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where
RIII=2”Au¢”, SHI=”V12¢”. (BIS)

In order to find an upper bound Crr corresponding to
Hii, let us note the following inequality :

gl f dmﬂmz‘p]%[ f drAfA, f]%, (B.14)

which can be proved using Schwartz’s inequality in a
slightly modified manner. From this it follows that
Cr1 may be chosen as

Cri=a2[bSu+1b7],

1 H
SII =5|: deAﬂPAzl//] .

The last term Hvy may be treated completely differ-
ently from the others, being proportional to the kinetic
energy K. In this case, the left-hand side of (3.1)
becomes

}deAnbAzf

(B.15)
where

(B.16)

TOICHIRO KINOSHITA

(1 -772) (¢07HV¢0) - (¢)HV¢)
=—312E[A—Ei(1—m)], (B.17)

where it is assumed that the trial function ¢ satisfies
the virial theorem. Since this is the case for y’s con-
sidered here,? the accuracy of (Y,Hwy) is obviously
just as good as that of the variational calculation of the
nonrelativistic energy eigenvalue A. We may therefore
regard (Yo,Hvo) as exactly known and omit it from
our considerations.
Collecting the results obtained, one may therefore
choose
Cra=a aR+bS5+ (9/2)ab+1b%], (B.18)
with
R=Ri+Rur+Ryv,
S= S+,

as an upper bound for the error in the expectation value
of the entire relativistic correction Hyer.

(B.19)

21 This is because our trial functions are always chosen so that
the upper bound X\ is minimized with respect to the scale parameter
k. For details, see Sec. 3 of reference 2.
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A classical theory of inelastic atomic collisions is given. It is shown that inelastic scattering, ionization,
excitation, and other interactions between charged particles and atoms are due to the Coulomb interaction
with atomic electrons and depend in a first approximation on their binding energy and momentum dis-
tribution. All cross sections can easily be calculated by means of differential cross sections o(AE) and
o(AE®) derived in the binary encounter approximation. Numerical calculations have been made for
several cases and are in very good agreement with the experimental results.

I. INTRODUCTION

HE difficulty of explaining on the basis of classical
mechanics some experimental facts observed in
atomic collisions and the sufficiently good results
obtained by wave mechanics have been viewed as
proof of the nonvalidity of classical mechanics for
processes involving the interaction of charged particles
with the atomic shell.!* Consequently the explanation
of all such processes has been sought by using wave
mechanics without investigating the possibilities of a
classical interpretation of these phenomena.” The
slowing down of charged particles in a medium”had
also been treated in this way. In a recent paper® the
author analyzed this process on the basis of classical
1H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic
Impact Phenomena (Clarendon Press, Oxford, 1952), p. 9.
2N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions (Clarendon Press, Oxford, 1949), second edition, pp. 200,

201.
3 M. Gryzifiski, Phys. Rev. 107, 1471 (1957).

mechanics and showed that the disagreement between
the first classical theories® and experiment, particu-
larly in the low-energy range, was the result of an
approximation which neglected the orbital motion of
the atomic electrons. It was noted that the effect of the
interactions in a Coulomb field varies as the fourth
power of the relative velocity.

The excellent agreement of the classical stopping
theory given by the author with experiment auto-
matically gave rise to the suggestion that other processes
occurring in atomic collisions, which, after all, make
up the stopping process, should be treated in this way.
Thus, employing the results of Chandrasekhar® and
Williamson and Chandrasekhar” on the collisions of
gravitational masses, we shall construct in the binary

4+ N. Bohr, Phil. Mag. 25, 10 (1913); 30, 581 (1913).

5. A. Bethe, Ann. Physik 5, 325 (1930).

6S. Chandrasekhar, Astrophys. J. 93, 285 (1941).

7S. Chandrasekhar and R. E. Williamson, Astrophys. J. 93,
308 (1941).
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encounter approximation a classical theory of inelastic
atomic collisions.

II. TRANSFER OF MOMENTUM AND SCATTERING
OF PARTICLES INTERACTING THROUGH
A COULOMB FIELD

Consider the encounter between particles with
charges ¢i1, ¢o, masses 7y, ms, and velocities vy and v,
respectively, interacting with each other through a
Coulomb field. All results are also valid for bodies
interacting through gravitation if we take g1=m/G
and ge=mxn/G, where G is the gravitational constant.

If we idealize each encounter as a two-body problem,
then the parameters defining such an encounter in
laboratory frame of reference are (see Fig. 1): (i) the
angle 6 between the two vectors vy and v, (ii) the
azimuthal angle ¢ referred to a system of coordinates
in which the gz-axis coincides with the direction of v,
(iii) the impact parameter D, and (iv) the angle ® be-
tween the orbital plane and the fundamental plane con-
taining the vectors vy and vo.

As a result of the encounter, the directions and the
magnitudes of vectors v, and v, are changed. These
changes, which can be measured experimentally, are
given by the relations

K,
hap =AE+——{Ey— E1+50105[ (m1—ms) cosd
1+

+ (my1+ms) sinf cos®x [} =0, (1)
1 1AE
el (2)
(14+AE/E,)} 2 E,

() Q) el @

where AE is the change in energy of particle 2, ¢ is the
change in the direction of velocity of particle 2, E; and
E, are the energies of particles 1 and 2 before the col-
lision, V= (v2+v52— 2v,v5 cosf)? is the relative velocity,
u is the reduced mass, and

¥=D(p/qig2)V?, Kip=4mums/(mi+mz)? (3)

hy=

Equations (1) and (2) have been derived using the
results of the Chandrsekhar and Williamson®? (Ap-
pendix).

"~ Now, the cross section for the encounter defined by
0, ¢, ®, and D is

1 de
—f(0)do X dpX—X2mDdD, Y]
47 2w

where f(f) is the relative angle distribution function
between vectors vy and v,. Integrating over the range
for which condition (1) is fulfilled, we obtain the cross
section for a collision in which particle 2 undergoes a
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particle 1

partice 2

F1G. 1. Space diagram for encounter between charged particles.
The fundamental plane is defined by the vectors v; and v repre-
senting the velocities of the two particles before the encounter.
The velocity of the mass center denoted by V,, remains constant
during the encounter. In a frame of reference in which the center
of gravity is at rest, the two particles describe hyperbolas or
parabolas in the orbital plane which, in general, is inclined at
some definite angle © to the fundamental plane.

change in energy AE,

a(AE)=£7—r f f f f f(e)a[hAE(e,@),D)j@

Xdbdo—2xDdD. (5)

2w

In a similar way, the cross section for the scattering of
particle 2 in the direction 6 with the change of energy
AE is

a(AE,zv)i [ [ [ [romeen
e

Xdodo—2xDdD. (6)

2T
Since

S
| ()|

where the sum is taken over all roots of the equation
¢(x)=0 in the interval a, b, we obtain, after integrating

[ rwtewin-x



376 MICHAL

Sis)

h-1

wis)

0 04 a5 08 10

[«E/E,]

7

2 04 a5 08 10 %
[e£/6]

Fi1G. 2. The loss of energy of impinging particle as the function

of the energies and masses of colliding particles and the collision
angle 6.

Eq. (5) over the angles ¢ and O,

)

f(6) x?4-1
—d 9. (7
Xff V4 0{4a2x2—[b—i—AE(l-{—xz)]?}%d(x) @

In the last expression we have introduced the symbols
@= pv19, sinb,
®
b=Ks[ Eo— E1+% (my—m2) 19, cosb .

Since the differential cross section must always be real,
the integration over x* must be performed over the
range for which

422 —[b+AE(1+22) 22> 0. 9)
As a result, we obtain

T 21
o =5(2) L
2 )12 AE2 61

f2 2
Q) Ea—-b)d(i. (10)
V¢ \AE

By Egs. (3) and (8), the condition (9) may be readily
rewritten:

Ki1oEq B,y my—ma (K12E1E2)%
— cos?—2 cosf
AE? m1+m2 AE
KE\Ey KiE1 KB,
( + — —1)>0. (1)
AE? AE AE

GRYZINSKI

Therefore the limits of integral (10) are

01,2= (wokx1) if —1<wokx:<1

=0 it 1<%tk (12) .
=T if "’1>x0:}:x11
where
my1—msa AE
XokX1=—

my+ms (K12E1E2) H

L))

Equation (11) gives us the maximum change in energy
of the colliding particles as a function of the angle
between their velocity vectors. Solving (11) with
respect to AE, we have

AE mi1—Mma K12E1 H Klz El

—= ( ) cosO———(l-——)

E2 M1+MQ E2 2 E2
2

mi—ms (K12E1\}
=+ { [ ) cosf
m1+me E,
KIZ El 2 KIZEI
+——(1 —-——) +
2 E, E,
The graph of the ratio AE/E, as a function of the angle

6 is given in Fig. 2. The maximum loss of energy of
particle 2 is

A-Emax = E2

sin20} . (19)

1 Mmi1— Mg Vo
if —1<~
2 m1+m2 n

(15)
= — K19Ey(1+401/v9) (1 —m101/m202)

1 mi1—Mme Vo
i —1>- ,
2 my+mq v

and the collision angles corresponding to AEm.x are
respectively,
1 Vo M1— Mo
Omax=arc cos(— —
2 vy my+my

), Omax=m.  (16)

In a similar way, by integrating Eq. (6) over ¢, 0,
and D, we obtain

27['(Q1QQ)2 (l—f—AE/Ez)% my 2 1
o(AEf) = ( ) -
(MQ'Z)22)2 E% m1+’i‘ﬂ2 ™
6)do
f 1) Can
£{4a’u1—[4a>+ (b+AEu;)*])
where

1AE AEN?
E=14-—— (1— ) cosd,
2 E, 2

w1=2(my/my+ms)2(V/v:)2(1/€).
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In the case of a particle 2 moving through the collec-
tion of particles 1 having an isotropic distribution of
velocities the angular distribution function is

F(6)= (sind) V /s,

and therefore the cross section for the encounter with
a change in energy AE is

(18)

2r(qug2)?y 1 AE
oc(AE)= s A—E—Z Az )g[A,)\:], (19)
g[A,ﬂ=m{ (—2A) (x))
my
s ( 1-;2)]
+| (1-2) s
Mo
my
(o1 / |ota| 21
(xot+x1)/ | 2ot | <1
(20)

(®o—2%1)/ | wo—21| <1
(o= 1)/ |wo—21| 2 1.

In the last expressions we have introduced the symbols
A=E;/AE and A=1v,/v,. Substituting in Egs. (10) and
(17) the mean relative velocity V= (v2+u2)}, we
obtain expressions more convenient for further calcu-
lations and which lead to a better approximation of
the real process of interaction of charged particles with
atomic electrons. This is a result of the elimination of
collisions with a long interaction time; such collisions
do not occur in fact owing to the curvature of the
electron track in the field of the nucleus.

In this approximation the function (20) is given by

(14+AE/Ey)} 1
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myem,
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Fi1c. 3. Values of functions g[A\] and g[AN] for AE=—E,,
my=ms, and m<Kms versus the ratio v2/v;.

1 )\2 3 . 1 mi
fanl= (=) { ot (1-2)«
2\ 241 2\ My

my 1
(i)
ma A2

(xot21)/ | @ot21] 21
(%ot21)/ | 20+2: | <1
(2o—w1)/ [wo—21| <1

(xo—w1)/[wo—21] 2 1.

3* ("3

(21)

The comparison of the exact function g[AN] with the
approximative function g[AN] for AE=— E1, mi=ms,,
and m<<ms is given in Fig. 3.

Similarly, in the approximation given above, for f(6)
given by Eq. (18) and for particles of equal mass
my=mq, we obtain the cross section for the scattering
of particle 2 at the angle § with a change in energy AE,

ZW(Q1Q2)2 1 1
(M21)22)2 2\/2 71’!1'2)1’1)27

L

gt (1—2(zy/ V)29

22\2 1/v\2 1 T 1 7\2
if 1-—-2(—;) £>~(—_) — Ez—E1—|-~AE(—)
Vv 2\V/) E:E, 2 V2

12
| J

22\2 1/v\2 1 1 7\2179
0 if 1—2(-—_—) £<—(—_) £ EZ—EH——AE(—) ~] . (22)
Vv 2\V/ E:E\L 2 v/ §
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In two limiting cases, mi=ms and m<Kms, where AE<O, the explicit expressions for ¢ (AE) are

(LB 4B
if AESEQ—El
2ipg)® 1 4 o2 \!| B 3AE
m=my o(AE)= —( )< ) (23)
m1v22 AE? ‘022+7)12 1 E1 AE E1 AE AE z
—(1+4——+2—-*)[(1+— (1~—)] if AE> Ey—E,,
L3 AE E, E, E; E,
(4 E
1+* if AE<K12E2(1—7}1/712)
3AE
2m(qig2)* 1 2* \!|1 AEN}s1 4 E, 4AE 4 E, :
T (e Y A A PR o
m1v22 AE2 'U22+'l)12 2 E1 3 3AE K12E2 SAE
AE 5 '1)1 AE2
+3 ] lf AEZ K12E2(1—7)1/112).
(K12E1E2) 6'02 K2 E B,

\

In the last two expressions and henceforth AE indicates the absolute value of the energy loss.
The cross section for a collision with energy loss greater than U is

AEmax
o= [ sanian, (25)
U
or in explicit form in the case m;=m,
a0
o) ZE;ngEz/U; E/U]J, (26)
where
2E, U E; U\?
av l_ﬁ) _ (_) if U+ xS Bs
22\ 1! 3 E, E, E, E,
oL/ U; B/ U= () @)
2)22‘!“2}12 2 E1 U El U
B (Y (D) (D)) s,
3LE, E, E, E,
and oo= (ma/m1) (£125)*X6.56X 107 cm? ev2. The function g,[ E./U; E,/U] is plotted in Fig. 4.
Similarly, the cross section for an encounter with loss of energy in the interval U; S AEL Uy is
Us
0w v)= [ saBaan=0w) 0wy, (28)
Uy
if (Uy;—Uy)/U:K1, the last expression may be rewritten in the form
Q(Uy,U2)~0c(AE)(Ur—Uy), (29)
where AE=U..
The stopping cross section of particle 1 with the minimum excitation energy U is given by
AFmax
((cAE) )= f s (AE)AEd(AE). (30)
- :

For heavy charged particles slowing down on light particles (m:<<m2) the stopping cross section is

[ K12E2 4E1 2 U1 2
[Z—Hn (—) J if U<K12E2(1—1)1/1)2)
V2

u 3U 3

' AENY 2E; 1 1/m\2 4 AE 7 1 [1+(AE/E) =1\ 2 E
e o) (I DR PR e R
7)22+‘1)1 E2 3AE 3 3 Vo 3K12E2 2 [1+(AE/E1)];+1 3AE

3 AE 5 71 AEZ KyoFo(1—v1/v2)
+- t
L 2 K12E1E2 24 V2 K12E1E2

lf UZKlgEz(l*’l)l/’l)z) (31)

U
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F16. 4. Plot of the function g;.

III. INELASTIC COLLISIONS OF CHARGED PARTICLES
WITH ATOMS AS A PROCESS OF BINARY
ENCOUNTERS WITH ATOMIC
ELECTRONS

Now, by means of the calculated ¢ (AE) and o (AE,9),
we can give at once a quantitative interpretation of
inelastic collisions as a result of binary encounters with
atomic electrons of given binding energies and ve-
locities.

(i) The Ionization and Excitation of Atoms
by Charged Particles

Denoting by N®(v,) the velocity distribution of ¢
shell electrons of an atom and by U;(® their ionization
potential, the ionization cross section of an atom is at
once seen to be

0

Q=2

(i) Vo

N (v,)Q(U ;)do,, (32)

and the cross section for the excitation of the level #

Oxe"=2 | NP@)Q(Unn1®; Un®)dre, (33)
(1) vy

where U, (U,41(?) is the excitation energy of the
level # (n+1) from the shell i.

(ii) The Atomic Stopping Cross Section

The theory of the atomic stopping cross section,
obtained in a similar way, was given previously by the
author. At present, however, the theory is more con-
sistent. We have eliminated the parameter D which was
not very well determined, and the process of slowing
down of charged particles is only a special case of the
general theory of inelastic collisions. According to the
above results, we have

0

%(dE/ dx) =(cAE)W*=7 (eAE)WN D (v5)dv.. (34)

@) Yy
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(iii) The Angular Distribution of Inelastically
Scattered Electrons from Atoms

This angular distribution is found at once to be

(A, 9) = f (AN (0. (35)

In a similar way we can interpret by means of the
cross sections o(AE) and ¢(AE,$) a number of other
phenomena arising during atomic collisions.

IV. COMPARISON WITH EXPERIMENT

To test the theory and illustrate its application we
shall give some numerical results.

(i) Velocity Distribution of Ejected and Scattered
Electrons of Primary Energy 100 ev
from Helium Atoms

If it is recalled that the kinetic energy® and the
ionization potential of the helium atom are 79 ev and

40
|
|
i, |
32 our theory |
quantum  theory |
|
P !
> |
3 . |
= ejedied electrons |
N / l
2 scattered 8/?[1r“7/ 1
5 |
N / / \
S
8 |
S
-
~ b
~
— - T - - -
o e=——" T -~ —
20 40 60 80

Energy of detected electrons in ey

Fic. 5. Velocity distribution of ejected and scattered electrons
resulting from ionizing collisions with helium atoms.

24.6 ev, respectively, the energy distributions of scat-
tered and ejected electrons are given by the Eq. (23),
where we have substituted E1=39.5 ev, E;=100 ev,
U;=24.6 ev and AE=E,— Ex for scattered electrons
and AE= U ;4 E.; for ejected electrons. Ex is the energy
of the scattered electrons and E,; is the energy of the
ejected electrons. The velocity distribution of electrons
in a helium atom has been assumed to be Nuo(v.)
=28[v,— (2E1/m)*]. The results of the computations are
in very good agreement with the experimental data of
Goodrick? (Fig. 5). The slight asymmetry of the experi-

8 P. Gombas, Theorie und Lisungsmethoden des Mehrteilchen-
problems der Wellen Mechanik (Birkhaiiser, Basel, 1950), pp. 167,

181.
9 M. Goodrick, Phys. Rev. 49, 422 (1936).
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o Boyd and breen exp. data.
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- : ate.
10 theoretical results
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Electron  Energy in ey

F16. 6. Ionization cross sections of Hp and He
by electron impact.

mental curve is due to the excited He*; therefore the
number of high-energy electrons decreases and the num-
ber of low-energy electrons increases slightly. It should
be noted here that quantum mechanics!® does not give
as good agreement with experiment, especially at the
extremes of the energy distribution where the disparity
is not only of a quantitative character, but of a quali-
tative nature as well.

(ii) Ionization Cross Sections of H,
and He for Electrons

The ionization cross sections of Hy and He for elec-

trons are given by Eqs. (26), (27), (32) where we have
substituted E;=U;=15.6 ev and

Nuy(v,)=26[v,— QU ;/m)*]
for the hydrogen molecule and E,=239.5 ev, U;=24.6 ev,

gt
G

Units of 107" et
-
\

N
/

/

/
/
/
7
/
/
/
4

Lross  Section in

Experimentol  data:
o relative values of Webster
x  gbsolute value of (Clark

Theoretical  results:
— with relativistic _correction
-~~ without relativistic correction

ekl

3 4 5
Electron  Energy (U7 25500 8v)

F16. 7. The ionization cross section of Ag K shell
by electron impact.

10 See reference 2, pp. 236, 237.
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Nue(ve)=20[v.— (2E;/m)*] for the helium atom.

0,(Hs)=5.51X 10-10,[ E5/15.4; 1] cm?,
Q;(He)=2.20X10"16g,[ E5/39.5; 1.6 ] cm?2.

Comparison of theoretical and experimental results'!:?
are given in Fig. 6.

(iii) K Shell Ionization of Ag and
Ni by Electron Impact

We assume that the velocity distribution of K elec-
trons is N¥(v,)=26[v,—v.X]. Since their kinetic energy
(Ey) is equal in the first approximation to the ionizing
potential of shell K (U A8%=25 3500 ev, U;NE=8350
ev), we obtain immediately
Q% (Ag)=202X10"2¢g,{ E»/ U455 1]

Xr[Ea/ U2 ; U A% /mc*],

QX (Ni)=18.8X10"2¢,[ E,/U ;NK; 17]
Xr[ Eo/UNE; UNK/me?].

&
=
[N

Section in  Units of 107 en’

Engerimental data:

o relotive volues of Pockman etal.
x - absolute volue of Smick and

1 Kirkpatrick
Theoretical  results:

]
[EEA
2 ( \\\

Lross

— with relativistic correction
~--without relativistic correction

2 4 5 8 10 2 £
Electron energy (U -8350ev)

’5[21/[1;‘7

F1c. 8. The ionization cross section of Ni K shell
by electron impact.

The function 7 is due to relativistic effects and is
defined as the ratio Q; re1/Q; where Q; a1 is calculated
from Eq. (26) using relativistic formula for vy, vs, 71, 7.
Clearly in the nonrelativistic energy range »=~1. The
theoretical results with and without the relativistic
correction are plotted in Figs. 7 and 8. There is very
good agreement with the experimental data of Webster
et al.,”® Clark,”* Smick and Kirkpatrick,'® and Pockman
et all®

11 P, Smith and J. Tate, Phys. Rev. 39, 270 (1932).

2R. L. F. Boyd and G. W. Green, Proc. Phys. Soc. (London)
71, 357 (1958).

13 Webster, Hansen, and Duveneck, Phys. Rev. 43, 839 (1933).

147, C. Clark, Phys. Rev. 48, 30 (1935).

15 A, E. Smick and P. Kirkpatrick, Phys. Rev. 67, 153 (1945).

16 Pockman, Webster, Kirkpatrick, and Harworth, Phys. Rev.
71, 330 (1947).
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(iv) Excitation Cross Sections, 4p 'P;, of He and,
6p 3P, of Hg Levels and the Sodium D
Lines, by Electron Impacts

Because the excitation energy of levels 4p'P; and
Sp 1Py are 23.7 ev and 23.95 ev, respectively, and other
data for the helium atom are the same as in (i) we have

Qexe(He 4p 1P1)~2{Q(23.7)—Q(23.95)}.

In the excitation of Hg the two outer electrons (6s)
of Hg are the most effective because of the strong
dependence on the excitation energy (Q~1/Uecx." where
2<n<3) therefore

Qexo(Hg 6p *P1) ~2X[Q(4.86)—Q(5.43) ],

0
Experimental  data:
e Arnota and Baines
Hybp’», — =~ -Dipel
Theoretical resulls:
solid curve
20° -
NN
N, \
~ o ~
S .
~
-~ N
S
“ 1
= He4p'?,
S / ™\
. \
= \
RS N
B
el
g
S /
s !
S )
Z
&
10’
0° %’ 0’ 0

Energy of electrons in ey

F16. 9. The excitation cross sections of Hg 6p 3P;
and He 4p 1P; by. electron impact.

5.43 ev and 4.86 ev are the excitations energies of
levels 6p 3P; and 6p 3P, respectively.™

Taking”into account the fact that the majority of
transitions from high-energy levels of Na pass through
the levels 2p 2P; and 2p 2Py, the excitation cross section
of the sodium D lines is

exe? =1 X Q(2.1).

The theoretical and experimental results'™2 are
plotted in Figs. 9 and 10.

(v) Atomic Stopping Cross Section of
Helium for Protons

The atomic stopping cross section of helium for
protons is (cAE)w He=2(cAE)n, where (cAE)n, is

17 R, Déopel, Ann. Physik 16, 1 (1933).

18 G. Haft, Z. Physik 82, 73 (1933).

B F, L. Arnota and G. O. Baines, Proc. Roy. Soc. (London)
A151, 256 (1935).

20 W, Christoph, Ann. Physik 23, 51 (1935).
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Fi16. 10. Excitation of the D lines of sodium by electron impact.

given by (31) and U is the first excitation potential of
the helium atom. The experimental data of Reynolds*
and Weyl? are in very good agreement with the theo-
retical results (Fig. 11).

(vi) Angular Distribution of Inelastically
Scattered 200-ev Electrons from H,

The angular distribution of electrons of energy E,
scattered by electrons of energy E; with the loss of
energy AE is given by Eq. (22). In our case we have
E,=15.7 ev, E;=200_ev, and AE=150, 100, and 50 ev.
The obtained angular distributions are given in Fig. 12.
It is seen that the range of scattering is contained in
an angular interval whose value and position depends
on Ei, Es, and AE. The above results concern collisions

5 -
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§ 30 th ¥ T ‘T % » » ¥
: [HER ’
o Air L
S W T 4.

o %G s

$ ¢ UNE AR €.
S °
8 % . o
5 10 % p
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5\ 7 1 ]
g 5 el =
P / i R
- 5 Hydrogen S \
E 4 11T
g [T N

3 S EX5 Baia oF abvwaios + AN
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2
°
15
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Fic. 11. Comparison of the theoretical calculations of the stopping
power of He for protons with experimental data.

21 Reynolds, Dunbar, Wenzel, and Whaling, Phys. Rev. 92,
742 (1953).
22 P, K. Weyl, Phys. Rev. 91, 289 (1953).
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Fic. 12. The angular distribution of inelastically scattered elec-
trons from Hj for various loss of energy (50,000, and 150 ev).

with free electrons. In scattering on electrons bound in
a molecule or atom the distribution is strongly deformed
by the field of the nucleus, but the character of the
curve and the position of the maximum on the theo-
retical curve coincide, in principle, with the experi-
mental data.?

The above examples do not exhaust all the possi-
bilities of the theory presented here nor is there a claim
to great accuracy, although in many cases the accuracy
may be considerably improved by a careful analysis of
each problem.

V. CONCLUSIONS

From comparison of the theory with experimental
results, it follows that the interaction of charged
particles with the atomic shell can be interpreted solely
on the basis of classical mechanics; the binary encounter
approximation is sufficiently good to describe the
majority of inelastic processes and compares favorably
with experiment. The approximation is relatively
inaccurate for describing the angular distributions of
inelastically scattered particles; this is because of the
strong influence of elastic scattering in the field of the
entire atom which does not change the energy distri-
bution strongly affects the angular distribution. The

2 C. B. O. Mohr and F. H. Nicoll, Proc. Roy. Soc. (London)
A138, 469 (1932).
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Fi1G. 13. The total cross section of argon for electrons
and velocities of its outer electrons.

above theory, however, can be used to explain the
diffraction pattern of scattered electrons.

In a similar way, the theory of elastic collisions can
be built on the basis of classical mechanics. It should be
noted that the scattering of charged particles by an
atom cannot be treated as scattering by the static field
of the atom, but this process must be treated dynami-
cally. With such an approach to the problem it is clear
that the occurrence of maxima in the scattering curve
is the result of mechanical resonance of the impinging
particles with atomic electrons of the same velocity.

Probably the Ramsauer effect is due to such mechan-
ical resonance, but not due to the wave nature of
interaction process. Figure 13, where the total scat-
tering cross section of argon for electrons and the
velocities of its 65 and 6p electrons are shown, is very
impressive. The lack of, or very weak, Ramsauer effect
in the case of scattering by e.g., H, or He is the result
of a large asymmetry in the charge distribution of the
atom and the resulting large cross section for multipole
scattering, which masks the Ramsauer effect.

APPENDIX

Equation (1) of our paper can be easily obtained by
means of the relations given by Chandrasekhar.® Ac-
cording to Chandrasekhar, the change in energy AE
suffered by a star as a result of an encounter is

AE=—2uV ,V cos(p—y) cosy cosi. (116)
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Also
costy=1/[1+D2V*/G2(m1+m3)%], (I5)
cos¢ cosi=cosP, sing cosi=sin® cosO, (I 27)

2= (M 202 mo0s?
(m1tms)?
~+2mymavivs cosf), (I 30)
V2=1024,>— 2919, cosb, (I31)
cos®= [ mov2— mivi®+v1v2 (m1—ms) cosf]/

V.,V (mi+ms), (I33)
sin® = (v1v9/V,V) sind. (T 36)
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Hence Eq. (I 16) may readily be rewritten

mine 1
AE=—4 -
(my+mg)? 14-[D2V4/G?(m1+m2)?]
’WL2V22 1’}’L1V12

X —_
2 2

1
f 27/'17)2[ (m1—ms) cosd

Dy?
+ (m1+ms) sind cos@——————] ],
G m1+m2)

which is our Eq. (1).

Similarly, it follows from the results of Williamson
and Chandrasekhar? that the change in the direction
of the star resulting from the encounter is:

2m1 (vy—1v; cosf) cos’y—+2myv; sind sing cosy cos® — (m1-+m2) v,

cos2¥ =

(IT 30)

{ (my+mo) 20— dmi[ (mave® —m1v:®) + (m1—m2)v1vs cosf | costy

— 4my (my~+m2)v1v, sind sing cosy cosO}?

Solving Eq. (1) for cos®, substituting in Eq. (IT 30) and taking into account Eq. (I 5), we obtain Eq. (2)

of our paper where we have replaced 2¥ by 4.



