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Spin-Orbit Contributions to the H'-He' Magnetic Moments
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The contributions to the magnetic moments of the triton and He from the Signell-Marshak and Gammel-
Thaler phenomenological spin-orbit potentials have been calculated using the Pease and Feshbach wave
functions. The results indicate that the isotopic spin dependence of the spin-orbit potential should be of the
form (3+z; z;) and also that the spin-orbit potential contributions are too small by an order of magnitude
to account for the approximately 0.2 nm anomalies in the O' —He' magnetic moments.

I. INTRODUCTION

'HE success of the Signell-Marshak' and Gammel-
Thaler' phenomenological potentials in producing

theoretical agreement with the nucleon-nucleon scatter-
ing data, has led to application of these potentials to
various other nuclear problems. The potentials are still,
however, somewhat ambiguous, in particular, with
respect to the isotopic spin dependence of their spin-
orbit parts. Feshbach' has shown that both the Signell-
Marshak and Gammel-Thaler spin-orbit (S.O.) po-
tential terms in their original forms give rise to too large
a contribution to the magnetic moment of the deuteron,
and Sessler and Foley4 have pointed out a similar

difhculty in the hfs of deuterium. However, de Swart,
Marshak, and Signell' have shown that the scattering-
data agreement is relatively insensitive to the choice
of S.O. interaction in the singlet isotopic spin state
and therefore adjustment of this potential can be made
so as to yield no magnetic moment contribution in the
deuteron. They have proposed that the tail of their
S.O. potential be reversed in the singlet isotopic spin
state at a radial distance such that the integrated
contribution to the deuteron magnetic moment is zero.
Another procedure which maintains the agreement with

the scattering data' is to set the S.O. potential equal

to zero in this state.
A calculation of the S.O. potential contribution to the

magnetic moments of H' and He' can be expected to
help resolve the question of the nature of the isotopic

spin dependence, if, as in the deuteron, the contribution

from a non-isotopic-spin-dependent potential in the
singlet-isotopic-spin-state part of the ground state is

again too large. Then the diGerence between the radial

dependences of the deuteron and H' —He' wave

functions would make it unreasonable to expect that
the same choice made by de Swart, Marshak, and

Signell' for the deuteron would cause the magnetic
moment contribution to vanish in all three nuclei. Thus,

' P. S. Signell and R. E. Marshak, Phys. Rev. 109, 1229 (1958).
' J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957).
s H. Feshbach, Phys. Rev. 107, 1626 (1957).
4 A. M. Sessler and H. M. Foley, Phys. Rev. 110, 995 (1958).
5de Swart, Marshak, and Signell, Nuovo cimento 6, 1189

(1957).
R. E. Marshak (private communication).

one might conclude that the isotopic spin dependence
is a multiplicative term in the potential.

In addition, there will be a magnetic moment
contribution from the triplet-isotopic-spin-state parts
of the H' and He' wave functions which must remain.
It would be of considerable interest to determine
whether these contributions have the character and
magnitude to account for the deviations of the H' and
He' magnetic moments from the Schmidt limits (or
odd-nucleon magnetic moment value). These deviations
are approximately 0.2 nuclear magneton in H' and
—0.2 nm in He'. Actually, Sachs and Schwinger7 have
shown that if the ground state has about 4%D state
then the magnetic moment deviations to be accounted
for are increased to approximately 0.25 nm in H' and
—0.25 nm in He'.

The usual explanation for these magnetic moment
deviations has been that they are due to magnetic
moment contributions arising from meson exchange
currents. ' The possible forms and magnitudes of these
exchange moments has been derived phenomeno-
logically' and it has been shown that they can give rise
to fairly large primarily isotropic contributions to the
deuteron photodisintegration cross section. " Such a
contribution would not be consistent with the calcu-
lations of deuteron photodisintegration by de Swart
and Marshak" based on the Signell-Marshak potential.
Their calculation accounts for the large experimentally
observed isotropy in the differential cross section
without including any exchange moment eR'ects. Thus
a calculation of the H' and He' moments indirectly
tests the consistency of these phenomenological
potentials.

Therefore, calculations of the phenomenological S.O.
potentials contributions to the magnetic moments ofI' and He' nuclei have been made using the Signell-
Marshak potentials and the Gammel-Thaler potential

' R. G. Sachs and J. Schwinger, Phys. Rev. 70, 41 (1946).
See J. M. Blatt and V. F. Weisskopf, Theoretica/ Nuclear

Physics (John Wiley and Sons, Inc. , New York, 1952), p. 252,
for references.' J. M. Berger and L. L. Foldy, Technical Report No. 18 of the
Nuclear Physics Laboratory, Case Institute of Technology,
Cleveland, 1952 (unpublished); also R. K. Osborn and L L.
Foldy, Phys. Rev. 79, 795 (1950); also R. G. Sachs, Phys. Rev.
74, 433 (1948)."J.M. Berger, Phys. Rev. 94, 1698 (1954)."J.J.de Swart and R. K. Marshak, Phys. Rev. 111,272 (1958).
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with the Pease and Feshbach" H' —He' wave functions.
The calculations were performed for both a non-
isotopic-spin-dependent S.O. potential and for the
isotopic spin dependence of 4(3+~; ~;) which vanishes
in the singlet state. These two forms exhaust the choices
consistent with charge independence since any other
suitable form may be obtained by a linear combination
of these two. Various other calculations were performed
to examine the effects of altering the potentials by
either inverting the tail or changing the range, and also
of altering the wave function. All of these additional
calculations were done only with the Signell-Marshak
potential.

In the following section a description of the calcu-
lations is given and in the final section the results are
presented and discussed. In the Appendix are given the
detailed integrals which were numerically evaluated.

II. CALCULATION

The spin-orbit potentials, V„,used in the calculations
are of the form

(b) the Gammel-Thaler potential, where

V(x) = V,s-./x,

and x= yr;;) y =3.7X10+"cm ', xp ——1.48, and Vp= 7300
Mev.

The wave function for the three-nucleon system that
was used in the calculations was that obtained by
Pease and Feshbach using a variational method for
a noncentral Yukawa potential. This wave function
gave essenti. ally exact agreement with the triton
binding energy, but a discrepancy of 25% in the
Coulomb energy in He'. The calculations were actually
performed with the fully antisymmetrized wave
function, which for the triton may be written as

+H $12'Vl'92$8+$282l2'93$1+4312l82l1$2) (4)

whereat 12, following the notation of Pease and Feshbach,
is given by

4'12 +slfsl+~ st's2+ [+D+P~D++ ( rl+ r2)+ D ]PD
+[+D'+P+ D'++ (rl+r2)+ D'0]QD'++ D "fD" (5)

V,.= V(x)-,'(L ST+TL.S), x& xp

=0, x(xp
(1) where

fs,=xs exp[ —
—2,X,(rl+r2+p)], i=1, 2

XD exPL 2I3(rl+r2+P)]

QD XD (rl —r2——) exP[—23 (rl+r2+P)],
fD" XD" (rl r2) exP[——2'lP (rl+r2+P)]

where

Xs= 6 '*[&(1)lj)(2)—Ij)(1)&(2)]&(3),

XD [rl ~13+r2 ~23]Xs

XD'= [rl +18 r2 +28]Xs

xD'' ——[3(131.rlX r2) (133.rlX r2)
—(sl e3)(rlXr2) (rlXr2)]xs,

or
TQ'=1

The resultant magnetic moment operator for the three-
nucleon system is and

S,l ——r;—[3(s,"r;)(a; r~)]—e,"e;,

L S=-,'(r;—r;)X(p;—p;) (~~+~;),
and r;, p;, and e, are the position vector, momentum
vector, and ordinary spin operator, respectively,
referring to the ith nucleon, and T is the isotopic spin
operator" which takes either of the two forms consistent
with charge independence:

T,;=—,'(3+~,"~,),

Vp d (exp( —ax))

xdxE x )
(3a)

and x=r;,/r„r;;= ~r;—r;~, a=2, r, is the a.-meson
Compton wavelength, Vp ——21 Mev, and xp ——0.37.

' R. L. Pease and H. Feshbach, Phys. Rev. 88, 945 (1952).
1' Blanchard, Avery, alld Sachs, Phys, Rev. 78, 292 (1950),

e
V(X)2([(~'+—~~) . (r'"r' r "r~) (&' &l)— —

'»=& 4c

—(r,—r,) (r,l'r, r, "r,) (a,, 0;—,)]T,,"—
+Hermitian conjugate), k = 1, 2, (2)

where the static magnetic field is in the s direction, e is
the charge of the proton, c is the speed of light, and v&

is the proton projection operator.
The primary calculations were done for V(x) given

by the following:

(a) the latest' Signell-Marshak potential, where

) g=0.9,
Xg= 1.8,

p =2.2)

p= 2.5)

or =2.8,

A ~g ——1.08,

A g2 ——3.01,
A D

——1.0,

AD ———1.29)

A gII =0,91)

A D+= 0.45,

AD += —0.136,

A Do= —0.27,

AD"= 0.20,

where g, is the neutron state isotopic spin wave function
for the ith particle, $ is the proton state, n(i) and P(i)
are the spin wave functions of particle i, and r~ is
the vector distance from particle 3 to particle 1, r2 is the
vector distance from particle 3 to particle 2, y is the
vector distance from particle 1 to particle 2, and the
unit of distance is r,=1.184)&10 "cm. The magnetic
moment operator must be rewritten in this coordinate
system, but it was more convenient to keep the two
coordinate systems until after the isotopic spin and spin
operations had been performed.

The values of the parameters used in the calculations
are:
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In calculating the expectation value of M~ with the
totally antisymmetrized ground state wave function,
it is necessary to consider only one of the three terms in
M corresponding to any single pair of the particles 1, 2,
and 3. The performance of the isotopic spin and spin
operations yields the following interesting results. The
expectation value of M with the isotopic spin depend-
ence T;,'= I~ (3+~,"~;), has the following properties:

(psIM'I&8&H'= (psIM'l0's&H

(&s IM'I &~&H"= —(&s [M'I ND&H*,

(6a)

(6b)

where both (6a) and (6b) hold for any of the 5-state
parts of the total wave function, and (6b) is also true
with P& replaced by Po or PD .

Another somewhat surprising result was that the
terms in M' corresponding to TL S in Eq. (1) do not
contribute at all to the matrix elements indicated in
(6a) and (6b). The symmetrized form was used in order
to have a Hermitian magnetic moment operator in
isotopic spin space. That this is required is readily seen
from Eq. (2) where the 7", which arises in L through
the replacement of p by p —~"(eA/e), does not commute
with T'. The matrix elements of M' between the strictly
D-state parts of the total wave function were not
calculated because of the small percentage of D state.
Their contributions would be expected to be small
compared to those arising from the S- and D-state
parts.

In the case of the expectation value of M', the purely
S-state terms do not vanish, and these contributions
are identical for H' and He'. That is

Q's
I
M'l0's&H'= (0's IM'l&s&H '&0

for any combination of Ps& an fs2. In this case no
further terms were calculated since the 5-state terms
will clearly dominate.

The six integrations over the center-of-mass co-
ordinates and the three angular variables may be done
quite simply, yielding the seven triple integrals for M'
and the two triple integrals for 3P that are given in
Appendix I. These integrals still exhibit the explicit
exponentials appearing in the wave functions. Also
given in Appendix I are the complete normalization
integrals after reduction to triple integrals. The triple
integrals can, in principle, be evaluated analytically;
however, the algebra involved is prohibitive. Therefore,
all of the integrals were evaluated numerically on the
IBM 704. Since high accuracy was not desired, the
integrals were evaluated to within one percent using
the trapezoidal rule over 50 points in each dimension,
with an interva, l 6=0.3. The accuracy was checked by
comparison to the analytic evaluation of the S-state
normalization integrals and by repeating parts of the
calculation using a smaller 0, and more points. The
results of the computations, expressed in nuclear
magnetons, are: (a) for the Signell-Marshak potential

given in (3a),

M' I= —M' ~=0.008 nm +10%)
M2H~ ——M'H, ~=1.11 nm &10%;

(ga)

and (b) for the Gammel-Thaler potential given in (3b),

M H8= —MIH, 3=0.004 nm ~ 1 Q%,

M'H, ~=M'HI=1. 35 nm &10%.
(8b)

III. DISCUSSION AND RESULTS

The results of the calculations described in Sec. II
together with the results of supplementary calculations
are summarized in Table I. The supplementary calcu-
lations were undertaken in order to determine the
degree of reliability of the conclusions drawn from cases
1 and 2, and are discussed below.

1. Cases 1 md Z.—These calculations of the S.M.
and G.T. spin-orbit potential magnetic moment
contributions are those described in detail above. From
the results for 3P we conclude that the isotopic spin
dependence T of the spin-orbit potential must be
essentially T= ~ (3+v,".~,) since the M' results are
two orders of magnitude too large. The alternative to
this conclusion is that the radial dependence of the
potential is diferent from that given above for the
isotopic spin singlet states of the nuclei, such that there
is a null contribution to the magnetic moment. This
could be accomplished by reversing the sign of a part
of the potential' to give cancellation in the integrals.
However, the same behavior is required in the deuteron
and it would seem to be fortuitous if the integrals of the
same function vanished when weighted in one case by
the wave function of the deuteron and in the other
case by the triton-He' wave function. It is likely that
hfs measurements4 can distinguish between these two
possibilities. It is worth noting tha, t either interpre-
tation appears consistent with the present 6t of the
scattering data. ' Cases 3 and 4 summarize two calcu-
lations bearing on this question.

The results for M' are interesting in that they have
the proper behavior to account for the magnetic
moment discrepancies but are unfortunately at least
an order of magnitude too small. Numerically, part of
the smallness of these terms is due to cancellations from
among the various D-state parts. Thus, it might be
hoped that a diferent wave function would yield
considerably different results. This question is examined
in cases 6—12. It appears unlikely that the results can
be appreciably changed. If that is the case it raises a
further question about the S.M. potential. The argu-
ment proceeds as follows. If the spin-orbit potential
contribution to the magnetic moment of H' and He'
is insufficient to account for the discrepancies in the
moments, then one must still resort to exchange
moments for this effect. Phenomenologically one can
construct exchange moments that will account for the
observed moments of the light nuclei; however, these
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TABLE I. Summary of the calculated results. "Wave function modi6cation" describes the changes made in the parameters of the
Pease and Feshbach wave function, and PD gives the percentage D state for the wave function used in each case. The magnetic moment
results are expressed in nuclear magnetgns. The accuracy of all calculated results is &10jo.

Case

9
10
11
12

S.O. potential

S.M.
G.T.

S.M. with tail reversed
at 1.4 fermi

Old S.M. with tail reversed
at 1.4 fermi

Old S.M. (a= 1, Vp =30
Mev, @0=0.15)

S.M.
S.M.
S.M.

S.M.
S.M.
S.M.
S.M.

Wave function
modification

None
None

None

None

None
) 1=1.4, Ag1=3.23

Ag) =2.0
Ag) =2.0, Ag)0= —0.135,

AD = —0.645
Ag)+= 1.35
AD0=0
AD =0

A~0=0, AL =0

M1HS = —M'He3
(nm)

0.008
0.004

0.008

0.007

0.007
0.010
0.029

0.041
0.030
0.024
0.027
0.039

M2H3 =M2H &

(nm)

1.1
1.4

0.39

0.78

1.2
2.2
1.0

0.9
0.9
1.0
1.1
1.0

PD

5%

25%
26'Fo
15%

7 Po
18%

exchange moments will, in general, also contribute in
the photodisintegration of the deuteron and primarily
to the isotropic part. This isotropic term contribution
to the total cross section has been estimated" to be
about 30 microbarns for photon energies above 20 Mev.
These contributions if added to the terms calculated
by de Swart and Marshak" from the S.M. potentials
would lead to a theoretical estimate of the isotropy of
the differential cross section of deuteron photodisinte-
gration that would be considerably larger than that
observed.

Z. Cases 3 amd 4.—3P as calculated has contributions
only from the singlet isotopic spin states. Therefore, to
test the degree to which cancellation is obtained in the
He' —H' case, these terms were calculated with the tail
of the S.M. spin-orbit potential reversed in sign for
distances greater than 1.4 fermis (1 fermi—=10 " cm).
This was the procedure adopted by de Swart, Marshak,
and Signell' to overcome the deuteron magnetic
moment difficulty using their original spin-orbit
potential. In case 3 we have used the newer S.M.S.O.
potential and in case 4 we have used the original
S.M.S.O. potential. The results in both cases are still
too large, although the possibility of this method, or
some variation, for obtaining satisfactory cancellation
of the deuteron, H', and He' moments is not necessarily
precluded.

3. Case 5.—In this case the calculations were made
using the older S.M.S.O. potential in which the range is
about twice and the core cutoff distance is about one-
half those of the current potential. The insensitivity
of the results to these changes together with the agree-
ment between cases 1 and 2 leads to the speculation
that any of the S.O. potentials yielding agreement with
the scattering data will yield essentially these same
magnetic moment results.

4. Case 6.—In this case, a part of the S sta, te of the
P.F. (Pease-Feshbach) wave function has been modified
by increasing the range by an amount approximately

equal to that of the hard-core radius, while keeping
the percentage D state fixed. This was done to com-
pensate for the fact that the P.F. wave function is
based on the Vukawa potential and therefore there is a
greater concentration of S state near the origin than
would be expected in a wave function derived from a
hard-core potential. Thus, one would expect a greater
S—D state overlap in the case of the hard-core potential,
and therefore a larger magnetic moment contribution.
The results reAect this effect but the smallness of the
change leads to the conclusion that even with a proper
hard-core wave function, this effect will not be sufficient
to obtain agreement with the magnetic moment data.

5. Cases 7—1Z.—As already noted, the smallness of
the results for 3P occurs partly through cancellations
among the contributions from the different D-state
terms in the wave function. It might therefore be
argued that a diGerent wave function with a different
distribution of the D-state terms might give a signifi-
cantly larger result. In order to obtain some insight into
this possibility, cases 7 through 12 were calculated. In
these calculations the D-state parts of the P.F. wave
function were arbitrarily altered in such a way as to
remove the cancellation between terms. In Table I the
column headed "Wave function modification" indicates
which of the wave function parameters were changed
and what new values were used. The column "I'D"
shows the percentage D state corresponding to the
modified wave function. It is seen from Table I that no
alteration chosen yielded a, result nearly large enough
to account for the magnetic moment discrepancy and
with the exception of case 11, all corresponded to much
too large a D-state probability. Such calculations as
these cannot, of course, be conclusive and it would be
desirable to recalculate these results with a wave
function derived from the new phenomenological po-
tentials. However, these results make it appear unlikely
that such a calculation will yield qualitatively different
results.
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APPENDIX

The expectation value of 3f'III is given by

MjHS= p A s, (ADI1,+AD+I2, +ADOI3i
6hc (4~%)

+AD'I4, +AD'+Io, +AD'OIoi+AD"I7;)) (A.1)
where

where

p ()'1+)2)

po V 12 (p) s &ii it'1+&2+P ) ppE;'= fydfy fglf'2
~0 4O ~ [ry—r2)

an(I

The normalization integral is given by

PQO t2,
00

I&''= fydfy f2df2
~o ~30 ")r1—n)

f(, ,p)V (p) &~~+)=8~ P I~,
N=l

(A.4)

where
Xexp[ n, ,(—rl+r2+p)]dp, (A.2)

f2= {r2gl+rlg2},

gl ——[(1/4) r24 —(5/12) r14+ (1/6) rlor22

+ (1/4) p + (1/6)ylop2 —(7/6) r2 p )
g2

——[(1/4)rl' —(5/12)r2'+ (1/6)rl'r2'

+ (1/4) p4+ (1/6)y22p2 —(7/6)ylop2]

fo= {(p+rl)gl+ (p+r2)g2},

f4= {(rl—p)go+(p —y2)g4},

go= [(1/4)r2' —(5/12)rl'+ (1/6)rl'r2'

+ (1/4) p —(7/6) rl p + (1/6)r2 p )
g =[(5/») '-(1/4)"-(1/4) '

—(1/6)rl'r2 + (7/6)y22p2 —(1/6)rl'p ]
f2= {y2(yl—p)go+rl(p —r2)g4},

f2= {(rl'—p')go+(p' —y2')g4},

f7—(rl —r2) [—(1/12)rlo+ (1/12)r22

+ (1/4) r14r2' —(1/4) rloy24

—(1/12) r 'p'+ (1/12) r22p4

+ (1/6) r14p' —(1/6) r24p').

0.'2i =&li)
Pl ——)11, J'i= ~si',

P2 2 ()11+)12)) F2—2A slA S2)

Po=)12,

A=9)

J'3= ~s2'

F4= 6[A D+pA D++ (r1+r2)A Do]'

X [rl'+r2'+rl'r2'(1 —3 cos'8)]

Fo {6[AD+p——AD++ (rl+r2)A Do)

X [AD'+ pA D"+(rl+r2)AD' ]
X (yl —y2) (yl' —r2') },

Fo —3[AD+ p——A D++ (rl+r2)A D ]
XAD (yl r2) (yl y2 )yl r2

X (1—cos'0),

F7 6[AD +pA——D ++ (rl+r2)AD 0]'

X (yl-y2)'[yl'+y2 yl y2

X (1—3 cos'0)],

Fs= —3{[AD +pAD "+(yl+r2)AD"]
XAD" (yl —y2)'(rP+y2 )yl y2'

X (1—cos'e) },
Fo= 6AD 2(yl y2)2„[r 2r22(1 cps20)]2

cps2g= (y12+y22 —p2)2/(4y12y 2)

G3i= Gyi)

n4, ——-', ()1,+7), P =l(p+ ),

A= 2 (P+~)

Qsi =CE4i)

P7= &&Q6i= Cl4i)

n7;———,
' ()1,+oi),

Also
4vr2e r 2»

p —~
M2H~ —— P P (As,As,K,,), (A.3)

3Ilc (@(0) '=1 i=l

~ (n+) 2)

and V»(p)= V(x) with r,;=p, r, =1.184X10 "cm, and I „d I y gy F (y y )s s77(rl+p2+p)-d

nl; 12 (——)1,+p) f,=[—1/6)r14 —(1/6)r 24+ (1/3) rior 22 o "o

+(1/2)p —yl p
—y2 p ] with


