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Ground State of the Helium Atom. IP
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(Received February 19, 1959)

A further attempt is made to improve the theoretical prediction of the energy of the ground state of atomic
helium. The nonrelativistic part is treated by the variational method of Stevenson and Crawford which is
useful for improving the lower bound for the ground-state energy. Linear combinations of up to 80 terms of
generalized Hylleraas type are employed in the numerical computation. . The best trial function gives—2.9037237 atomic units as an upper bound and —2.9037467 atomic units as a lower bound for the ground-
state energy. It is estimated from the calculated results that the exact nonrelativistic energy of He ground
state will be found in the neighborhood of —2.9037247 atomic units. Rigorous formulas are derived which
can be used for calculating the upper limits to the errors in the expectation values of mass polarization and
relativistic corrections. Although these formulas give very broad limits of error, they are useful in estimating
the order of magnitude of actual errors in a semiempirical manner. With mass polarization and relativistic
corrections as well as electrodynamical corrections, the theoretical ionization potentia1 becomes 198310.77
cm ' which is in good agreement with the latest observed value 198310.82&0.1.5 cm '.

1. INTRODUCTION been estimated to be 1.336+0.2 cm—'. Some improve-
ment in the accuracy of this calculation would be highly
desirable. '

In this paper, we attempt to improve the theoretical
predictions on the 6rst two points. In Sec. 2, trial
functions of up to 80 terms are determined by a vari-
ational method for the lower bound which is particularly
suitable for reducing the discrepancy between upper
and lower bounds. A method is developed in Sec. 3
which enables us to determine rigorous limits for the
errors in the expectation values of the mass polarization
and relativistic corrections. Although these limits are
very broad, they are useful in estimating the order of
magnitude of actual errors in a semiempirical way.

N recent years there has been renewed interest in
-- the eigenvalue problem of two electron atomic
systems, ' ' since it offers an opportunity for a very
precise test of the present atomic theory which is seldom
possible except in the exactly soluble case of one electron
systems. For the He atom, in particular, the latest
observed value' for the ionization potential of the
ground state is 198310.82&0.15 cm ', an accuracy of
better than 1 in 10'. The best theoretical value has been
198310.64 cm ' which is in good agreement with the
measurement. '

However, the theoretical result has not been com-
pletely satisfactory for precise comparison with experi-
mental results because: (1) The estimated accuracy of
the nonrelativistic part of the ionization potential is
about &0.3 cm ' or possibly somewhat worse. This is
based on the determination of the exact ground-state
energy of the He atom by extrapolation from the
calculated upper and lower bounds. The uncertainty
arises since the difference between upper and lower
bounds is quite large (-33 cm ') even for the best
trial functions. (2) The magnitude of the errors in the
expectation values of the relativistic and mass polari-
zation corrections has so far been entirely unknown.
It has been estimated only from apparent convergence
of these expectation values as more and more accurate
trial functions were used. However, this might have
been only accidental. (3) The magnitude of the electro-
dynamical corrections4 for the He ground state has

2. VARIATIONAL METHOD FOR THE
LOWER BOUND

In our previous paper, ' it was found that the upper
bound for the ground-state energy of the He atom
calculated with a 39-term trial function agrees with the
observed value within a fraction of 1 cm ' when the
corrections due to mass polarization and relativistic
eGects as well as the electrodynamical eGects are taken
into account. On the other hand, the corresponding
lower bound is found to be about 33 cm ' lower than
the upper bound, indicating a very large uncertainty
in the accuracy of this calculation. This is not surprising,
however, since it was obtained by a straightforward
variational method for X= (it,HP), which pays no
attention to the improvement of the lower bound A, ~.
Obviously, if one wants to make the difference A,

—A. z,

as small as possible, one should rather try to maximize
the lower bound of the ground-state energy,
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2 T. Kinoshita, Phys. Rev. 105, 1490 (1957).This paper will be
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3 S, Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
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(HAH') —(it H4)'
Xr, = Q,HQ) (2.1)

Er (P,Hf)—
5 An attempt is being made at Cornell to improve the accuracy

of the Lamb shift calculation of the He ground state LM. Zaidi
(private communication) g.
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TABLE I. The constants of the 39-term ground-state wave function of the helium atom determined by the variational method for the
lower bound. The trial function is of the form p=e ')'2 C~ „s' u "t". For convenience, the expansion coeAicients C~ „ listed are
multiplied by 10'. For other notations, see Sec. 3 of reference 2.

X = —2.9037200
XL, = —2.9037906

j0 =3.7098126
0. =0.0000536

(y, y) = 70.9359074
(q,Kq) = 14.9663846
(~,Vq) =111.0449667

(Ky, Kq) = 11.4604114—2(Ky, Vrp) =108.4707813
(Vp, Vy) =288.1384239

lme

000
100
iio
120
112
122
200
210
220
230

10& C&

1.00000000—0.27028452
1.29386710—0.10961317
0.00071339
0.07914980
0.51627618—0.01965337—1.49662980
0.71060994

jme

240
212
222
232
242
300
310
320
330
340

10' Cimn

—0.17406605
0.01212105
1.79502475—1.31753640
0.32604973—0.34830525
0.00440996
1.30616359—0.10499914
0.07443304

lme

322
332
342
400
410
420
430
440
450
422

10~ Ctm~

—0.79438516
0.42137612
0.17609233
0.09723145
0.05017234—0.34517959—0.37652043—0.04120541—0.12748955
0.59010047

lme

442

540
550
560
522
552
660
662

10' Ctmn

—0.25236459
0.01468821
0.25502650—0.04312723
0.09487272—0.11457850
0.06839501—0.04853323—0.00380729

2f (P,HP)—+(HP, HP) =minimum. (2.4)

directly, where E1 is the exact energy of the first excited
state having the same symmetry property as the ground
state. ' A variational method useful for such a purpose
was developed by Stevenson and Crawford some years
ago. 7 Their method is based on a somewhat different
lower-bound formula,

Xr, =f [P 2$—(Q,H—Q)+ (Hf Hf) j'*, (2.2)

where t is a parameter satisfying

~& (&.+& )i2 (2.3)

This is equivalent to (2.1) if I is chosen to be its maxi-
mum value (Es+Et)/2. The alternative formula (2.2)
has the advantage that the best lower bound XL, may
be determined as a solution of the variational problem

repeated as long as the upper bound is improved without
reducing the lower bound.

The numerical work was carried out on the IBM 704
computer at the Bell Telephone Laboratories. To
achieve the accuracy that we want, it was necessary to
perform the calculation making use of double precision
subroutines in some parts.

This scheme of computation was first applied to the
39-term' trial function of our previous work in order to
test its efficiency. As was found in I, it is convenient to
represent each trial function (( by the corresponding
two numbers X= (P,HP) and o.= (HP, HP) Q,Hf)'. I—n
this fashion, the best 39-term function of I is expressed

by the point marked 39-I in Fig. 1. The new 39-term
function obtained by method A of this paper is repre-
sented by the point 39-A. When method 8 is applied

This leads us to a linear eigenvalue problem which may
be solved by any known method.

Since the eigenvalue of (2.4) is known approximately
beforehand, we have solved our eigenvalue problem by
converting it to a set of linear homogeneous equations
in which an appropriate input value is assumed for the
eigenvalue. Let us call this method A. It is repeated
for several values of input parameters and the best
result is then picked up as the solution of the eigenvalue
problem (2.4). Usually the method 2 gives a satis-
factory result for Xl. but the upper bound obtained this
way would not be very useful. Because of this, we have
next tried to improve the result of method 3 by an
iteration method' which is designed to minimize the
upper bound (P,HP). I et us call this method B. It is

20
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' Strictly speaking, since the exact value of E& is not known, a
lower bound for EI should be used in (2.1) to obtain a rigorous
lower bound for the ground-state energy. Instead, we use the ex-
perimental value EI —2.146 atomic units in this paper, hoping
that it will be justified in the future. Recently, N. '|A'. Bazley
/Proc. Natl. Acad. Sci. 45, 850 (1959lg bas obtained —2.165' as
a lower bound for EI. If we adopt this value, our values for X—0 1.
must be increased by about 2.7%.

7A. F. Stevenson and M. F. Crawford, Phys. Rev. 54, 375
(1938).

8 See reference 2, footnote 15.

-2.9037250-

60 I I I I I

0 Q00002 Q00004 Q00006 0.00008 0.00010 0000I2
a =(HQ, HQ)-(Q, HQ)

FIG. 1. The expectation value of energy X= (P,HP), in atomic
units, versus o-= (HQ, HQ) —X', calculated with various trial func-
tions with 39 and 80 terms. The broken curve is drawn to indicate
that no point ((T,X) computed with the 39-term function could be
found below or to the left of it. The dotted curve represents a
similar boundary for th, g $0-&pre ig,nction.
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TABLE II. The constants of the 80-term ground-state wave function of the helium atom determined by the
variational method for the lower bound. For notations, see Table I.

) = —2.9037237
XL, = -2.9037467

A =3.7103976
a =0.0000175

(&,&) = 70.8093643
(q,Kq) = 14.9349951
(y, Vy) =110.8295383

(Kq, Ky) = 11.4370760—2 (Kq, Vq) =108.2456675
(Vq, Vq) =287.5468521

Smn

000
100
110
120
130
112
122
132
200
210
220
230
240
250
212
222
232
242
252
254

10& C)mn

1.00000000—0.32469073
1.36614318—0.18630540
0.06456450
0.00116929
0.08734721—0.03251047
0.94610249—0.50182428—2.29946461
4.13843882—4.83050787
1.86311796—0.00084518
1.87131113—1.61026996
1.06628279—0.29065885—0.00512599

lmn

300
310
320
330
340
350
360
322
332
342
352
354
400
410
420
430
440
450
460
422

10' C& .
—1.61630470

1.31529610
4.92576963—12.79055715

14.20851302—1.36376722—2.59362114—0.69083782
0.45600712—0.92555133
0.28433621
0.04526509
1.81817487—1.96104080—2.98831213
7.32679987
1.52473286—21.12023497

11.97252166
0.50542516

Lmn

432
442
444
466
500
510
540
550
560
570
522
552
572
554
600
610
630
660
680
662

10~ Cimn

—0.24814779
1.10322720—0.11346410—0.00511734—1.11270472
1.49911742—7.14058346

14,15689206
0.05447900—3.72560170—0.07921601—0.68065722—0.04133793
0.06975662
0.29940277—0.43360089
0.52570078—3.67222989
0.65235496
0.19887392

Lmn

666
710
740
770
722
754
776
800
840
880
844
888
930
990
962
996

10,0,0
10,10,0
10,4,4
10,10,10

10~ Cim~

0.02362966
0.03855044—0.17396807
1.31210251
0.00053868—0.00960332
0.04012495—0.01233493
0.06897135—0.37520909
0.00090133—0.02374592—0.00727984
0.05385645—0.00150642—0.00522167
0.00044411—0.00317963
0.00052020
0.00271715

to it, ) is gradually improved as is shown by several
points underneath 39-A which represent the results
obtained at various stages of iteration. The lowest
point 39-8, which is the best result of this computation,
corresponds to the following expectation values, in
atomic units:

80-8, is summarized by

X (80)= —2.9037237,

4, (80)= —2.9037467,

0 (80)= 0.0000175.

(2.7)

X(39)= —2.9037200,

X r, (39)= —2.9037906,

0 (39)= 0.0000536.

(2.5)

The corresponding eigenfunction is given in Table I.'
Comparing (2.5) with the previous result

X (39-I)= —2.9037225,

Xl, (39-I)= —2.9038737,

o (39-I)= 0.0001146,

(2 6)

'The quantities (y, p), (y,Xy), and (p, Up) given in Table I
are about twice as large as the corresponding quantities N, M,L
of Table I of reference 2. The latter must be doubled except for
the case of the 10-term trial function which needs no correction.
This does not affect other parts of reft:gqnce 2,

it is seen that o- is improved by a factor 2.1 while the
new upper bound X(39) is still somewhat worse than
the old one.

At this stage, it was felt that it was necessary to use
trial functions with more terms in order to make any
substantial improvement. Thus, a function with 80
terms was chosen as the next trial function, taking
the capacity of the IBM 704 into account. The point
80-A of Fig. 1 represents the best 80-term function
obtained by method A. Points below it are those
obtained at various stages of Method B. The final
result of this computation, expressed by the point

(2.8)4 = (1 n')Vo+~f—

The corresponding trial function is given in Table II.
It is seen that the ground-state energy of the He atom
is now determined with an absolute accuracy of 8X10 '
(corresponding to X—Xr, ——5.0 cm ') compared with the
previous value of 5.2)&10 '. Although this is an ap-
preciable improvement, there is still a long way to go
if one wants to achieve an absolute precision of order
2)(10 ' which corresponds to an accuracy of measure-
ment +0.15 cm '.

In general, the lower bound obtained from (2.1) or
(2.2), although mathematically rigorous, lies too low
for most problems and thus the actual energy eigenvalue
is expected to be close to the upper bound. In I, an
empirical method was proposed which helps us to guess
the exact eigenvalue of the ground state. From in-
formation then available, it was inferred in I that the
actual ground-state energy will be close to the value
—2.9037237. Our new result (2.7) shows however that
this estimate was actually too conservative. It wouM
still be fair to say that this method, which is nothing
but a linear extrapolation from available data, gave an
estimate of the exact ground-state energy that is

reasonably good though not accurate enough. With the
somewhat better data now at hand, it would be inter-
esting to speculate about the exact eigenvalue of the
He ground state.

For this purpose, let us express the trial function f
as
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TABLE III. Relativistic and mass polarization corrections evaluated with the new 39- and 80-term trial functions. Values evaluated
with the 6-term function is included here for the purpose of comparison. Figures are given in units a'ry except for the last two columns.
Z~, ;, (=—4.000 o. ry) is the relativistic correction for the ground-state energy of H, '+. For notations, see Sec. 6 of reference 2.

Number
of terms

6
39
80

—27.25—27.0341—27.0463

22.83
22.7455
22.7516

lfl +Q tf

0.70
0.6682
0.6682

R3'

—0.29—0.2782—0.2782

arel Bion

—0.01
0.1015
0.0953

arel —+ion
(in cm 1)

—0.06
0.593
0.557

(in cm 1)

4.95
4. /85
4.786

where Po is the exact eigenfunction and f is defined by

(2.9)

The parameter g is thus a measure of the deviation of
P from $0. According to (I.5.5), if two trial functions
have the same value for the quantity Df,Hf) EO7/—
[(Hf,Hf) 2E,(f,—Hf)+Eo'] and differ only in the
magnitude of g, a straight line going through the points
of Fig. 1 corresponding to these functions must intersect
the P-axis at A. =ED. The diS.culty of this method lies
of course in the fact that it is impossible to tell whether
a given pair of points satisfies this condition or not. If
one blindly chooses the points 39-8 and 80-8 for this
purpose, the linear extrapolation gives the value
—2.9037254. From the limited information contained
in Fig. i, however, this value seems to be too low
compared with the exact eigenvalue. This may be
discussed in the following manner:

In Fig. 1, we have drawn a broken curve which runs
just below the points 39-A and 39-I. This is done to
indicate that no point (O. ,X) computed with the 39-term
function could be found below or to the left of this
curve. Although this curve is incorrect in detail, being
drawn mostly by guesswork, it is probably not too far
wrong as a whole. It is to be noted that the vertical
part of the curve is close to the actually computed
points. This is probably reasonable because (a) suc-
cessive points obtained by the iteration method are
found on an almost vertical line, and (b) it was found
very dificult to improve the X of the point 39-8 further
even though it is still not as good as that of 39-I.

Similarly, the dotted curve of Fig. 1 represents the
boundary for the points (o,X) computed with the 80-
term function. This curve unfortunately is much less
reliable than the broken curve for the 39-term functions,
since it is determined by only one point 80-8." Here
we have taken account of the fact that (a) successive

points obtained by the iteration method move slowly

towards the left, and (b) the value of X at 80-8 is better
than that of 39-I.This seems to imply that lower bounds

for some 80-term functions can be appreciably better

"We have tried to find a different set of points by the ordinary
variational method with the 80-term trial function but without
much success. This is due to the unfortunate situation that the
input-output instruction of our coded program of method A was
written in single precision. This has been sufficiently accurate for
the purpose of the lower bound variational calculation but has
turned out otherwise for the upper bound variational calculation. ~

X*(80)= —2.9037247, (2.10)

as our best guess for the exact nonrelativistic energy
of the ground state of the He atom. If our reasoning is
not too wrong, the value (2.10) will probably be ac-
curate within the limits %0.0000005 (or +0.11 cm ').

Finally, let us estimate the accuracy of our 80-term
function, which is possible since both the upper and
lower bounds of its energy eigenvalue are known. Mak-
ing use of the formula (I.5.11), one finds that

qg
——0.0055 (2.11)

can be chosen as a rigorous upper limit for the accuracy
g of the 80-term trial function. If one assumes that the
ground-state energy Eo is exactly given by X*(80), the
upper limit (2.11) may be replaced by"

g2
——0.00115 (2.12)

according to (I.5.10). It is likely that (2.12), although
this is not a rigorous limit, gives a closer estimate than
(2.11) for the accuracy of the wave function.

3. ERROR ESTIMATION OF CORRECTION TERMS

In Table III are given expectation values of the mass
polarization and relativistic corrections computed with
the new 39- and 80-term functions. They are in good

"This will also be inferred from the fact that the expectation
value of the relativistic correction evaluated with the trial
function 39-8 is somewhat different from those evaluated with
the trial function 39-I or 80-8, as is seen from Table III.

"The value of p& given by (2.12) is somewhat larger than the
best p2 in Table II of reference 2. This is partly due to the different
assumption on the exact value of the ground-state energy E0 and
partly to the arithmetical error in the latter in which a multi-
plicative factor 1.148 was overlooked.

than that of 80-8 although the corresponding upper
bounds may be somewhat worse. This is why the
vertical part of the dotted curve is drawn far to the left
of the computed points.

From these considerations it appears that the pair
39-8 and 80-8 are not the proper choice for the purpose
of extrapolation. " In fact we feel that the correct
ground-state energy most probably lies above the
extrapolated value mentioned above. In view of the
improvement of the upper bound from 39- to 80-term
functions, on the other hand, it would not be too un-
reasonable to imagine that the upper bound might be
pushed down by extensive calculation at least half of
the way to the extrapolated value. We shall therefore
choose
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with
(3.2)

QLg, h]—=
I (A g, Bh) I, (3.3)

holds for any function P and operators A and 8 for
which the inner products are finite. The parameter g
and the function f are defined by (2.8). Thus our
problem will be solved if it is shown that C has an upper
limit when A and 8 represent the operators of the mass
polarization and relativistic corrections. We shall now
see that this is the case if one can find upper limits for
ti(f,Ef)l and tillKfil, where E is the kinetic energy
operator —(&I+As)/2.

It is trivial to show this for the mass polarization term

where p is the mass ratio of the electron and He nucleus.
Choosing A = i. and 8=V i V2, one obtains

Qsl f~L7=ul(f, » &s~L)
I ~~llfll liest »ALII

QsLf, f3=p I (f, »»f) I

~u(f Kf)
Thus

with
Cs= p(2Pti+tP (f,Kf)]—, (3.6)

(3.7)

'3Throughout this paper, we use the phrase "convergence of
the trial function p to the exact eigenfunction p0" to imply that
0-~0, where 0-=(II&,P&) —Q,Pp)'. This definition is stronger
than the usual definition ~~@

—
Iip~~

—&0 /or v—&0]. The condition
0-—&0 is sufticient to guarantee the convergence of expectation
values discussed in this section.

'4 T. Kato, Trans. Am. Math. Soc. 70, 195, 212 (1951).

agreement with values calculated with the old 39-term
function. It therefore seems that they are already close
to the exact values corresponding to the correct eigen-
function. If one wants to determine how much the
calculated values differ from the exact values, however,
it turns out that there has so far been no method
available for such a purpose. Here we would like to
report on a search for rigorous methods that can be
used to estimate the accuracy of calculated correction
terms.

Our main result may be stated as follows: There is
always a finite limit for the difference of expectation
values evaluated with any trial function and the exact
eigenfunction, provided the triaL function satisfies the
boundary condition (I.2.6). Furthermore, this limit will
converge to zero as the trial function converges to the
exact eigenfunction. " It is to be noted that, for trial
functions that do not satisfy the boundary condition
(I.2.6), the relativistic corrections can actually be
infinitely large. But (I.2.6) is needed to prove that the
Hamiltonian of the He atom is a Hermitian operator
in a strict sense. " Thus, the same condition which
guarantees the existence of eigenstates of the He atom
also serves to keep the correction terms finite.

I.et us first note that the inequality

may be chosen as an upper limit of error for E2, which
is finite if ti'(f, Kf) is bounded. Note that P can be
evaluated explicitly for any given iP and is finite if the
boundary condition (I.2.6) is satisfied.

To prove it for the relativistic corrections, it is
convenient to express them as the expectation value
of the operator

I HI+ HII+HIII+HI V+HV

rather than the formula, (I.6.2), where

HI 4ct LV1' (Vi+ V2)+1+%2' (Vi+ V2)+sj)

Bzz —~n'~g~2)

(3.8)

Hzzz = —n'Vi. 26~) (3.9)

HI v =
4 II I (v I ' t1) V12 (n ' v 2)+ (v 2

' tL) V 12 (sI ' +1)j)

H v ——-4I n'Eo(& I+&s),

with Vi = —2/ri, Vs ———2/rs, Vis ——1/rts, and
t1=(rs—ri)/lr, —ril This has the advantage that it
does not contain 6 functions explicitly. "Starting from
(3.8), it can be shown that an upper limit for C can be
chosen as

C„I=o.'[Rti(f, Kf) '+S&IIKjii
+(9/»~'(f Kf)'IIKfII+'~'I Kfll'0 (»0)

where R and S are finite numbers defined by (B.6, 9,
16, 19).The derivation of (3.10) is given in Appendix B.

The last step is to show that ti(f Ef)' and tilIKfll are
in fact bounded. This is carried out in Appendix A. Our
result is therefore proved.

As is seen from (A.14) and (A.19), ti(f,Kf)' and
tillK fll converge to zero when P approaches iL e." It then
follows from (3.6) and (3.10) that the expectation values
Es and E„i converge to exact values when P converges
to ice.ts It is to be noted that the coefficients P of (3.6)
and R, S of (3.10) have well-defined upper limits
independent of individual trial functions.

Although our error estimation is rigorous, it is not
likely that it gives useful and accurate estimation of
errors in practice. However, it would be interesting to
see what estimate can actually be obtained with these
formulas. The bounds C2 and C„i have therefore been
calculated for 1-, 3-, and 6-term functions of Hylleraas
type. The results are. listed in Table IV. It is assumed
that the ground-state energy Es is given by (2.10).
Table IV shows clearly that the limits of error evaluated
with formulas (3.6) and (3.10) are extremely large,
which is of course not unexpected.

In the last rows of Table IV, C2 and C„i are given
for the 39- and 80-term trial functions. In this calcu-
lation, we have used quantities P, R, and S of (3.6)
and (3.10) evaluated with the 6-term Hylleraas func-
tion, since they will be approximately equal to the
values evaluated with better trial functions. Also, we

"It is to be noted that those arguments developed in this
section as well as in the Appendixes are also useful in estimating
the accuracy of expectation values of the 6 functions.
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TABLE IV. Rigorous limits of error for the expectation values
of the mass polarization and relativistic corrections calculated
with formulas (3,6) and (3.10).

References
Number
of terms

1
3
6

39
39
80

C2 (in cm ')

52
4.3
2.5
0.17
0.24
0.11

Crel (in cm 1)

880
78
45
2.94
3.88
1.78

a See reference 2.

"These values are, strictly speaking, not rigorous limits of
error since they depend on the assumption that the upper bound
of g is given by (2.12) which in turn depends on the assumption
that the exact energy is given by (2.10). If the exact energy were—2.9037245, C„i would be ~1.61 cm '. If E0 were —2.9037249,
on the other hand, C„l would be &1.93 cm '. Thus our error
estimation is not very sensitive to the value of the exact ground-
state energy.

have chosen (2.12) as an upper limit of g. It is seen that,
even for the 80-term function, errors estimated with
our formulas are still very large, being &0.11 cm ' and
&1.78 cm ' for mass polarization and relativistic
corrections, respectively. "

The following will be the major factors contributing
to this situation: (a) In calculating expectation values
of H„i, strong cancellation occurs among various terms
of (3.9). In the calculation of C„i, on the other hand,
no cancellation occurs since errors always accumulate.
In eRect, C„i would thus represent the error in a
quantity whose magnitude is much larger than E„&
itself. (b) To derive C2 and C„i, Schwartz's inequality
has been used repeatedly. Each application of this
inequality would contribute to the overestimation of
errors. Thus the hnal formulas will overestimate the
C's by some orders of magnitude.

However it is possible to find semiempirically the
extent to which the use of formulas (3.6) and (3.10)
causes overestimation of errors, if it is assumed that
errors are overestimated more or less uniformly for all trial

functions considered here Let u. s first note that the exact
value of E„i, for instance, certainly lies in the range
—22.81~1.78 cm ' as evaluated with the 80-term
function. But the calculated value of E„i is well within
this range even for the 6-term function. This would

imply that the true accuracy of E„ievaluated with this
function is more adequately given by the above range
rather than that evaluated with rigorous formulas
(3.10). If this were actually the case, the upper limit:

C„i must have overestimated the error in E„i by a
factor of order 20 30. This situation would be the
same for all cases listed in Table IV, if the above
assumption of uniformity is valid. In particular the
accuracy of E„i evaluated with the 80-term function
would be of order &0.09 cm ' rather than the calcu-
lated value &1.78 cm '. Similarly, the accuracy of A2
would be about &0.006 cm ' rather than &0.11 cm '.
We believe that these estimated accuracy limits are

still conservative and would be surprised if the exact
expectation values turn out to be outside of these limits.

I P theory= 198310.77 cm (4.1)

Rigorous limits for the error in (4.1) have been evalu-
ated to be ( ~.3+") cm ' which consists of ( o ~3+' ")
cm ' for the nonrelativistic energy, ~0.11 cm ' for the
mass polarization eRect, &1.78 cm for relativistic
corrections, and ( 0 2+") cm ' for electrodynamical
corrections. "These limits, however, are very likely to
have been overestimated by a large factor. As we have
discussed, a more reasonable measure for the accuracy
of (4.1) is of order &0.40 cm ' where +0.11 cm '
comes from the nonrelativistic energy, ~0.006 cm '
from the mass polarization, &0.09 cm from relativistic
corrections, and &0.2 cm ' from electrodynamical
eRects. Within this probable accuracy, the agreement
of our result (4.1) with the latest experimental value, '

I.P.,„~,„;,„,= 198310.8~+0.15 cm ', (4.2)

is quite satisfactory.
Except for the electrodynamical corrections, the

largest source of error in (4.1) is still the calculation of
the nonrelativistic energy. The estimated error of
&0.11 cm ' is probably less reliable than those for the
mass polarization and relativistic corrections. It is
therefore desirable that the accuracy of the non-
relativistic energy should be improved still further. As
was indicated in Sec. 2, it would be possible to improve
it to some extent even with the same 80-term function
if the shape of the dotted curve of Fig. 1 is studied in
more detail. It would be worth mentioning here that
this could be most easily achieved if one employed an
iteration method for the lower bound rather than that
for the upper bound which was used in this work. For
really significant improvement of the theoretical pre-
diction, however, it would be necessary to work with
trial functions with a larger number of terms or those
of an entirely diRerent nature from the Hylleraas-type
functions.

Very recently, Pekeris" has developed an interesting
approach to this problem which is based on an expansion
of f into a triple orthogonal set of three perimetric

"The quoted error in the electrodynamical corrections is not a
rigorous one, but almost certainly the actual value would lie
between these limits, See Sec. 4 of the paper of Kabir and Salpeter,
reference 4.

'8. C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

4. DISCUSSION

As was shown in Sec. 2, the exact nonrelativistic
energy of the ground state of the He atom will be found
close to the value (2.10). Taking account of the finite
mass of the He atom, this corresponds to the ionization
potential 198317.45 cm '. When one includes corrections
due to mass polarization and relativistic eRects as well
as electrodynamical eRects, the final theoretical pre-
diction for the ionization potential becomes
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coordinates. Making use of these trial functions with

up to 210 terms, he obtained the value ) = —2.9037243
as the upper bound of the ground-state energy of the
He atom in the nonrelativistic limit. This value lies
just on the upper edge of the estimated accuracy of
our extrapolated result and thus eliminates the possi-
bility that the exact ground-state energy lies above the
limit which was chosen somewhat arbitrarily. On the
other hand, it is still possible that the exact ground-
state energy lies outside our es]imaged lower limit, since
no better lower bound than (2.7) is yet available. It
would be very interesting to see whether this situation
is greatly improved if a rigorous lower bound is calcu-
lated with Pekeris 210-term function. Finally it is
noted that the mass polarization and relativistic cor-
rections evaluated with his 210-term function agree
with the values evaluated with our 80-term function
within our semiempirical limits of error.
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APPENDIX A. UPPER BOUNDS FOR
n{f,&f)i AND nll&fll

(U»f, U»f) ~4(f Kf)
This follows from the relation""

(A.5)

(1 p' i 1
)tdr( f [

= ——2 ~~ dr uf v„—f
ENi ~ I

[1

&ski J.~
~2 d

~ f ~

—dr(v„f)', (A.6)

which is easily proved by means of partial integration
and Schwartz's inequality. Similarly

(V,f,V;f)~16(f,Ef), i=1, or 2. (A.7)

To And an inequality for V as a whole, we note that

V' ~ Vis+ Vss+ Vi Vs+ V ' (A 8)

holds everywhere as a consequence of rt+rs N. Thus
we have only to find an inequality for V&V2, which
may be derived as follows":

1 1
(Vif Vsf)= —2 dr r~f Vsf+ r,f—V,f-

-r1 r2

noting that Vi+U, is negative everywhere. Because
Ui+ Us+ V~ Vis, one obtains the relation

4(—fEf)'~(f Uf)~(f Kf)'* (A4)

Thus, for any function f for which the expectation
value of the kinetic energy E is finite, it is impossible
to make the expectation value of the potential energy
V arbitrarily large.

We shall consider next inequalities concerning the
square of the potential energy V. Let us first show that

We shall discuss the derivation of upper bounds for
ri(f Kf)' and ti~)Ef(~ where f is a function defined by
(2.8) and thus satisfies the boundary condition (I.2.6).
To begin with, we shall derive several inequalities
which hold for any function f(r, ,rs) that satisfies our
boundary condition. Let us first prove the inequality

X ' d j(v f)'+(v f)'i

~8(f,Ef), (A.V)

(f,U»f) ~ (f,Kf)', (A.1)

d (~f) (v. f) ~ d f'
s

dr(v f)' . (A.2)

where E is the kinetic energy operator and V» ——1/ris
To show this, note that the quantity (f,V»f)fdr{1/N)f' —may be transformed into fdr(Sf)—

(V„f) by partial integration. Applying Schwartz's
inequality, one finds easily that

where (A.7) is used in the last step. From (A.5), (A 7), .
and (A.9), one finally obtains

(Vf, Vf) ~44(f,Ef) (A..10)

We are now ready to show that ri(f Kf)i and ri~~Ef~~
have upper bounds if f is defined by (2.8). Let us first
consider ri(f,Kf)' For this purpo. se, we note that the
function f defined by (2.8) satisfies

n'(f, &f)= (~—&o)+n'&o, (A.11)

Now formula (A.l) follows immediately since (V„f)'
~-,'t (Vtf)'+(Vsf)'). The same consideration applied
to Vi+Vs leads to

4(f,Ef)'~(f, (Ui+—Us)f) (A 3)

"The quantities r&, r&, and I are defined by r,/~ ~, rr, /~r, ~,
and {r& r&l/~r2 r& ~—, respect—ively.

20 It is possible to derive a formula slightly more accurate than
(A.6). The numerical results listed in Table IV are obtained using
this improved formula. However, the change is only of the order
of 370
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where X= (f,HQ). Combining this with (A.4), one and apply Schwartz s inequality. In this manner, one
obtains is led to

q'(f Kf) 4—g'(f Kf)i (li —Eo)+vPEo. (A.12) Qi[f f5~2~'(f Kf)'IIKfll (8 4)
Solving this for p(f,Kf)', one finds immediately that If one denotes by Cz an upper bound for C corresponding

(A 13) to Hz, it is evident from (8.2) and (8.4) that Ci may
be chosen as

iz(f, Kf)'*~ zz,

where

(1 1)2
Rz ——2 ' drl —+—

l f(vgp)2+(vs)'} . (8 6)
&rz r2)

IIKflf ~ flHfll+ lli'fll

holds for any f, while gllHflf is given by

nllHfll = [~+lz' —(1—~'+o'5'

where 0=(H+,H+) X'. Now —a bound for gllVfll is
given by J

The quantity Rz is finite under the boundary cond. ition
(I.2.6) and can be evaluated explicitly for any given f.

In the case of Hzg, the integrals to be evaluated are
(A 16)

a=2g+[p —Eo)+ (4+Eo)g25& (A.14) Ci =a2[«i+2ab5, (8 5)

Since X and the bound ot g are known for given p, a is where a and b are defined by (A.14) and (A.19) and
certainly a finite number and thus g(f,Kf) & is bounded.

In order to estimate izllKfll, it is sufficient to know a
bound for 2tll Vfll since the relation

.III fll~(44)~~, (A.17)

as is seen from (A.10) and (A.13). Thus one finds

Kflf b,
where

b= (44)'a+[o+X2—(1—q2)8225'. (A.19)

+( V 0)( V f)}, (8.7)

and Qiv[f, f5 Using .the same method as above, it is
easy to show that an upper bound for C may be chosen
as

Obviously b is a finite number for given f and thus
~IIKfll is bounded where

Czv =z2'[«zv+ 2zzb5, (8.8)

APPENDIX B. ERROR ESTIMATION OF
RELATIVISTIC CORRECTION TERMS

Ke shall derive formulas which give upper bounds
for the errors in the expectation values of the relativistic
correction terms (3.9). Let us first consider Hi. To find
an upper bound for the C corresponding to Hi [see
(3.2)5, one has to estiznate the quantity

1 11
Qz[&f5='~' ' drl —+—

l( ri r2J

xf(Vzk) (Vzf)+(V24) (V2f)} . (8.1)

This can be carried out easily if one notices that

f
Rzv= — dr {(22 Vzp)2+(—iz 'V2$)2} . (8.9)

N

It is to be noted that there are many alternative ways
to derive the upper bounds. Our Cz and Cz~ are selected
in such a manner that their leading terms (linear in g)
depend only on (f,Ef). This would give the best result
since possible effects of fluctuation in the curvature of
the function f are thus minimized.

For Bzz or Bzzz, however, it seems to be impossible
to find an upper bound Czz or Czzz whose main terms
depend on (f,Kf) only. As is seen below, the main
terms of Ciz and Crzz contain llKfll and thus depend on
the curvature ot the function f more strongly than do
Cz or Czv. The integrals to be considered here are

(1 1 q2
Q [4,f5~-: ' d

I

—+—
I ((V,4)'+(V,P) }

&ri r2)

X dr f (Vif)'+ (V2f)'} (8.2)

holds for any iP and f satisfying the boundary condition
(I.2.6). To evaluate Qz[f, f5, on the other hand, one
may rewrite it as

and

Qzz[4, f5=— «&zk&2f,

1
Qzzz[4'~f5=z2' d& 4'~ f—

N

Qzzz[fA'5=&' d& f~&-
(8.10)

(8.11)

2z2 dr[(Vlf) .((ri Vi+r2 V2) (Vif) }
+(V2f) ((rz Vz+r2 V2)(V2f)}5, (8.3) CIII zz [«zzz+b~»I+2izb5 (8.12)

As is seen at once from (8.11), an upper bound Ciiz
may be chosen as
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where
+»r=2II~A'll Sirr= Ill »+II. (8 13) = ——',n'EOLX —Eo(1—vP) j, (8.17)

In order to find an upper bound Czz corresponding to
Hzz, let us note the following inequality:

1
2

dtdlf62f — drA1$62$ d~a, fa,f, (8.14)

which can be proved using Schwartz's inequality in a
slightly modified manner. From this it follows that
Czz may be chosen as

where it is assumed that the trial function f satisfies
the virial theorem. Since this is the case for P's con-
sidered here, " the accuracy of (P,H~) is obviously
just as good as that of the variational calculation of the
nonrelativistic energy eigenvalue X. Ke may therefore
regard QD,Hvgo) as exactly known and omit it from
our considerations.

Collecting the results obtained, one may therefore
choose

&rr =a'Lb&rr+ 4b'j, (8.15)
C„i=u'I aR+bs+ (9/2)ab+xib'7, (8.18)

where
1

drAifAgP
2 ~

(8.16)

&=&i+&»i+derv,
s= sir+siir,

(8.19)

The last term Hv may be treated completely differ-

ently from the others, being proportional to the kinetic
energy E. in this case, the left-hand side of (3.1)
becomes

as an upper bound for the error in the expectation value
of the entire relativistic correction H„i.

"This is because our trial functions are always chosen so that
the upper bound 'A is minimized with respect to the scale parameter
h. For details, see Sec. 3 of reference 2.
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A classical theory of inelastic atomic collisions is given. It is shown that inelastic scattering, ionization,
excitation, and other interactions between charged particles and atoms are due to the Coulomb interaction
with atomic electrons and depend in a first approximation on their binding energy and momentum dis-
tribution. All cross sections can easily be calculated by means of differential cross sections a(AE) and
0(dE,6) derived in the binary encounter approximation. Numerical calculations have been made for
several cases and are in very good agreement with the experimental results.

I. INTRODUCTION

&HE difficulty of explaining on the basis of classical
mechanics some experimental facts observed in

atomic collisions and the sufficiently good results
obtained by wave mechanics have been viewed as
proof of the nonvalidity of classical mechanics for
processes involving the interaction of charged particles
with the atomic shell."Consequently the explanation
of all such processes has been sought by using wave
mechanics without investigating the possibilities of a
classical interpretation of these phenomena. The
slowing down of charged particles in a medium had
also been treated in this way. In a recent paper' the
author analyzed this process on the basis of classical

' H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic
Impact Phenomena (Clarendon Press, Oxford, 1952), p. 9.

2 N. F. Mott and H. S. W. Massey, The Theory of A/omic Col-
lisions (Clarendon Press, Oxford, 1949), second edition, pp. 200,
201.

3 M. Gryzinski, Phys. Rev. 107, 1471 (1957).

mechanics and showed that the disagreement between
the first classical theories4' and experiment, particu-
larly in the low-energy range, was the result of an
approximation which neglected the orbital motion of
the atomic electrons. It was noted that the eGect of the
interactions in a Coulomb field varies as the fourth
power of the relative velocity.

The excellent agreement of the classical stopping
theory given by the author with experiment auto-
matically gave rise to the suggestion that other processes
occurring in atomic collisions, which, after all, make
up the stopping process, should be treated in this way.
Thus, employing the results of Chandrasekhar' and
Williamson and Chandrasekhar7 on the collisions of
gravitational masses, we shall construct in the binary

4 N. Bohr, Phil. Mag. 25, 10 (1913);30, 581 (1913).
'H. A. Bethe, Ann. Physik 5, 325 (1930).' S. Chandrasekhar, Astrophys. J. 93, 285 (1941).
7 S. Chandrasekhar and R. E. Williamson, Astrophys. J. 93,

308 (1941).


