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Antishielding and Polarizabilities in Alkali Halide Gases
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The ionic model that has been used in an attempt to explain
egg/h data in ionic gases and solids is examined, extended, and ap-
plied to alkali halide gases. It is shown that the antishielding fac-
tor, y„, multiplies the unshielded value of q, (O'V/BZ'), produced
not only by an external charge but by all the external moments,
and some of these effects are important in alkali halide gases.
In order to estimate the magnitude of the contributions to q of
such moments, polarizabilities are calculated that apply to alkali
halide internuclear distances. These polarizabilities are often
much smaller than those calculated for the free ion. Polarizabilities
and y 's are calculated using both Hartree and Hartree-Fock
wave functions and are compared. The values obtained using
the Hartree-Fock wave functions are consistently smaller. Some

second order calculations of the polarizabilities and antishielding
factors are calculated by a direct substitution method. The results
indicate that for the alkali halide gas calculations perturbation
theory is applicable to the alkali ions but not to the easily de-
formable halide ions for the situation considered here. This is
probably the reason the ionic model has always yielded poor
results for the halide ions. When the ionic model is extended, as
described in this paper, and applied to the alkali ions, a set of
antishielding factors is found for which there is agreement between
theory and experiment or would be if Hartree-Pock wave functions
were available to calculate y . From this model the nuclear
quadrupole moment, Q, of Li' is found to be —0.016X10 "cm'.

I. INTRODUCTION

'HE nuclear quadrupole coupling constant (egg/h)
has been measured in many alkali halide gases and

ionic solids. To understand the results one would like
to be able to calculate the second derivative of the
electrostatic potential evaluated at the nucleus, q.
This can then be compared to experimental values of q
obtained from egg/h if the value of the nuclear quadru-
pole moment, Q, is independently known. However, if
one is confident of the calculation of q, values of Q
can be obtained from these measurements. Much of
this paper is devoted to calculations that are shown to
be required if one is to compare experimental values of

q to calculated ones. Then in the case of I i the procedure
is reversed and a value of Q is obtained from the
measured egg/h and the calculated q.

Foley, Sternheimer, and Tycko' have shown that j
of an ion, due to an externaL charge, c, a distance R
away can be much larger than the value 2c/R' which is
found by ignoring the effect of the electrons on the ion.
Enhancement comes from the perturbation of the ion's
electrons by the external charge. Considering the
perturbation for this ionic model, they showed that q
can be written as (2c/R')(1 —y„), where y„ is the
antishielding factor for the particular ion. They applied
this model to some nuclear quadrupole coupling data
of alkali halide gases and showed that the data gave
some support to the calculations.

The antishielding factor has been used in explaining
other experimental data with various measures of
success. For example, Proctor and co-workers have
induced nuclear spin transitions in crystals by ultrasonic
waves. ' In ionic crystals one can calculate the q pro-

' Foley, Sternheimer, and Tycko, Phys. Rev. 93, 734 (1954);
R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731 (1956);
R. M. Sternheimer, Phys. Rev. 84, 244 (1951).' W. G. Proctor and W. H. Tanttila, Phys. Rev. 98, 1854 (1955);
101, 1757 (1956); W. G. Proctor and W. Robinson, Phys. Rev.
j.04, 1344 (1956).

duced by the ultrasonic waves. This calculation involves
the enhancement factor. It is difficult to make precise
comparisons with the measured quantities because one
must know the ultrasonic energy density which involves
some uncertain terms. However, the experiments indi-
cate that q is larger than one would expect from a
simple ionic calculation where antishielding effects are
omitted.

The requirement that one know the energy density
in this type of experiment has been eliminated by
Jennings e1 al.' by measuring the ratio of quadrupole
coupling of sodium and iodine in a NaI crystal. By
applying the ionic model and using known values of Q
for Na and I they obtain a ratio of the antishielding
factor of iodine to that of sodium which is of the order
of magnitude of the theoretical ratio. 4

Nuclear quadrupole spin lattice relaxation times, T&'s,

have also been interpreted in terms of the ionic model'

by Van Kranendonk. Wikner et a/. ' have measured a
number of T~'s in alkali halide crystals and have shown
that calculated relaxation times based on the ionic
model are in agreement with some of the data and the
antishielding factors are close to the theoretical values.
However, for other crystals, covalent effects are more
important in determining the relaxation mechanism
than the ionic effects.

Bersohn' has shown, in a number of ionic solids, that
there is reasonable agreement between measured values
of egg/h and those calculated from the ionic model.

In general, experimental evidence indicates that the
antishielding factor exists but there is little quantitative
agreement between the measured values and those
theoretically calculated. The object of this paper is to

3 Jennings, Tanttila, and Kraus, Phys. Rev. 109, 1059 (1958).
4They obtain a ratio of 10.9. Vsing p„ for I of —179 (see

reference 8) and y„ for Na from reference 1 or 7, 32.5 and 35 is
obtained.' J. Van Kranendonk, Physica 20, 781 (1954); Wikner, Blum-
berg, and Hahn (to be published).

s R. Bersohn, J. Chem. Phys. 29, 326 (1958).
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re-evaluate the ionic model and to apply it to alkali
halide gases to compare the values of q measured to
those predicted by this model. To make this comparison,
several extensions of the model are shown to be required.

First, it is shown that (1—y„) multiplies not only
the eRect of an external spherical charge but the eRects
of all the external moments. These terms can be
important when considering the alkalies in alkali halide
gases. To see the eRects of these terms, the polariza-
bilities (dipole nD, quadrupole no, octupole no, and
hexadecapole rrrr) of Cl and F are calculated for the
case R equal to alkali halide internuclear distances. It
is shown that using these values the calculated values
of eQq/h are now in good agreement with the experi-
mentally measured ones for Na+ and K+ but not for
Rb+ and Cs+. However, investigation of the values of
y„calculated from both the Hartree-Fock and Hartree
wave functions shows that the agreement would be
good for all four alkalies if Hartree-Fock wave functions
were available for Rb+ and Cs+. The polarizabilities
are also dependent on which type of wave function is
used.

Finally, the applicability of perturbation theory is
examined. Certain second order terms in the polariza-
bility and antishielding factor are calculated by a direct
substitution method and considered with other second
order calculations. ' The results indicate that in this
situation perturbation theory is applicable to the alkali
ions but is not to the easily deformed halide ions.
Thus, it is reasonable that theory and experiment are
in good agreement for the alkali ions but not for the
halide ions.

II. ANTISHIELDING

One can attempt to explain the alkali halide gas data
by considering the molecule to be strongly ionic and
that higher order interactions between the ions can be
treated as perturbations on the spherical ions. The
zero-order wave functions Qs) used are those of the
Hartree (H.) or Hartree-Fock (H.F.) type for free ions.
In this case q at site A, q~, equals 2c/R', where c is the
charge of the ion at site H. (See Fig. 1.) The spherical
distribution of A s electrons contribute nothing to q~.
However, the charge, c, interacts with the electrons on
A. The potential energy of the interaction is

1 r coso r2 3 cos'0 —1 r'
—ec —+ +— +—Ps(cos0)

E E2 R' 2 E4

+—P4(cos0)+
E.'

where P;(cos0) is the ith I.egendre polynomial. If (1)
is considered as a perturbation on Ps to first order, only
the term r'Ps(cos0) contributes to antishielding. This
term has matrix elements connecting states with s
orbital angular momentum and those with d, and p

SITE A SITE H

Fxo. 1. Electron on ion 3 in field of charge c.

where tP(=gs+10i) is the wave function of A's electrons.
The result is given by —(2c/R')y„. The antishielding
factor, p, is a pure number depending only on the
wave functions of the ion being perturbed. Hence, to
first order,

This antishielding factor has been evaluated for a
number of ions by solving numerically the first-order
perturbed Schrodinger equation. ' It has also been
evaluated by a variation-of-parameters method. ~'

Now consider the eRect of a dipole p, oriented
along the s axis at site H. Besides having a direct
contribution to the field gradient given by q&=6p/R4,
it also interacts with A 's electrons. The potential
energy of this interaction is

1 2r 3r2—ep —+—cos0+ Ps(cos0)+
R' E.' E4

(3)

The r'Ps(cos0) connects the ground. states to the same
excited states as the point charge calculation of Eq.
(1). Since the same excited states are involved, one
need only consider the diRerence in the constants when
using (1) and (3) in an antishielding calculation to get
the difference between (2) and its counterpart for an
external dipole. The result is

where this is the same y„as in the point charge case.'
In a similar manner the eRect of any axial symmetric
moment at H will be multiplied by the same (1—p ).'s

7 T. P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956).
E. G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958).' G. Burns, Bull. Am. Phys. Soc. Ser. II, 3, 147 (1958).' One can arrive at (4) directly from (2) by placing a positive

and a negative charge along the s axis, applying (2) for each and
then going to the proper limit to get a dipole. Since (1—y„) is a
pure number it factors out and one gets (4). In a similar manner
one gets the same type of result for any moment that can be repre-
sented by an axial charge distribution. One can also get estimates
of the effect of the nonideal character of the moments by allowing
the charges to remain apart. The effects of the nonideal character
of the moments are much smaller than the effects of the moments.
This can, of course, be treated more formally with equations
similar to (3).

orbital states are connected to other states with p and

forbital angular momentum (s ~ d, p ~ p, and p ~f) .
The contribution of this perturbation to the fieM.

gradient is given by
3 cos'0 —1

ipdr,
r3
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where the subscripts refer to the properties of the
particular electron distribution" and the moments have
their usual definition. " The moments p, Q, etc. , are
those induced in the H-ion electron distribution by the
ion A.

To facilitate the comparison of this model with
experimental results, a quantity a is defined as

(measured coupling constant) ~

(e/h) Qg[2c/R'+ 6@/R'+6eQ/R'+ 10eO/R'
+30eH/MP+ . .jg

(6)

The quantities x and (1—y„) should be equal if the
theory applies to the alkali halides.

Considering only the contribution z from an external
charge, as has been done in the past, the agreement for
the alkalies between ~ and. (1—y„) is only approximate.
However, the ~'s are internally consistent. That is, the
z for a given alkali is relatively independent of its
neighboring halide. (See column P in Table III.)
However, the contributions to z of the alkalies from
the p and Q terms are large and it was not apparent
that additional terms would cause ~ to converge. The
investigation of this point was thus undertaken.

On the other hand, z for the halides is aGected only
slightly by the p, Q, etc., terms because the polariza-
bilities of the alkalies are relatively small. However, the
agreement between s and (1—y„) for the halides is
extremely poor and the values of ~ in this case are not
internally consistent. A simple application of the
Townes and Dailey" covalent theory does not help to
understand q for the halides in alkali halide gases.
Some calculations of second order effects in Sec. IV
show why this simple ionic model is inadequate for the
easily deformable halides.

III. MOMENTS

As mentioned in the last section z for the alkalies
did not appear to converge as the effects of the p, Q,
etc., moments of the halides were added. . It must
converge if the model is to be useful. Higher order
polarizabilities were therefore calculated to test this.
If the ~ does not converge, either the model must be

"For the sake of clarity and simplicity, liberties have been
taken with the sign of some of the effects of the moments in (5)
and similar equations that follow. The sign of the effects of all
the induced moments is the same as the sign of the 2c/R' term.
Thus, the moments in the electron distribution can be calculated
without regard to sign. The sign of the contribution to q from all
the moments at I4 can then be taken as the same as the sign of
the charge, c, eRect.

'
p = (r cose) =fg*r cose&dr, eQ =(rs (3 cos 8—1)),eo= (r'(5 cos'e

-3 cos8)), eII =(r4(35 cos48 —30 cos'8+3))
&' C. H. Townes and B.P. Dailey, J.Chem. Phys. 17, 782 (1949).

Thus, the total q at site 3 is

2c 6p 6eQ 10eO 30eH
q~= (1—v-~) —+—+ + + +, (~)

E.' E' E' E.' 8R'

abandoned or the reason that the calculated moments
are too large must be found.

Two methods of calculation are used here to deter-
mine the polarizabilities. They are the variation-of-
parameters method, similar to that used by Das and
Bersohn, 7 and a numerical solution of the first order
perturbed Schrodinger equation similar to that used by
Sternheimer. "' In all cases, where both methods are
used to calculate the same polarizabilities, the agree-
ment is good. The polarizabilities are calculated for
application to alkali halide gases where 8=2.5 A.

For details of the type of variation-of-parameters
procedure used, reference 7 should be consulted where
nq and p„are calculated. To calculate a polarizability,
one need only select the proper term from Eq. (1) to
use as a perturbation. For example, the Pq(cosg) term
will connect the ground state wave functions to excited
state wave functions that have the correct angular
dependence to give first order contributions to eD.
The Ps(cos|)) term acts as a perturbation for n@, etc.
The energies associated with the quadrupole pertur-
bation are given in reference 7. The others are in the
Appendix.

Following Das and Bersohn the form of the radial
perturbed wave function used is (o.+Pr+yr')H&(r)Ns',
where H&(r) is the radial form of the perturbation, sp'
is the radial ground state wave function, and n, P, and
y are variation parameters to be obtained from the
minimization-of-energy procedure. To see if the assumed
form of the wave function is a good one the polariza-
bilities are first calculated using o. only, then using o.
and P, and finall using n, P and y. The addition of the
parameter y always had negligible eGects. When the
polarizabilities calculated here could be compared with
other published calculations, the agreement was
good. '" " The results of these calculations are in
Table I. In this table the contribution from each type
of excited state wave function is listed for the outer
electron shell and the polarizability is found by sum-
ming the contributions from the appropriate states.
The contribution from the inner shells is negligible.
Also one can see that the use of Hartree-Fock rather
than Hartree wave functions has a large e8ect in
reducing the values of the polarizabilities. It must be
remembered that the polarizabilities are obtained by
using the appropriate terms in Eq. (1) as perturbations
and it will be shown that one cannot always apply
these to ions in alkali halide molecules, since Eq. (1) is
good only for r &R.

The second method used to calculate Ni' is the
numerical solution of a differential equation in a manner
similar to that described by Sternheimer. "' The per-
turbed radial wave function with orbital angular

' R. M. Sternheimer, Phys. Rev. 96, 951 (1954).
'5 R. M. Sternheimer, Phys. Rev. 107, 1565 (1957)."See Table I of reference 8. However, the angular factors have

been left out and their values of E2 must be multiplied by the
proper numbers as in reference 7.
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TAB&,K I. Contributions to the polarizabilities from the outer shell electrons. '

Eon
(type of wave

function used) b

F (H.)
F (H.F.)
K+(H.)
K+(H.F.)
Cl (H.)
Cl (H.F.)
Xa+(H.F.)
Rb+(H. )
Cs+(H.)

ag)(A )

p

3.432
1.237
1.371
0.9719

12.233
5.026
0.1320
2.775
5.787

S

O. iio
0.076
0.1587
0.1211
0.6067
0.6174
0.01013
0.3405
1.037

ng (A5)

p~f
10.52
1.493
0.7541
0.4149

43.422
7.780
0.03217
1.898
5.057

11.24
1.384
0.3713
0.1851

37.350
5.322
0.02262
0.7892
1.766

0.0738
0.0256
0.0431
0.0294
0.2997
0.3202
0.001375
0.1080
0.4291

0(A')

45.01
2.340
0.5275
0.2254

214.92
16.44
0.009807
1.665
5.747

35.41
1.787
0.3731
0.1569

167.24
12.54
0.007227
1.152
3.882

S ~g
0.42
0.0527
0,0651
0.0396
0,877
0.975
0.001065
0.1920
0.957

904.0
14.81
1.276
0.4066

4745.3
149.5

0,01141
4.758

20.51

p -+h

745.1
11.85
1.015
0.3211

3879.4
122.3

0.009192
3.742

16.08

a The inner shells contribute negligibly.
b References to original calculation of the Hartree and Hartree-Fock wave functions are conveniently summerized in R, S. Knox, Solid-State Physics

edited by F. Seitz and D. Turnbull (Academic Press, Inc. , New York, 1956), Vol. 4, p. 413. For the F (H.F.) results see C. Froese, Proc. Cambridge
Phil. Soc. 53, 206 (1957).

By using

and

1 d' l (k+1)
up ~

r2uo -dr

d'u&'(r) u~'(r+8) —2u~'(r)+u~'(r —
&)

dr2

for the second derivative, where 8 is the interval
between the listed values of uo', one obtains

l'(I'+1) —l (1+1)
u, '(r+8) =up'(r) 2+2

r2

momentum /' which is connected to the ground state
radial wave function, uo', with orbital angular mo-
mentum l satisfies Eq. (7) when E~ ——0.

d' l(l+1)
+— +go —Ep uy = Hy(r)uo . (7)

negligibly small and the polarizabilities are then the
same for the two solutions. The polarizabilities obtained
by this method are in good agreement with those
calculated by the variation of parameters method.

Upon examination, the higher the moment under
consideration, the larger the contribution to the polar-
izabilities from the outer part of the electron distribu-
tion. For example, the Hartree-Fock wave function for
Cl has only 2% of the 3p electron distribution at
distances greater than 5 a.u. , yet more than 50% of
the contributions to nq in Cl come from the region
past 5 a.u. This percentage increases rapidly for higher
moments. Thus a calculation of polarizability that does
not treat the problem accurately for large r will yield
incorrect results.

If the polarizabilities are to be applied to alkali halide
internuclear distances, it must be remembered that
Eq. (1) is good only for r(R. For r) R the perturbation
1s

8 coso E.2—ee —+ +—P~(cos9)+
r f2 rs

uo'(r)

This gives u1' at all values of r if two starting values are
known. The solution is started with uj'(r —8) equal to
zero at the origin and u~'(r) at r =0.01 is varied until u~'

behaves properly at inanity. In practice, solutions of
(10) are used that diverge slowly to +~ or —~. The
diGerence over the region of interest could be made

-20

This is much smaller than (1) for r)R and gives
smaller u1"s and polarizabilities.

To get polarizabilities that apply to alkali halide
internuclear distances, so that, the proper moments can
be substituted in (6), u~' is obtained from (10) as
before, but the value of Hq(r) from (1) or (11) is used
depending on whether r is sma11er than E or larger than
R. (See Fig. 2.) Then, for example, the quadrupole
polarizability is calculated from

-I5

-IO

a-e.ooo,
~J p

1
uo'r2ux'dr+R~ uo us~dr, —(12)

and similar equations for the other polarizabilities
where the I"s are the angular parts of the integrations. '~

0
4 5 6

RADIUS (ea)
T 8 9 IO

FIG. 2. R'N1' vs r for several values of R for the
0 perturbation p ~ g,

"The definitions of the polarizabilities are: p= —n&BU/Os
=ng)E, eQ=ngB'V/8's eO= —nod'V/Bs', eII=nIIB'V/8s'. This
makes the polarizabilities independent of R. The Y's are angular
factors that appear in the expressions for the polarizabilities in
the Appendix.
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TABLE II. Contributions to the polarizabilities from the outer electron shells for several values of E.

F (H.F.)

R (atomic
units)

2.8
34
3.6
40
4.5

- (A)
p

0.4270
0.5498
0.5827
0.6669
0.7051

0.0522
0.0605
0.0624
0.0662
0.0674

aq(A5)
p ~f
0.1759
0.3079
0.3557
0.5222
0.6304

0.1180
0.2393
0.2870
0.4738
0.6078

0.00963
0.01446
0,01580
0.01916
0.02053

0.06585
0.1647
0.2113
0.4257
0.6202

0.04227
0.1057
0.1356
0.2733
0.3982

0.00814
0.0164
0.0195
0.0293
0.0349

aug (A9)
p~f

0.05460
0.1945
0.2770
0.7748
1.3786

p ~Ig

0.04037
0.1438
0.2047
0.5728
1.0183

Cl (H.F.) 3.8
4.5
5.0
5.5

2.308
3.010
3.372
3.635

0.4203 1.3442 0.5141
0.5072 2.2497 0.9814
0.5427 2.8648 1.5468
0.5635 3.4723 1.8615

0.1256 0.7592 0.4874
0.1880 1.7194 1.1038
0.2237 2.6817 1.7216
0.2502 3.8397 2.4650

0.1687 0.9888
0.3308 3.109
0.4579 5.925
0.5780 10.142

0.7303
2.297
4.377
7.491

Polarizabilities were calculated for several values of R
for Cl and F using Eqs. (10), (11), and (12). It was
noted that the variation of parameters method gives
good agreement with the above results if all the inte-
grations are carried up to R instead of ~. Thus, the
electron distribution between R and ~ (=2%) is
ignored. It is reasonable to expect agreement between
the two methods, since (11) and (12) strongly decrease
the contribution of the electron distribution at r)R.
The use of the variation of parameters method to hnd
the polarizabilities for various R's is the simpler of the
two.

Polarizabilities of F and Cl for several values of R
calculated by the variation of parameters method are
given in Table II. As can be seen, there sometimes is a
large difference between the results in Table II and
those in Table I. The results in Table I are applicable
when the charge, t,", is outside the electron distribution.
Agreement between the two methods of obtaining
polarizabilities, applicable to alkali halide internuclear
distances, cannot be expected to be extremely precise,
since many of the polarizabilities are strongly R-
dependent and in the region of interest the 6's are
relatively large. Also, the two methods only qualita-
tively have the same effects and there is an inexactness
associated with the fact that the 5's in the region of
interest are relatively large and approximations such
as Eq. (9) and the use of the trapezoidal method of
integration introduce errors. However, the numerical
solution for a given R gave values of polarizability
closest to the variation of parameters solution for the
same R. Thus, the two methods are in agreement.

Some comments are appropriate at this point.
The polarizabilities calculated from this point charge

model, as just described, vary with R. Thus, even nD
for an ion should vary slightly with R. A variation has
been seen" but the variation is not in a consistent
direction. It must be remembered that distortion effects,
due to closed shell repulsion, are being neglected and
this may not be reasonable for the easily deformable
halides and it will be shown that other factors enter
when second order perturbations are considered. The

' W. Klemperer and S. A. Rice, J. Chem. Phys. 26, 618 (1957);
S. A. Rice and W. Klemperer, J. Chem. Phys. 27, 573 (1957).

point charge model can be extended" but it was felt,
for this problem, the return would not warrant the
effort.

It has been pointed out' that in the presence of inner
shells having the same orbital angular quantum number
as the excited state, the variation of parameters pro-
cedure must be modified slightly to keep the wave
functions orthogonal. For example, in the quadrupole
p-+ p perturbation for a 3p electron, the perturbed
state must be made orthogonal to not only the 3p state,
which has been done, but to the 2p wave function also.
This has not been done because this efIect on the
polarizabilities is small as can be seen by comparing
the p ~ p contribution to no in Table I to that obtained
by Wikner and Das."This effect on a y„calculation
is, however, larger and has been taken into account
for the values of y„quoted in the next section. In most
polarizability calculations in this paper it is not neces-
sary to consider this at all, since the perturbed state is
orthogonal by virtue of its angular dependence.

The variation of parameters solution was tried for
the dipole cases s —+ p, p —+ s, and p —& d. It worked
well for all but the p —+s where changing u~' from
nH~(r)NO' to (n+Pr)H~(r)no', etc. , resulted in major
changes in the dipole polarizability. When the numerical
solution for this case is considered" it is seen that u~ is
much closer to the origin than No' and has more nodes.
This type of function is not expressable in the form
that has been chosen for the variation of parameters
u~'. It is fortunate that the p —+ s and s —+ p contribu-
tions to nD as calculated numerically by Sternheimer"
and this author almost cancel, with the s ~ p being a
bit larger. The s~ p contribution to no is decreased
slightly by use of (11) as has been discussed. Thus,
nD is even more closely given by the p ~ d contribution
alone. This p —+d contribution is listed in Tables I
and II.

The last point is that (11) should be used in calcu-
lations of y„also. However, the use of (1) only, leads
to much less error than in the polarizability calculations

'9 See the references and work in Hirschfelder, Curtiss, and
Bird, Molecular Theory of Gases arid Liquids (John Wiley R Sons,
Inc. , New York, 1954), Chap. 12.

"See Fig. 2 of reference 14.
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TABLE III. Values of a for the alkali ions.

Mol a b e (1 —y~)d

LiF (0.74)
LiCl
LiBr
LiI

P+D P+D+Q
P+D P+D+0 +0+o +o+II

1.30 0.788 0.594 0.487 0.453
1.43 0.681 0.485 0.388 0.348
1.69 0.759
2.11 0.875

NaF
NaC1
NaBr
NaI

(5.1) 7.26 5.18
10.21 5.94
10.53 5.75
11.12 5.64

4,01
4.55

3.57
3.81

3.35
3.49

KF
KC1
KBr

(14) 15.71 12.03 9.433 8.11
22.60 14.56 11.93 10.54
23.04 14.08

7.47
9.91

RbF
RbC1

(72)

CsF (145)

46.04 36.07 28.96 25.11 23.21
66.02 43.91 36.78 32.72 30.91

76.57 59.90 48.28 42.19 38.95

a Values of egging can be found in N. F. Ramsey, Molecular Beams
(Oxford University Press, Oxford, 1956), p. 311 and in Logan, Cote, and
Kusch, Phys. Rev. 86, 280 (1952).

b The values of the internuclear distance, R, are obtained from Honig,
Mandel, Stitch, and Townes, Phys. Rev. 6, 629 (1954).

e The values of the nuclear quadrupole moment were obtained from the
following sources: (1) Li'. the value of Q is not known, —0.016 b is used
since it makes Ic agree with 1 —y~. See Sec. V. (2) Na": +0.01 b—Perl,
Rabi, and Senitzky, Phys, Rev. 98, 611 (1955).See also Bersohn's comment
in. reference 30. (3) K»: +0.07 b—P. Buck and I. I. Rabi, Phys. Rev.
107, 1291 (1957). See also K. Murakawa's comment, Phys. Rev. 110, 393
(1958). (4) Rb87: +0.12 b—B. Senitzky and I. I, Rabi, Phys. Rev. 103,
315 (1958). (5) Cs'»: —0.003 b—Buck, Rabi, and Senitzky, Phys. Rev,
194, 553 (1956); K. Altho8, Z. Physik 141, 33 (1955).

d See references 1 and 8.' Values of nD are taken from reference 23.

since p weights more heavily the internal part of the
wave function which is relatively independent of E.
Also, it is known that the self-consistent wave functions
have too small a value at small r.21 Thus, the use of
(11) would make 7„smaller and the use of better wave
functions would make & larger so the two errors may
somewhat compensate.

IV. RESULTS AND SECOND ORDER EFFECTS

2'T. Yamanouchi and H. Horie, J. Phys. Soc. (Japan) 1, 52
(1952). G. C. Donsmanis LPhys. Rev. 97, 967 (1955)g says the
Hartree-Foek (1/r )3is 8'Po too low for oxygen. T. P. Das Pj.
Chem. Phys, 27, 1 (1957)j calculates 0.216 (atomic unit) for
(1/r') and compares it to an experimental value of 0.323 (atomic
unit). See also A. Mukherji and T. P. Das, Phys. Rev. 111,
1479 {1958).

"The moments in one ion are induced by all the moments of
the other ion Lsee S. Rittner, J. Chem. Phys. 19, 1030 (1951)].
The effect of Q, 0, and H in inducing moments in the other ion
was small and thus neglected. Rittner shows that a simple ionic

The polarizabilities applicable to alkali halide inter-
nuclear distances, as listed in Table II, can now be
substituted in Eq. (6) so that ir can be compared to
(1—y„) for the alkali ions. Table III shows the results.
The column labeled I' shows ~ when only a point charge
is considered at the halide ion site, as has been done in
the past. It is seen that the ~ for a given alkali ion is
relatively independent of its neighboring halide ion.
The I'+D column shows x for the alkali ions when a
charge and induced dipole, "using experimental dipole
polarizabilities, " are considered at the halide ion site

Notice that the spread of ~ for a given alkali ion is
reduced considerably. The third column shows A: when
the effects of a charge, induced dipole, and induced
quadrupole are considered at the halide ion site where
the polarizabilities are taken from Table II. The next
two columns consider the addition of an octupole and
hexadecapole. If the polarizabilities in Table I were
used ~ would clearly diverge.

The values of Q used are those obtained from molec-
ular beam measurements except in the case of Li where
no reliable value of Q exists. A value of —0.016)&10 "
cm' was used. See the discussion in Sec. V.

A similar table for the halide ions would reveal that
the addition of the dipole, etc. , moment has little effect
on I(: because the alkali ions are not very polarizable.
A table of z for the halide ions for the charge effect
alone is given in an article by Townes. " As pointed
out, there is a large variation in the value of ~ and the
agreement with 1—y„ is bad. Consideration of second
order terms shows why this model is not applicable to
the halide ions and thus agreement between g and
1—y„would not be expected to be good.

Besides calculating p by first order perturbation
theory, certain second order terms were calculated by
Foley, Sternheimer, and Tycko in their original paper.
They calculated the effect on q of Cl by applying the
dipole perturbation, r coso, to the ground states to
obtain excited state wave functions; then again applied
the same perturbation to the excited state wave func-
tions to obtain other excited state wave functions, Ps.
They also calculated the effect of applying the quadru-
pole perturbation twice. The contribution of the second
order effects evaluated for R=4.46 a.u. , i.e., the NaCl
internuclear distance, was 10.9 and 10.3, respectively,
as compared to the first order effect of 46.5 (= —y„).
Thus, the second order eGects are not negligible. They
add to the first order e6ect for the negative ions and
subtract for the positive ions.

It was felt that second order calculations of the
antishielding factor and ng for several ions might be
revealing. A direct substitution method proved simple
and adequate. It was noticed in the variation of param-
eters solutions that it was not the n term that was
important in ut' but rather the Pr term. If one calculated
the energy or polarizability using the Pr term, the
addition of the o. and yv' terms made little difference.
Thus, a solution of the form ur' ——PrHi(r)uo' was
assumed, substituted in (7) and p calculated at a.

number of points. Over a range of r past the last peak
in us', P was found to be approximately constant and

model can give satisfactory results for the binding energy, vibra-
tion frequency, and dipole moment of alkali halide molecules.

"Tessman, Kahn, and Shockley, Phys. Rev. 92, 890 (1953).
These values are used even though they were obtained from
solids. They are truly an experimental set of polarizabilities and
they give better agreement with the measured dipole moments of
the alkali halide gas than the often used Pauling values.

24 C. H. Townes, Hcndblc~ der I'hysik (Springer-Verlag, Berlin,
1958), Vol. 38.
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TABLE IV. Comparison of values of (r") in atomic units, for K+ and F . The value of (r') is 1.
The trapezoidal method of integration is used.

K+(H.) K+(H.F.) F (H.) F (H.F.)

~ ~ ~

6.620
1.068
1.319
2.023
3.516
6.877
1506X101
3.6/2 X 10'
9.890X10'
2.922 X 10'
9.398X102
3.265 X 10'

1.288 X 10'
1.916
9.045X10 '
1.538
2.834
6.077
1.501X10'
4.221 X 10'

13.38X 10'
4.724X 10'

18.41 X 10'
7.846X 10'
3.625 X 104

~ ~ ~

6.265
1.076
1.275
1.879
3.124
5.823
1.211X 10'
2.795X 101
7.114X10'
1.984X 10'
6.027 X10'
1.983X10'

1.294X 10'
1.957
9.425X10 '
1.429
2.411
4.684
1.038X 10'
2.597X 10'
7.273X 101
2.257 X 10'
/. 689X 10'
2.851X 10'
1.141X104

7.772
1.396
1.065
1.398
2.222
4.274

10.10
3.019X 10'

11.66X 101
5.658X 10'

32.22 X 10'
20.16X103

p

5.676
1.885
1.087
1.446
3.194

10.39
4.694X 10'

27./1X10'
20.34X 10'
17.87 X 10'

182.4X 10'
211.2 X 104
272.1X 10'

~ ~ ~

7.987
1.411
1.037
1.320
2.022
3.686
7.901
1.968X 10'
5.634X10'
1.833X10'
6.711X 10'
2.741X 10'

6.404
2.082
1.163
1.257
2.211
5.248
1.613X10'
6.168X10'
2.827 X 10'
1.502 X 10'
8.978X 10'
5.893X 104
4.163X10'

equal to the value obtained by the variation of param-
eters method. Since the nodes occur at small r the
region of constant P is the region from which most of
the contribution to the polarizabilities is obtained. For
example, the contribution to nn from p~ 4 and no
from p~f for Na+ and F is 0.132 A', 1.26 A', and
0.0321 A', 1.51 A', respectively, all of which are very
close to the values in Table I.

The same type of guess was made for certain second
order wave functions. The p -+ d ~ p (ground p state
perturbed to connect to excited d states which are
perturbed to connect to other p states) and p —& d ~f
wave functions were obtained by applying the dipole
perturbation twice. The p~f &f and p ~—f~ p wave
functions were obtained by applying the quadrupole
perturbation twice. In these cases the coefficients were
approximately constant over the important range.
Using these second order wave functions, contributions
to nq and the antishielding factors were calculated for
Na+ and F . The diGerential equations necessary to
calculate the wave functions, and angular factors
necessary to calculate o.@ and the antishielding factor
can be found in reference 1. It was found that each of
the calculated second order contributions (one contri-
bution from p —+ d ~ p, etc.) to no for F were approxi-
mately equal to the first order, p ~f contribution, while
for Na+ they were at least a factor of ten smaller.
Each of the second order contributions to the anti-
shielding factor for F calculated was in approximately
the same ratio to y„as the Cl results' (i.e., not negli-
gible) while for Na+ the second order contributions are
50 to 500 times smaller than the first order effects."

Also, if one evaluates L(gi~gt)]:, where ft is the
perturbed wave function for any of the perturbations
considered in this paper, one gets 10% to 20% for F
and Cl while for Na+ and K+ one gets 1% to 3%.
Then the perturbed wave function is not small com-
pared to the unperturbed one. Thus, for alkalies it does

'5 This direct substitution method is not adequate for all the
second order effects. For example, the "constant" in wave function
for p —+ s ~ p by applying the dipole perturbation twice was not
constant over the important range.

not appear to be necessary to extend the calculations
beyond first order. However, it appears that pertur-
bation theory may not be applicable to the easily
deformable halides in this situation. This is, perhaps,
the reason why there is no agreement between w and
(1—y„) for the halide ions. This also leads one to the
conclusion that the values of the polarizabilities of the
halide ions, as calculated from first order perturbation
theory, are open to question. Thus, it is felt that the
lr's in the P+D column are the safest to use since they
are obtained from experimental polarizabilities, and it
is these that are compared to (1—y„).

When g is compared to 1—y it is seen that the
agreement is good for Na+ and K+ but not for Rb+ and
Cs+. It was noted that Hartree-Fock wave functions
were used to calculate p„ for Na+ and K+ while only
Hartree wave functions were available for Rb+ and
Cs+. Thus, calculations were made to see how sensitive

y„ is to the wave function used. The ratio of the
Hartree to the Hartree-Fock contribution to y, for
the p~p perturbation" for Al+', K+& F "and Cl
is 1.15, 1.83, 2.88, and 3.14, respectively. From size
and charge considerations one would expect the ratio
for Rb+ to be a little larger than K+ and for Cs+ to be
even larger, perhaps as large as F . Thus, if Hartree-
Fock wave functions were available for Rb+ and Cs+
it is expected that the agreement between A and (1—y„)
would be good for these alka, lies also.

Table IV shows how the moments calculated from
the Hartree and Hartree-Fock wave functions"di6er for
K+ and F . As one can see there is very little difference
between the wave functions at small r. However, the
Hartree wave functions are more external than the
Hartree-Fock so that the polarizabilities, which are

26 The difference between Hartree and Hartree-Fock wave
functions had little effect on the angular contribution to y .

"The previously unreported contributions to p„ for F are
given here. The s ~ d, p ~f and p —+ p contribution to y„ for
Hartree and Hartree-Fock wave functions is 0.293, 0.312, —66.86,
0.416, 0.390, —23.22, respectively. Adding 0.10 for the 1s shell
contribution, the best value of y„ for F is —22.31. The p —+ p
contribution to y„ for Cl using Hartree wave functions is —158.5.
This is compared to Wikner and Das' value of —50.43 (reference
8) since the two values were obtained in the same way.
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strongly affected by the electron density in the outer
regions, are thus much smaller when calculated using
Hartree-Fock wave functions (see Table I).

V. SUMMARY AND DISCUSSION

1. The antishielding factor, 1—y„ for an alkali or
halide ion, multiplies not only the eRect of an external
charge but the eRect of all the moments of the halide
or alkali ion, respectively. The contributions to the
field gradient of some of these moments are not negli-
gible.

2. The agreement between the results of the variation
of parameters and the numerical solution of the diRer-
ential equation is good for the polarizabilities calculated
here.

3. Previous calculations' '8 of o.D gave results that
were generally larger than the experimentally measured
values. The use of Eq. (11) will reduce some of the
values of nD bringing them in better agreement with
experiment. Also the use of Hartree-Fock rather than
Hartree wave functions reduces nD for F to bring it in
better agreement with experiment. A similar eRect
would be noted in Rb+ and Cs+ if Hartree-Fock wave
functions were available. The use of Eq. (11) has a
large affect on the higher moments as can be seen by
comparing the results in- Tables I and II.

4. The ground-state wave functions used here are
those calculated by the Hartree or Hartree-Fock m, thod
for a free ion. Second order calculations give non-
negligible contributions to the halide ion s polariza-
bilities and antishielding factors in this situation but
are negligible for the alkali ions. This is probably the
reason the agreement between I~: and 1—y„ is poor for
the halide ions. This is also the reason why the best
value of K for the alkali ions is taken from the P+D
column in Table III. These values do not require the
use of the polarizabilities calculated for the easily de-
formable halide ions. A simple application of the Townes
and Dailey" covalent theory does not help to under-
stand q for the halides in alkali halide gases."

5. When Ir for the alkali ions from the P+D column
is compared to 1—y„ the agreement is good provided
Hartree-Fock wave functions are used to calculate y„.
Thus, when estimates of q for positive ions are made' "
an enhancement factor, If, can be used for which
agreement between theory and experiment is good.

6. Controversy exists about the value of the nuclear
quadrupole moment of Li. Using the experimental
observation for Lir in Lis of eQg/5=+0. 060 Mc/sec, "
several people have calculated q to obtain a value of Q.
Harris and Melkanoff32 have calculated q for three wave
functions. They have 0.27 ev, 0.48 ev, and 0.51-ev

's E. G. Wikner and T. P. Das, Phys. Rev. 107, 497 (1957)."See Sec. IV of reference 8. In that paper x should be x(1—I
rather than x&I in their Kq. (11)."G.Burns, Bull. Am. Phys. Soc. 3, 371 (1958).

3' Logan, Cote, and Kusch, Phys. Rev. 86, 28 (1952).
32 Z. G. Harris and M. A. Melkanoff, Phys. Rev. 90, 585 (1953).

dissociation energy and obtain for Q +0.035 b (barns),
—0.120 b, and —0.042 b, respectively. Thus, the
lowest dissociation energy predicts the smallest negative
value for Q. Sternheimer and Foley" have considered
the eRects of shielding on the Li2 wave functions.
Mannari and Arai" have used a wave function with a
dissociation energy of —0.96 ev and obtain —0.025 b
for Q. If shielding effects were considered ~Q~ would
be =15% smaller. "'4

Using the results of this paper the value for Q of Lit
is —0.016 b. This is in agreement with the trend of the
results from molecular wave function calculations.
It is also in good agreement with the curve of the
nuclear quadrupole moments obtained by Townes,
Foley, and Low" 24 and the value of —0.013 b obtained
recently from nuclear calculations. " Then using the
known ratio of the quadrupole moments of Li to Li~ 3 '
the value of Q of Li' is —0.30)&10 ' b.
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APPENDIX

The equations required to calculate the polariza-
bilities. by the variation-of-parameters method are given
here. Atomic units are used throughout,

The value of (r") is the expectation value of r" over
ground state wave functions f=J"( I)s'r" re. The
energy, E, equals gt+P& and for the value of n, P, and
y obtained, it can be shown that Pt ———2$s. r

Dipole polarisability.

p~d:

16 1
Ps ———Prrs+ gPs(r )+13ys(r4)+ 12rrP(r)

3 E.4

+14 7( ')+20'( ')j,

"R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460
(1953).

34 I. Mannari and T. Arai, J. Chem. Phys. 28, 28 (1958).
3' Townes, Foley, and Low, Phys. Rev. 76, 1415 (1949).
36A.

¹ Kushnerenko, Doklady Akad. Nauk U.S.S.R. 117,
963 i1957l Ltranslation: Soviet Phys. Doklady 2, 568 i1957lj."N. G. Cranna, Can. J. Phys. 31, 1185 (1953).

3 P. Kusch, Phys. Rev. 92, 268 (1953).
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Quadrupole polarizabiiity .—See reference 7.
Octupole polarisability F.

—or each case

.= —(~'/6)@

16 1
~.= ———

L &")+p(")+y(")3,
7 R8

8 1
1t12

————[21n'(r')+ 28P'(r')+37''(r 8)
788

+48nP(r')+54ny(r6)+64Py(r') j.
144 1

41= — [&—n')r+p( 'r)+~( 'r)j,
49 E8

72 1
[13n2(r4)+20P2(r6)+ 29p2(r8)

49 g8
+32nP(r')+38ny(r')+48P'r(r') j.

p~g:
192 1—[n(r')+p(r')+p(r8)g
49 E8

HexadecaPole Polarisability .n—II ———(R"/6)1t1.

S~g:
16 1

[-(")+p(")+~&")l,
9 E."

8 1
2 [36n2(r6)+45P2(r8)+56y2(r10)

9E"
+80nP(r')+88ny(r')+ 100Py(r') j.

64 1
[n(")+p(")+~("')j,

27 E"
32

[26n2(r 6)+35P2(r8) / 46/2(rl)
27 E"

+60nP(r )+68ny(r')+80P&(r')$.
p~k:

80
[-("&+p&r &+y&" &j,

27 E"
40 1

[44 2(r6)+53P2(r8)+ 64y2(r10)
27 E."

+96nP(r')+ 104ny(r')+ 116'(r2)j.96 1
1t,=——[27n'(r')+34 ' r' +43 ' r'

49 E8
p( ) ~( )

The I"'s are the numbers in the polarizability
+60nP(r6)+66ny(r6)+76Py(r')j. equations (i.e., the I for n11 P ~ d is 16/3, etc.).


