispersive j

e0 is the energy level of a point-nucleus atom. The
first-order energy shift, ftEt=(V2)oo eo(ZRo/tio)2, is
evaluated in other places, ' where E0' is the mean
squared radius of the nucleus and a0 is the Bohr radius.
E2, t t' eo(ZEo/t2o)', as can be demonstrated' by
studying the Schrodinger diGerential equation. ' The
smallness of the binding energy for the deuteron results
in a larger value for AE2 d;,p„„,than might have been
expected. "From perturbation theory, then, writing go
as the unperturbed Coulomb wave function and using
plane waves (22r) le'P '" for the intermediate-state
electrons (it will be shown that practically all the
contributions to this eGect comes from relativistic
intermediate states, allowing the Coulomb force to be
ignored in those states), we have

AE2, dispersive = i~d rd'r' I d'P $o(r)Po*(r') (22r)

The first term is identical with the deuteron term, and
is handled identically, separating it into a crude
approximation a,nd a remainder. The second term is
identical with the expression for the static second Born
approximation, except for the Z(Z —1) factor, as

Excited states corresponding to collective motions appear to
have little e6ect on the results. This was checked by studying a
liquid-drop picture adjusted to fit the giant resonances.

Xe'p i' "& P(e'/~r —R~)o„(e'/~r' —R~) o

1

XLE„—Eo+.(p) —so3-'. (12)
' More explicitly, DEt ——(4/3n') (ZRo/ao)sso for the nS state in

a hydrogenic atom. For a hollow-shell nucleus (constant potential
inside), an explicit .evaluation gives d,E2, 8(gtjq= (2ZEp/5a0)DEI
to lowest order in powers of R0/a0.' Our thanks are due to Professor N. Kroll, who first pointed
out in a disCussion that QE2, dispersive might be large.
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TAnLE lI. Result of electron-heavy nucleus scattering calculation, with (ds/dQ)r=first Born approximation, (do/dQ)s second Born

approximation, = (do/dQ)static+ (ds'/dQ) dispersive = (do'/dQ)crude+ (dr/dQ)remsinrler+ (do'/dQ)cross term, (do'/dQ)cross term = L(Z —1)/Z j
X (da/dQ)static, and do./dQ=SX10 ss cms/sterad.

He4

C12

Ca40

j209

po

188 Mev/c

400 Mev/c

188 Mev/c

400 Mev/c

188 Mev/c

188 Mev/c

0.62
1.34
1.39
2.2

0.62
0.98
1.34
1.39
2.2

0.62
0.98
1.34

0.62
0.98
1.34

Si

33.7
0.26
1.90
0.019

185
7.7
0.22
1.2

35X10 '

855
4.5
0.5

1570
6

14X10 '

Smude

0.18
2X10 '
0.01
1.5X10 4

1.05
0.06
2X10 '
0.006
2.6X10 4

4.8
0.035
5X10 4

9.0
0.005
0.1X10 6

—0.39—0.0088—0.067—0.001

—2.0—0.19—0.012—0.04
2X10 4

—10—0,11
0.0014

—14—0.023—2X 10-6

Sstatio

0.13—9X10 4

—0.011—6X10 4

3.8—0.11—0.026—0.11
3X10 4

—51—1.6
0.03

—630—2.1—6X10 '

Sdiep

—0.27—0.006—0.051—5.6X10 '

—1.6—0.12
—0.0055—0.022
+0.0004

—2.9
0.004
0.0004

2.4
0.007
5.5X10 '

S2

—0.14—0.007—0.062—0.0012

2.2—0.23—0.032—0.13
7X10 4

—54—1.6
0.03

—632—2.1—6X10

As before, the expectation values (Vi)p„are taken
between the nuclear ground state ltrp alld the nuclear
excited state rP„. E„refers to the nuclear energy, and e

refers to the electron energy. The sum is over all nuclear
states excluding the ground state, thus including only
effects due to dispersion in the sum.

The problem here takes on a more lucid aspect if the
Coulomb functions dp(r) are written in momentum

space. Then

lt p(r) = exp(is r)xp(s)d's,
aJ

Pp(r') = I exp(il r')Xp(l)d'l,

f
exp(iQ r)(—e'/lr —R )Idrs=4sr exp(iQ R)Q

—',.

To demonstrate the fact, stated earlier, that relativistic

p is the important region, we note that (14) may be
written as

, , ~ g(p)
DE2, disp =

I
$(0)

I

Se dp
J p

g(p) =-Z[E--E.+ (p)-"]-'( "")"(-'")...
P l

pp( (Ep/c) 2 Mev/c:

1 (1+ip. R)p„(1—ip R)„p
g(p) =—Z

p i (E,„—Ep)

=p p„(E„—Eo) '(R cosfi)p„',

p) 1/Rp 100 Mev/c:

AE2, dis = ~ 'OP'dsds(i2/7r)e'(y+s) '(y+1)

(13)
1/&o» p»Eo .'

«p) =p '[1—(e"")«']

XXo (s)Xp*(l)Q [E„—Ep+ e(p)—

oQ 1
g(p) =—g —(1+ip R)p.(1—ip R).o= s&o'.

X(exp[i(p+s) R])p„(exp[—i(p+l) R]) p.

Anticipating again that relativistic values of p, the
intermediate-state electron momentum, are the im-

portant ones, we may clearly neglect s and / where they
appear in combination with p, since Xp(s) decreases
very rapidly for s above Z times the Bohr momentum
A/ap rr/2 Mev/c, rr being the fine structure constant.
We may also note that fdssdsl Xp(s)Xp*(l) = lite(r) l,=p'
—= ly(0) I', and write finally

~E, "=ldo(0)l'(2/) ' d'pp '

This indicates that g(p) is very small at nonrelativ-
istic values of p, rises to a constant value Eps/3 between
the characteristic energies Ep and 1/Ep, and falls off

rapidly for higher values. One approximation, then,
used to get order-of-magnitude results for general
nuclei, is

pl/Bs (g 2)
»2, e"= le(0) I'8e'

I II
—ldp( 3 ) &p)

prosy lr 1/Roy=S"ly(O) I'I I lnl I. (16)(E, )
For general nuclei this must be summed over all

XQ[E —Ep+e(p) —ep] '(e'p'R)p„(e 'p'R)„o. (14) protons. This was done for general Z~&50, and the
results are plotted in Fig. 2.
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helium for a 25 level. .

80-

70-

„60-

M 50-

~He

DEg, d;,p(helium) =0.16 Mc/sec,

DEt —7.08 —Mc/sec,

AE= DEt+DE2 ——7.2 Mc/sec
+0.7 Mc/sec.

The error comes from the present experimental error in
determining the nuclear radius Ep.

IV. DISCUSSION OF RESULTS40-

e Lr/So- e" "'
/

He4/

pp
0 2 4 6 8

z ----=
IO I2

Fro. 2. M=—36E2, disp/Ikl0l
~

Eeee es Z for Z (10. For ele-
ments Na to Ca, M=(11Z—26); for elements Sc to Sn, M
= (12Z—56).

To obtain a more accurate value for the deuteron, we
note that (RcosH)0 =Dp is a—well-known matrix ele-

ment, " and g (p) = (1/p) p i"(E„—Eo+p) '(R cosset) o.'p'
can be evaluated explicitly to get g(p) for regions
p«100 Mev/c. For p))Eo/c 2 Mev/c, g(p)= (1/p')
XI 1—(e'p'")oo']. Then g(p) can be evaluated directly
in the two overlapping regions of p, and DE2, d'p
obtained by a simple numerical integration. The result
for this accurate calculation is, collecting other results
for completeness, for a 25 level,

aE2 d;,p«ei e=0 20c'lp(0) I' fermi/ft'rev

=2.9X10 "co=0.02 Mc/sec,

AE2 „„;,——0.001 Mc/sec,

DEt ——(2m/3)e'Ro IP(0)
DE= E co=0.88 Mc/sec. —

(17)

g(Eo) Ro'/9, g(1/4Ro) 0.8(Rp'/3), g(1/Ro) Ro'/3,

as an indication of the reliability of approximation
(16). The logarithmic dependence on the limits is
clearly a saving feature of the approximation.

Assuming that the correction required to bring the
approximate and accurate calculations into agreement
is a linear addition to ln(1/RoEo) in (16), and is inde-
pendent of Z, we may use the deuteron calculation to
obtain a slightly improved value for AE2, d' p for

Comparing with the earlier, more approximate pro-
cedure, we note that

DE2 (approximate) = (1—0.1)DE2 (accurate).

The deuteron calculation also yields the information
that

deuteron
helium
carbon

AE0 (in fermis)
—0.010—0.08—0.05

R0 (in fermis)
2.10~0.04
1.53
2.32

Table I and Table II indicate that the contribution to
the cross section due to dispersion is generally negative,
and between a few percent and ten percent for the light
elements. The tabulated results for the heavier elements
indicate, of course, the breakdown of the Born approxi-
mation, and the simultaneous decrease in the impor-
tance of dispersion. The contribution from the so-called
remainder is generally larger than the contribution from
the crude approximation (2). The unusual largeness of
the dispersive contribution for the deuteron, compared
with the static terms in the same order, which was
observed in the calculation of energy shift for bound
states, is rejected also in the scattering calculations.
The ratio of static to dispersive contributions to
second-order perturbation theory is much smaller for
scattering from the deuteron than from heavier ele-
ments, even when the extra factor of Z occurring in
the static part is divided out.

The ideal way to use the cross sections. derived here
would be to subtract them from the experimental
values, and fit the difference with an appropriate static
model, using the Stanford partial-wave techniques.
Some summary of the cross sections may be made by
indicating the change in Ep deduced from experiment
when dispersive eGects are included. We may write

Fo(q) as the form factor deduced from experiment using
a first Born approach to scattering, and Fi(i7) as the
form factor deduced using erst and second Born
approximation. Then, for the deuteron, with the
Hulthen wave function Ã(c " e"")/r—, we have

—v~f 3 =V2f
oexperiment=& 0 (tl)trpoint charge=x 1 (tt)trpoint+o 2q

tr2/trpointq

~F'=L7.4F—63(tt'+0.86) '(q'+10) 'j~tr
+L0.44—122(q'+30) t(q'+9) 'j~p

~Ro'= —20 0~~—1 4~@.

A similar approach was used for the shell model on He4

and C" with the results

"J.M. Blatt and V. F. greisskopf, Theoretica) ~Nc)ear physics The exPerimental errors will soon be reduced.

(John YViley and Sons, Inc. , New York, 1952). It is clear here that the scattering calculation, giving
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a correction to Eo, has an influence on the first-order
change in the bound-state energy, AE&, which was
seen to depend on Eo'.

It should be pointed out, in conclusion, that the
approximations used here in solving the second Born

approximation are based on the fact that in the region
of electron energy considered, the nucleons remain
nonrelativistic. For incoming electrons with energies of
the order of the nucleon rest mass energy, or more, this
method will fail.
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Anticommutator for a Nonlinear Field Theory
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The anticommutator for the Thirring model is computed by ordering the operator lf (x)it *(x') and evaluat-
ing its renormalized vacuum expectation value. The infrared divergence is defined by introducing an ad hoc
cutofF. The fInal expression does not agree with the approximations obtained by using perturbation theory
or by using expansion over intermediate states (with the same cutoB). It is also found that Heisenberg' s
procedures cannot be applied to this two-dimensional problem.

''N recent years, there has been much discussion
~ - concerning the form of the anticommutator for
bare-particle spinor operators which satisfy nonlinear
equations of motion such as'

2V"~A+2g (A)4 =o

It has been suggested' that

resembles a classical solution of Eq. (1) modified by the
addition of a mass term near the light cone, and that
(in four dimensions) it is "e6'ectiveiy" more regular in
this region than S s(xl, x2), the corresponding free-field
function. The soluble two-dimensional Thirring model
allows one to check on the first of these speculations for
a nonlinear theory, but since g is dimensionless in
Thirring's case and I gj =L ' in Heisenberg' s, the actual
forms of S'(x) in the two problems cannot be directly
compared.

At first sight it would seem that the calcu-
lation is trivial for the two-dimensional example.
Since no lengths are present, it has been pointed
out4 that the most general form for Lehmann's spectral
function' is p(m)=a(g)8(m)+b(g) ImI ', giving S'(x)
=S(x)I a(g)+b(g)Ij, I=PJog dx/x(1 —x). Perturba-
tion theory and expansion over intermediate states also
yield this expression, " which does not resemble a
c-number solution of Eq. (1). However, the infrared

divergence in J leads to an ill-defined space-time
dependence for S'. If one tries to specify the divergent
term precisely. by introducing a cutoff, k;„=E, the
dimensional argument fails and singular contributions
to p(m) such as m ')&sin(E/m), etc. , cannot be excluded,
even as E—4.

In order to resolve any ambiguity, it is desirable to
write the operator lt, (x)f, *(x') as an ordered functional
of the free-field operators )f), and g, *, as in Glaser's
treatmentr for P, . This is done in Secs. II, III. In Sec.
IV, the renormalized vacuum expectation value is
computed and -a "covariant" infrared cuto6 is intro-
duced. The result is

S12 ($1)fl ) X2)f2)

=s12(t)1—v2) exp( I gg'/(22r)'j In(L/ I»—u2I ))
ul, u2(&L, (2)

where 2 =x—f, u= x+f, g'= g+22r22, so that
I
g'/22r

I (1,
and L is a constant (with dimension of length)
which transforms as L'=yL(1 P) under a Loren—tz
transformation.

The functional dependence of Eq. (2) does not agree
with the predictions of perturbation theory (there is, in

fact, an essential singularity at u/L=O) or of the inter-
mediate state expansion. Furthermore, it is shown in the
last section that Heisenberg's techniques cannot be
applied to this two-dimensional example.

* U. S. National Science Foundation Post-doctoral Fellow on
leave from the University of Washington, Seattle, Washington.

' A=c=1.' W. Heisenberg, Revs. Modern Phys. 29, 269 (1957).' W. E. Thirring, Ann. Phys. 9, 91 (1958).' F. L. Scarf, Nuclear Phys. 11, 475 (1959).' H. Lehmann, Nuovo cimento II, 342 (1954).
"W. E. Thirring, Nuovo cimento 9, 1007 (1958).

In Thirring's two-component representation (yo& = i)rl,
y&" =)tl=o2), Eq. (1) becomes

r)pl/r)u= zgtP2 0'2/1) r)$2/r) v=. zgtj'1 flf2) (3)'

' V, Glaser, Nuovo cimento 9, 990 (1958),


