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where
+»r=2II~A'll Sirr= Ill »+II. (8 13) = ——',n'EOLX —Eo(1—vP) j, (8.17)

In order to find an upper bound Czz corresponding to
Hzz, let us note the following inequality:

1
2

dtdlf62f — drA1$62$ d~a, fa,f, (8.14)

which can be proved using Schwartz's inequality in a
slightly modified manner. From this it follows that
Czz may be chosen as

where it is assumed that the trial function f satisfies
the virial theorem. Since this is the case for P's con-
sidered here, " the accuracy of (P,H~) is obviously
just as good as that of the variational calculation of the
nonrelativistic energy eigenvalue X. Ke may therefore
regard QD,Hvgo) as exactly known and omit it from
our considerations.

Collecting the results obtained, one may therefore
choose

&rr =a'Lb&rr+ 4b'j, (8.15)
C„i=u'I aR+bs+ (9/2)ab+xib'7, (8.18)

where
1

drAifAgP
2 ~

(8.16)

&=&i+&»i+derv,
s= sir+siir,

(8.19)

The last term Hv may be treated completely differ-

ently from the others, being proportional to the kinetic
energy E. in this case, the left-hand side of (3.1)
becomes

as an upper bound for the error in the expectation value
of the entire relativistic correction H„i.

"This is because our trial functions are always chosen so that
the upper bound 'A is minimized with respect to the scale parameter
h. For details, see Sec. 3 of reference 2.
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A classical theory of inelastic atomic collisions is given. It is shown that inelastic scattering, ionization,
excitation, and other interactions between charged particles and atoms are due to the Coulomb interaction
with atomic electrons and depend in a first approximation on their binding energy and momentum dis-
tribution. All cross sections can easily be calculated by means of differential cross sections a(AE) and
0(dE,6) derived in the binary encounter approximation. Numerical calculations have been made for
several cases and are in very good agreement with the experimental results.

I. INTRODUCTION

&HE difficulty of explaining on the basis of classical
mechanics some experimental facts observed in

atomic collisions and the sufficiently good results
obtained by wave mechanics have been viewed as
proof of the nonvalidity of classical mechanics for
processes involving the interaction of charged particles
with the atomic shell."Consequently the explanation
of all such processes has been sought by using wave
mechanics without investigating the possibilities of a
classical interpretation of these phenomena. The
slowing down of charged particles in a medium had
also been treated in this way. In a recent paper' the
author analyzed this process on the basis of classical

' H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic
Impact Phenomena (Clarendon Press, Oxford, 1952), p. 9.

2 N. F. Mott and H. S. W. Massey, The Theory of A/omic Col-
lisions (Clarendon Press, Oxford, 1949), second edition, pp. 200,
201.

3 M. Gryzinski, Phys. Rev. 107, 1471 (1957).

mechanics and showed that the disagreement between
the first classical theories4' and experiment, particu-
larly in the low-energy range, was the result of an
approximation which neglected the orbital motion of
the atomic electrons. It was noted that the eGect of the
interactions in a Coulomb field varies as the fourth
power of the relative velocity.

The excellent agreement of the classical stopping
theory given by the author with experiment auto-
matically gave rise to the suggestion that other processes
occurring in atomic collisions, which, after all, make
up the stopping process, should be treated in this way.
Thus, employing the results of Chandrasekhar' and
Williamson and Chandrasekhar7 on the collisions of
gravitational masses, we shall construct in the binary

4 N. Bohr, Phil. Mag. 25, 10 (1913);30, 581 (1913).
'H. A. Bethe, Ann. Physik 5, 325 (1930).' S. Chandrasekhar, Astrophys. J. 93, 285 (1941).
7 S. Chandrasekhar and R. E. Williamson, Astrophys. J. 93,

308 (1941).
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encounter approximation a classical theory of inelastic
atomic collisions.

II. TRANSFER OF MOMENTUM AND SCATTERING
OF PARTICLES INTERACTING THROUGH

A COULOMB FIELD

Consider the encounter between particles with
charges qj, g2, masses m~, m2, and velocities v~ and v2,
respectively, interacting with each other through a
Coulomb field. All results are also valid for bodies
interacting through gravitation if we take qi

——mi+G
and q2 ——m2+G, where G is the gravitational constant.

If we idealize each encounter as a two-body problem,
then the parameters defining such an encounter in
laboratory frame of reference are (see Fig. 1): (i) the
angle 8 between the two vectors vi and v2, (ii) the
azimuthal angle p referred to a system of coordinates
in which the s-axis coincides with the direction of v2,

(iii) the impact parameter D, and (iv) the angle O~ be-
tween the orbital plane and the fundamental plane con-
taining the vectors v~ and v2.

As a result of the encounter, the directions and the
magnitudes of vectors v~ and v2 are changed. These
changes, which can be measured experimentally, are
given by the relations

+12
4E =~E+ {E2 Ei+kol&2I (ml m2) cos8

1+x

+(mi+m2) s1118 cosO~x]j =0, (1)

1 ( 1AE~
ho = —8+—

I
1+-

(1+DE/E2)' ( 2 E2 3

FIG. 1. Space diagram for encounter between charged particles.
The fundamental plane is defined by the vectors v1 and v2 repre-
senting the velocities of the two particles before the encounter.
The velocity of the mass center denoted by V„remains constant
during the encounter. In a frame of reference in which the center
of gravity is at rest, the two particles describe hyperbolas or
parabolas in the orbital plane which, in general, is inclined at
some definite angle 0 to the fundamental plane.

( mi 't fl"i' 1
=0, (2) change in energy AE,

(m, +m, ) Eo, ) 1+x'I

where AB is the change in energy of particle 2, 8 is the
change in the direction of velocity of particle 2, E~ and
E2 are the energies of particles 1 and 2 before the col-
lision, V= (oi2+o22 —2w&o2 cos8)' is the relative velocity,
p, is the reduced mass, and

rI rr
o (AE) =— f(8)b[hq@(8 O~ D)]

4m~ ~ 4
dO~

Xd8d(p 27rDdD. (5)
2'

Equations (1) and (2) have been derived using the
results of the Chandrsekhar and Williamson'7 (Ap-
pendix).

Now, the cross section for the encounter defined by
0, q, O, andais

1 t 1'
I

f'

o (DE@)=— f(8)bl ho(8, O,D)]
4~ J

dO~

Xd8dy 2nDdD. (6)
2'1 do

f(8)d8Xd pX X—2~DdD,
4m 27r

Since

~b f(x,)
f(x)SLY(x)]dx= PJ, l~'(x)Iwhere f(8) is the relative angle distribution function

between vectors v~ and v2. Integrating over the range
for which condition (1) is fulfilled, we obtain the cross
section for a collision in which particle 2 undergoes a

where the sum is taken over all roots of the equation
&p(x) =0 in the interval a, b, we obtain, after integrating

In a similar way, the cross section for the scattering of
'~(m'+m') ' ( ) particle 2 in the direction 8 with the change of energy

AE is
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Therefore the limits of integral (10) are

81,2——(xpax1) 1f —1 &~xp+x1 &~1
=. 0 lf 1~~xp+$$
=7r if —1 & xp+x1,

where

(12)

~E' .gy ~F

E» [oEIEJ
nSZ —m2 AE

XP+X1
ml+m2 (K12E1E2)'

DEq ) DER
I I

1+
E„ ) E E, )

Plg 4 l??»

/
~A' E y ~A,'gf

y ~E, E, g g
E»

02 84 gb' Q' g
l~rlr22

Yg

Vq

Eq. (5) over the angles p and O~,

1 /q1q2)
-(~E)=-I

2L p)

FIG. 2. The loss of energy of impinging particle as the function
of the energies and masses of colliding particles and the collision
angle 8.

K12 ( E1) ' K12E1
+ ]1-—

/ +E). E,
sin'8 . (14)

The graph of the ratio AE/E2 as a function of the angle
8 is given in Fig. 2. The maximum loss of energy of
particle 2 is

Equation (11) gives us the maximum change in energy
of the colliding particles as a function of the angle
between their velocity vectors. Solving (11) with
respect to DE, we have

AE m1 m2—(K12E1) '* K12 ( E1)
/

cos8—
E, m, +m, &E, ) 2 4 E2)

m1 —m2 (K12E1't *

cos8
t.m1+m2& E, )

1 851 m2 'V2

if —1&—
2 m1+m2 V1

In the last expression we have introduced the symbols K12E2(1+21/22) (1 m1211/m2p2)

~ t f(8) x2+1
de g(x2) (7) ~Emax E2

V' {4a'x'—Lb+DE(1+x2) j2) &

(15)

a= p,v1v2 sino,

b =K12/E2 —E1+2 (m1 —m2) V1'V2 cos8j.

Since the differential cross section must always be real,
the integration over x2 must be performed over the
range for which

4a'*'—Lb+ DE (1+x')j'~ 0.

As a result, we obtain

(9)

2r(q1q2)' 1 ~'2 f(8) (2a' —b ld8 (1o)
2 ( p ) DE2&p, V4 &DE

By Eqs. (3) and (8), the condition (9) 1nay be readily
rewritten:

1 181—552 'V2

if —1&~—
2 m1+m2 'p1

(
8~,x=arc cos~ ——

~, 8,„=2r. (16)
E2 v, m1+m2

In a similar way, by integrating Eq. (6) over p2, O~,

and D, we obtain

22r 1 2)' (1+DE/E2)& ( m, ) ' 1

(k Em, +m2 &

(qq
~(ZE,8) =

(m2V2 )

and the collision angles corresponding to DE, are
respectively,

cosg

(K12E1E2 K12E1 K12E2
+ — —1 i&0.

& ~E2 ~E ~E i

E12~1~2 ml m2 (K12E1E2)
cos28 —2

AE2 m1+m2 AE
where

f(8)d8
X (17)

${4a2241—$4a2+ (b+DEN1)2])

1 AE ( hEq -'*

$=1+— —
i

1—
)

cos4?,
2E2 E E)

N1 ——2 (m1/m1+m2)'(V/v2)'(1/p).
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In the case of a particle 2 moving through the collec-
tion of particles 1 having an isotropic distribution of
velocities the angular distribution function is

f(8) = (sino) V/vs,

and therefore the cross section for the encounter with
a change in energy hB is ]Qd

2pr(gtqp)'( 1 AE )~(»)=
m, v,2 &~E' (»( &

g[A,X]= (—',a) (xX)'
2 (1+2Xx+X') 1Q"

( mt)
+

~

1——
~
(1+X')+X'+-'(1+)')'6

m, i

m]—2X26——
m2-

(xp+xt)/ ( xp+xtr & 1

(xp+xt)/ [ xp+xt [
& 1

)(' c

(xp —xt)/i xp —xt [
&~1

.(xp —xt)/(xp —xti &1.

(20)

I'
fQd

FIG. 3. Values of functions g(n, Xg and g(n, Xg for rsvp= E„—
m&= ms, and mr«ms versus the ratio v2/vq.

1( X' qf 1( mrna
(s~)xs+—

] 1—Ix'
2 EX'+1) 2X I ms)

( mt 1)
+( 1—2~+——

/

m )t')

(xp+»)/(xp+xt (
&1

In the last expressions we have introduced the symbols
A=Et/» and X=vs/vt. Substituting in Eqs. (10) and

(17) the mean relative velocity V = (vts+ vss) '*, we

obtain expressions more convenient for further calcu-
lations and which lead to a better approximation of
the real process of interaction of charged particles with

atomic electrons. This is a result of the elimination of
collisions with a long interaction time; such collisions

do not occur in fact owing to the curvature of the
electron track in the field of the nucleus.

In this approximation the function (20) is given by

(xp+xt)/ [ xp+xt [
& 1

(xp xt)/txp xt) & 1

.(xp —xt)/exp —xti &1.

(21)

The comparison of the exact function g[b, ,Xj with the
approximative function g[A,X) for AE= Et, mt mQ, —
and m~(&m2 is given in Fig. 3.

Similarly, in the approximation given above, for f(8)
given by Eq. (18) and for particles of equal mass
m~= m2, we obtain the cross section for the scattering
of particle 2 at the angle 0 with a change in energy AE,

(1+»/E )l 1

2'(ptas)' 1
(»p) =

(msvs')' 2~2 mlvlvs

0

(vs)' 1(vs'' 1 1 (Vl'1-'
Ep —Et+-»I —I—

(V& 2I V& E,E, 2 &v,) P

(»i' 1(»)' 1 1 (Vi'1 '
if 1—2( —

[ $&—
(

—
( $ Es—Et+—»( —

[
— . (22)

EVj 24 V) EpEt 2
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1n two limiting cases, mi ——m2 and m,«m2, where DE&0, the explicit expressions for o(AE. ) «e

m, =m2 o(&E)=

E1 4 E]
1——+-

82 3 AE
if AE ~& E2—~1

22r (gig2)

gE2 (v 2+.v 2) 1 Ei QE Ei) ( AE't It' 6E'1
1+4 +2 ——

/ I
1+

E, ) E E, )

(23)

if DE &~82—~1

1+— 1f AE~& %2E2(1—vi/v2)
3 6E

m,«m, o(~E) =
I . I

~-
/

1+ I I
-+- — I+I 1+-

gE2 (v22yv, 2) 12 ( E, ) k3 3 DE E,2E2) E 3 &E)
(24)

if AE) K12E2(1—v, /v2).

or in explicit form in the case m1—ns2

Op

Q(U) = t„[E2/U —Ei/Uj
P2

where

+3 ,+
(E12E1E2) 6 v2 If.12E1E2-

In the last two expressions and henceforth AE indicates the absolute value of the energy loss.
The cross section for a collision with energy loss greater than U' is

g ~&max

Q(U) = )' o (DE)d(DE)

(26)

'2E1 U ( Eiq ~Uq2——+—
I

1——
I

—
I

—
I~- 3E2 E2( E) lE2&

kv22+v12) 2 Ei U ( Eiy )Uy' ( Uq ( Up——+—I1——
I

—
I
—

I I1+—I/1 ——
I.3 E E ( E& kE& . 4 E) ( E)

if U+Ei&~E2

if U+E, ~&E2,

(27)

and oo ——(m2/mi) (Z1Z2)2X6.56X10 " cm' ev'. The function g, [E2/U; E,/U] is plotted in Fig. 4.
Similarly, the cross section for an encounter with loss of energy in the interval U»& hE ~& U2 is

I'U2

Q(U2' Ui) =
J o(~E)~(~E)=Q(U2) —Q(U1)

if (U2 —U1)/Ui«1, the last expression may be rewritten in the form

Q (Ui, U2) o (AE) (Ui —U2),
where AE = U 1.

The stopping cross section of particle 1 with the minimum excitation energy U is given by
~Emax

((UgE))A, ——i o(gE)gEd(gE).

(29)

(30)

For heavy charged particles slowing down on light particles (mi«m2) the stopping cross section is

E12E2 4 Ei 2 t'vi ) '
if U& rc„E,(1 .,/v,)-

Lr 3 U 3
2+in

oo (' v2' 'l ' t' ~E) ' 2 Ei 1 1 fvi y
2 4 ~E 1 ( [1+(~E/Ei)]'—1q 2 Ei

((o&E)&;=—
I I I

1+ I
—— +—-I —

I
—-- +-»I »—

E, Ev22+v12) ( E, ) 3 AE 3 3 E v, & 3 E12E2 2 E [1+(&sE/E,)j-*+1) 3 hE

5 & Qg2 IS 12Fi2 (1—v1/ v2)

+
2 +12+1+2 24 &2 +12~1+2 U

if U& E12E2(1 vi/v2). (31)
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gg0

+r

QO

ufo

(iii) The Angular Distribution of Inelastically
Scattered Electrons from Atoms

This angular distribution is found at once to be

q(AE, t'7) = o.(AE,t'7)N(v, )dv, .
4p

(35)

In a similar way we can interpret by means of the
cross sections o(AE) and o(DE,r7) a number of other
phenomena arising during atomic collisions.

o fo

FIG. 4. Plot of the function g7.

IV. COMPARISON WITH EXPERIMENT

To test the theory and illustrate its application we
shall give some numerical results.

III. INELASTIC COLLISIONS OF CHARGED PARTICLES (j) Pejocjty Djstrjbutjon. of Ejected and Scattered
WITH ATOMS AS A PROCESS OF BINARY

ENCOUNTERS WITH ATOMIC
ELECTRONS from Helium Atoms

Now, by means of the calculated o(DE) and. o.(AE.,t7),
we can give at once a quantitative interpretation of
inelastic collisions as a result of binary encounters with
atomic electrons of given binding energies and ve-
locities.

Q
at —g

(t) II p

N(') (v )Q(U ("))dv (32)

and the cross section for the excitation of the level e

(i) The Ionization and Excitation of Atoms
by Charged Particles

Denoting by N")(v,) the velocity distribution of i
shell electrons of an atom and by U;&" their ionization
potential, the ionization cross section of an atom is at
once seen to be

l

I

l

turn theory
I

I

I

I

I

pJpf tell' elytron&

l

I(Ptdd dlPrll'P

il
/

/
I

~ ~ I

l

l 00 r tel, ?gr'g

scG

If it is recalled that the kinetic energy' and the
ionization potential of the helium atom are 79 ev and

Q.,-=Z
(2) 4p

N(')(v, )Q(U +r('). U„('&)dv, (33) Fnpfgg Df detected electrons in pr

where U„(" (U„~)(')) is the excitation energy of the
level m (a+I) from the shell i

(ii) The Atomic Stopping Cross Section

The theory of the atomic stopping cross section,
obtained in a similar way, was given previously by the
author. At present, however, the theory is more con-
sistent. We have eliminated the parameter D which was
not very well determined, and the process of slowing

down of charged particles is only a special case of the

general theory of inelastic collisions. Accord. ing to the

above results, we have

~(X)

(dE/dx) —= (oAE—)A„'t =Q (trAE)A, N(') (v,)dv, . (34)
E (2) ~ p

Fro. 5. Velocity distribution of ejected and scattered electrons
resulting from ionizing collisions with helium atoms.

24.6 ev, respectively, the energy distributions of scat-
tered and ejected electrons are given by the Eq. (23),
where we have substituted E~——39.5 ev, 82=100 ev,
U;=24.6 ev and DE=82—Ex for scattered electrons
and AE= U,+E„for ejected electrons. Ex is the energy
of the scattered electrons and E„ is the energy of the
ejected electrons. The velocity distribution of electrons
in a helium atom has been assumed to be NH, (v.)
=23[v,—(2E)/m) ').The results of the computations are
in very good agreement with the experimental d.ata of
Goodricks (Fig. 5). The slight asymmetry of the experi-

SP. Gombas, Theoric und LosurIgsmethoden des MehrteilcherI;
problems der Wellen Mechanic (Birkhauser, Hasel, 1950), pp. 167,
181.

P M. Goodrick, Phys. Rev. 49, 422 (1936).
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1'

~ boyd and. breen exp. data.
—-relaft've ralues ol Smith attd

theoreti ral results

1Vn, (o,) = 2b[2~,—(2Ei/vis) l] for the helium atom.

Q;(H2) =5.51X10—"g,[E,/15.4; 1g cm',

Q;(He) = 2.20X10—"g [E2/39.5; 1.6j cm'

Comparison of theoretical and experimental results""
are given in Fig. 6.

AD 1$

Eleftron Energy in ee

2DD 28D

(iii) X Shell Ionization of Ag and¹iby Electron impact

We assume that the velocity distribution of E elec-
trons is 1VK(ii.) = 2b[2i,—ii,Kj. Since their kinetic energy
(E,) is equal in the first approximation to the ionizing
potential of shell E (U;"g =25 500 ev, Ui ' =8350
ev), we obtain immediately

FIG. 6. Ionization cross sections of H2 and He
by electron impact.

Q,
K (Ag) = 202 X 10 "g,[E /U, "'K; 1$

Xr[E,/U AgK U,.AgK/nso27

mental curve is due to the excited He+; therefore the
number of high-energy electrons decreases and the num-
ber of low-energy electrons increases slightly. It should
be noted here that quantum mechanics" does not give
as good agreement with experiment, especially at the
extremes of the energy distribution where the disparity
is not only of a quantitative character, but of a quali-
tative nature as well.

Q K(Ni) = 18.8X10 22g [E2/U N'K 1j
Xr[E / UNi K . U .N i K, /vno27

(ii) Ionization Cross Sections of H2

and He for Electrons

The ionization cross sections of H2 and He for elec-

trons are given by Eqs. (26), (27), (32) where we have

substituted E~= U, =15.6 ev and

ArH2 (2i,)= 2b[v, —(2 U;/ns) l7

for the hydrogen molecule and E&=39.5 ev, U;= 24.6 ev,

.D 2
'4

D
1

fAperimentat data:
~ reiative values of porkman etol.
& - absolute volue of Smirk and

tfirkpatrirk

I'hepretiral resuits:—with relativistir rorrertion
--- without relativistir rorrertion

e e

Etertron enerrjy (UJ. 835tt er)

g (F,fil, 'j

gled'J 5

FIG. 8. The ionization cross section of Ni E' shell
by electron impact.

D

fgperimental data:
~ relative values of Webster

x absolute value ot t"ta r k

Theoretirat resultsr—with relati vi stir rorrerlion
wi thout relati vi stir eorrer lion

The function r is due to relativistic eAects and is
defined as the ratio Q; „i/Q; where Q, „i is calculated
from Eq. (26) using relativistic formula for vi, ii2, mi, m2.

Clearly in the nonrelativistic energy range r =1. The
theoretical results with and without the relativistic
correction are plotted in Figs. 7 and 8. There is very
good agreement with the experimental data of Webster
et al. ,"Clark '4 Smick and Kirkpatrick" and Pockman
~II g) 16

3 4 $
Ftertron Faerffy (U; 255tteev)

FIG. 7. The ionization cross section of Ag E shell
by electron impact.

' See reference 2, pp. 236, 237.

"P.Smith and J. Tate, Phys. Rev. 39, 270 (1932).
'2 R. L. F. Boyd and G. W. Green, Proc. Phys. Soc. (London)

71, 357 (1958).
"Webster, Hansen, and Duveneck, Phys. Rev. 43, 839 (1933)."J.C. Clark, Phys. Rev. 48, 30 (1935).
"A. E. Smick and P. Kirkpatrick, Phys. Rev. 67, 153 (1945).
"Pockman, Webster, Kirkpatrick, and Harworth, Phys. Rev.

71, 330 (1947).
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40'

HgEp P,

Experimental data:

——Arnota and Baines
Oo'pel

etital results:
solid curve

(iv) Excitation Cross Sections, 4p'Pi, of He and,
6P 'Pi, of Hg Levels and the Sodium D

Lines, by Electron Impacts

Because the excitation energy of levels 4P'Pi and

Sp 'Pi are 23.7 ev and 23.95 ev, respectively, and other
data for the helium atom are the same as in (i) we have

Q,„,(He 4p 'Pi) ~2{Q(23.7)—Q(23.95)).
In the excitation of Hg the two outer electrons (6s)

of Hg are the most effective because of the strong
dependence on the excitation energy (Q 1/U,„,"where
2&n&3) therefore

Q, ,(Hg 6p 'Pi) 2X[Q(4.86)—Q(5.43)j,
&0'

n&
~ex' gO

rve

20

'to

P ~ - absolute across section (Christopb)
& - relative intensity fHaft)

given by (31) and U is the first excitation potential of
the helium atom. The experimental data of Reynolds"
and %eyl" are in very good agreement with the theo-
retical results (Fig. 11).

20 30 40

Energy of electrons in ev

Fxo. 10.Excitation of the D lines of sodium by electron impact,

&0'

)0.l

8e4p'P, (vi) Angular Distribution of Inelastically
Scattered 200-ev Electrons from H2

The angular distribution of electrons of energy E2
scattered by electrons of energy E& with the loss of
energy hE is given by Eq. (22). In our case we have
E~=15.7 ev, E2=200 ev, and DE=150, 100, and 50 ev.
The obtained angular distributions are given in Fig. 12.
It is seen that the range of scattering is contained in
an angular interval whose value and position depends
on E~, E2, and AE. The above results concern collisions

]0'
10' fol

Fnergy of elei'trans i'n er

Fxo. 9. The excitation cross sections of Hg 6p sEI
and He 4p 'E& by, electron impact.

5.43 ev and 4.86 ev are the excitations energies of
levels 6p 'Pi and 6P 'P2, respectively. "')

Taking'. :.'.
,into account the fact that the majority of

transitions from high-energy levels of Na pass through
the levels 2p 'P; and 2P 'P~, the excitation cross section
of the sodium D lines is

Q.xan —1XQ(2.1).
The theoretical and experimental results" " are

plotted in Figs. 9 and 10.
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(v) Atomic Stopping Cross Section of
Helium for Protons

The atomic stopping cross section of helium for
protons is (o~E)»„'——2(o~E)», where (oAE)»p is

' R. Dopel, Ann. Physik 16, 1 (1933).
Is G. Haft, z. Physik 82, 73 (1933).
' F. L. Arnota and G. 0. Baines, Proc. Roy. Soc. (London)

A151, 256 (1935).
20 W. Christoph, Ann. Physik 23, 51 (1935).
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FIG. 11.Comparison of the theoretical calculations of the stopping
power of He for protons with experimental data.

2'Reynolds, Dunbar, Wenzel, and Whaling, Phys. Rev. 92,
742 (1953).' P. K. Weyl, Phys. Rev. 91, 289 (1953).
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FIG. 12. The angular distribution of inelastically scattered elec-
trons from H& for various loss of energy (50,000, and 150 ev).
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FIG. 13. The total cross section of argon for electrons
and velocities of its outer electrons.

with free electrons. In scattering on electrons bound in
a molecule or atom the distribution is strongly deformed

by the Geld of the nucleus, but the character of the
curve and the position of the maximum on the theo-
retical curve coincide, in principle, with the experi-
mental data. "

The above examples do not exhaust all the possi-
bilities of the theory presented here nor is there a, claim
to great accuracy, although in many cases the accuracy
may be considerably improved by a careful analysis of
each problem.

V. CONCLUSIONS

From comparison of the theory with experimental
results, it follows that the interaction of charged
particles with the atomic shell can be interpreted solely
on the basis of classical mechanics; the binary encounter
approximation is sufficiently good to describe the
majority of inelastic processes and compares favorably
with experiment. The approximation is relatively
inaccurate for describing the angular distributions of
inelastically scattered particles; this is because of the
strong inliuence of elastic scattering in the field of the
entire atom which does not change the energy distri-
bution strongly aBects the angular distribution. The

above theory, however, can be used to explain the
diffraction pattern of scattered electrons.

In a similar way, the theory of elastic collisions can
be built on the basis of classical mechanics. It should be
noted that the scattering of charged particles by an
atom cannot be treated as scattering by the static field
of the a,tom, but this process must be treated dynami-
cally. YVith such an approach to the problem it is clear
that the occurrence of maxima in the scattering curve
is the result of mechanical resonance of the impinging
particles with atomic electrons of the same velocity.

Probably the Ramsauer eGect is due to such mechan-
ical resonance, but not due to the wave nature of
interaction process. Figure 13, where the total scat-
tering cross section of argon for electrons and the
velocities of its 6s and 6P electrons are shown, is very
impressive. The lack of, or very weak, Ramsauer effect
in the case of scattering by e.g. , H2 or He is the result
of a large asymmetry in the charge distribution of the
atom and the resulting large cross section for multipole
scattering, which masks the Ramsauer effect.

APPENDIX

Equation (1) of our paper can be easily obtained by
means of the relations given by Chandrasekhar. ' Ac-
cording to Chandrasekhar, the change in energy AE
suffered by a star as a result of an encounter is

23 C. B. O. Mohr and F. H. Nicoll, Proc. Roy. Soc. (London)
A138, 469 (1932). AE= —2tsVoV cos(g —f) cosP cosi. (I 16)
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Also

cos2P= 1/$1+D2V'/G2(m1+m2) 2],

cosg cos2= cosC, sing cos2= sinC cosO,

V'= (m12V12+m 2v22

(m1+m, )'

Hence Eq. (I 16) may readily be rewritten

(I 5) m1m2 1
AE= —4

(I 27) (m1+m2)' 1+LD2V'/G'(m1+m2)2]

m2Vg' mg Vg'
+-v1v2 (m1—m2) cos8

2 2 2

+2m1m2v1v2 cos8), (I 30)

V =v1 +v2 2'v1V2 cos8, (I 31)

sinC = (v1v2/V, V) sin8. (I 36)

cosC'=
t m2v2 mlv1 +vlv2(ml m2) cos8]/

Vv V(m1+m2), (I 33)

+(m1+m2) sin8 cosO.
G(m1+m2)

which is our Eq. (1).
Similarly, it follows from the results of Williamson

and Chandrasekhar' that the change in the direction
of the star resulting from the encounter is:

cos2% = 2m1 (v2 —v1 cos8) cos'p+2m1v1 sin8 sing cosf cos0' —(m1+m2) v2

f (m1+m2) v2 4mlL(m2v2 mlvl')+ (m1 m2—)v1V2 cos8] cos f—4m1(m1+m2) v1v2 sin8 sing cosg COSO'} &

(II 30)

Solving Eq. (1) for cosO, substituting in Eq. (II 30) and taking into account Eq. (I 5), we obtain Eq. (2)
of our paper where we have replaced 2%' by 8.


