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isochronal data to obtain activation energies for the
recovery of damage,! yielding 0.23 ev for Stage I and

! For a discussion of the method, see C. J. Meechan and J. A.
Brinkman, Phys. Rev. 103, 1193 (1956).
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F1G. 2. Isochronal recovery of electron damage produced at
240 kev and 400 kev. The scale on the left is for the 240-kev
damage.

0.56 ev for Stage II. The conductivity recovery in
Stage I obeyed first-order kinetics and may be due to
the recombination of close vacancy-interstitial pairs.
Satisfactory interpretation of the isothermal data for
Stage IT and the unexpectedly large relative difference
in the two activation energies has not yet been achieved.
Further work is in progress to clarify these points.
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A model of a crystal, consisting of positive point charges neutralized by a uniform distribution of negative
charge, is employed to study the form of the d bands in a body-centered cubic lattice as a function of the
lattice spacing. The wave functions are expressed as linear combinations of plane waves and the potential
treated as a perturbation. It is shown that the perturbation series for the energy is a power series in Za,
where Z is the atomic number and a is the lattice parameter. The leading term in the series is of the order
(1/a)?, and the coefficients of successive terms in the series decrease rapidly. The first three terms are
evaluated for the states of predominantly d symmetry at the center of the Brillouin zone, and the corner H.

INTRODUCTION

LTHOUGH there have been many calculations of
. energy bands in the transition elements,! the band
structures of these elements are not well understood.
Recently it has been proposed that the d-band structure

* On leave of absence from Department of Physics, University
of Miami, Coral Gables, Florida.

L A review of band calculation has been given by J. Callaway,
in Solid State Physics, edited by F. Seitz and D. Turnbull (Aca-
demic Press, Inc., New York, 1958), Vol. 7, p. 99,

of the body-centered cubic transition elements, iron and
chromium, is radically different from that of the face-
centered cubic elements, nickel and copper.? Experi-
mental information adequate to resolve the problem
does not exist. In view of the complexities of careful
theoretical computation for these elements, it remains
interesting to study a model whose simplicity permits
more exact calculation.

¢N. F. Mott and K, W. H, Stevens, Phil, Mag, 2, 1364 (1957).



d BANDS IN BODY-CENTERED CUBIC LATTICE

A simple model of crystal, which is not so unreal as
to be uninteresting, is that of a body-centered cubic
lattice of point charges (atomic number Z), neutralized
by a uniform distribution of electrons. The simplicity of
this model comes from the fact that the Fourier coef-
ficients of the crystal potential can be calculated
exactly, and have a simple analytic form.* The choice
of body-centered cubic symmetry is made for two
reasons: (1) the principal controversy concerns the
form of the 4 bands in crystals of this symmetry, and
(2) there are two points in the Brillouin zone where the
wave function possesses full cubic symmetry. (There is
only one such point for face-centered cubic crystals.)

If k is a reciprocal vector and Qg is the volume of the
unit cell (Q=a?/2, where @ is the lattice parameter),
then the Fourier coefficients of potential are (in atomic
units)

V(k)=—8rZ/Qk? for k not zero, (1)

V(0)=— (1.245)Z/a. @)

The potential represented by these Fourier coefficients
has cubic rather than spherical symmetry. We have
that k?=47?n/a?, where n? is an even integer. Then

V (k) = — 4Z/nan?. 3)

The crystal potential will be treated by perturbation
theory. Provided that the unperturbed wave functions
are symmetrical linear combinations of plane waves,
solution of a secular equation is unnecessary, and or-
dinary perturbation theory for a nondegenerate state
can be employed. The requirement that the perturba-
tion expansion converge towards a state in the d band

"is, however, a severe one, and restricts greatly the
number of states that can be effectively treated in this
way. At a general point of the Brillouin zone, the wave
function has no symmetry other than that required to
satisfy Bloch’s theorem. Not only d functions, but s, p,
f, - -+ as well are included. The perturbation expansion
will converge toward the state of lowest energy of that
k and this will not be a d-band state unless an ortho-
gonality condition is imposed. However, for certain
states at symmetry points of the zone, the perturbation
expansion will converge toward d-band levels.

The only points of the zone where all of the levels
in the d band at those points can be found in this way
are the center of the zone, I', and the corner H (see
Fig. 1). At both of these points, there are two states to
be considered : one, triply degenerate, formed from states
of xy, yz, or zx symmetries (I'es, Has'), and one, doubly
degenerate, involving x*—y? or 322—72(I'1p,H10).* It is
likely that a fair idea of the general form of the d band
can be obtained by studying the behavior of these
states. For instance, at least for reasonably small values
of the lattice parameter, the separation between Hi.
and Hy gives a fair estimate of the width of the band.

3 J. Callaway and M. L. G. Glasser, Phys. Rev. 112, 73 (1938).

4 Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
(1936).
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Fic. 1. Brillouin
zone for the body-
centered cubic lat-
tice. Points and lines H
of symmetry are in- /-
dicated.

At the other principal symmetry points of the zone, P
and N, there are some states for which the perturbation
expansion will yield d-band levels (P3, N», N3, N4). But
other states at these points mix s and d or p and d
functions, so our attention will be restricted to I" and H.

Considering these points, the results of band calcu-
lations! indicate that Hy» is the lowest level, T'ss and I'yy
are in the middle, and Hy is the highest level. The
separation between I'ss» and I'yz is much less than that
between Hi, and Hys . The order of the d functions at
the center of the zone (T's5» below I'ys) is the opposite
of what it is at the corner H. On the other hand, the
ideas of Mott and Stevens, and also of Pauling® require
that the d band should be split into two parts, one band
based on functions of I'ss» symmetry (presumably the
lowest) and the other on functions of I';s symmetry.
Thus a distinction between these types of band struc-
tures can be made from a study of these four levels. It
was with this object in mind that this investigation was
begun.

THEORETICAL FOUNDATION

Perturbation theory is to be employed to calculate
the energy levels of an electron in a periodic potential
defined through its Fourier coefficients (1) and (2). The
unperturbed functions are symmetrized linear com-
binations of plane waves transforming according to I'ys,
Tos, Hys, Hos. The symmetrized functions were con-
structed as described in reference 6. The use of sym-
metrized plane wave combinations removes the neces-
sity to employ degenerate perturbation theory since
there are no matrix elements of the crystal potential
between combinations of plane waves of different sym-
metry. The four states enumerated above will be
denoted by an index ¢; and the linear combinations of
plane waves possessing a given symmetry are denoted
by an index j. The latter are the eigenfunctions of the
unperturbed Hamiltonian. The plane wave combination
of lowest kinetic energy has j=0. The kinetic energy of
the plane wave combination j for state ¢ is denoted by
E;;. Similarly V., j denotes a matrix element of the
potential between the plane wave combinations j and

5F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947) ; L. Pauling, Proc. Natl. Acad. Sci. U. S. 39, 551 (1953).
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k belonging to symmetry type i. The V; jx are linear
combinations of Fourier coefficients of potential. Then
if E; denotes the perturbed energy of the lowest level
of symmetry 7, we have to second order in the potential

[Vioil?
Ei=En+Viot2  — (4)
7 Eio— Ei,'

As examples of the combinations of the Fourier coef-
ficients occurring in Eq. (4), the V00 are given below.
In these formulas, V(n?) denotes a Fourier coefficient
given by Egs. (2) or (3).

Hy: V(0)—-2V(2)4+V(4),

Tosr: V(0)—2V(4)4V(8),

Twp: V(0)=2V(2)+2V(4)—2V(6)+V (8),
Hy: V(O0)—V(#)—-V(®)+V(12).

©)

The orders of magnitude of the successive terms in
the perturbation series may easily be determined. The
kinetic energy FE; is of the order 1/4>. We have
seen that the Fourier coefficients of potential are pro-
portional to Z/a. Thus V;, is of order Z/a, and the
second order perturbation is of order Z2. Each addi-
tional term in the expansion introduces a matrix element
and another energy denominator in each order. Conse-
quently an additional factor Za is contributed by each
order beyond the second. The perturbation series is a
power series whose nth term is proportional to
(1/a*)(Za)". (We count the kinetic energy as the zeroth
term.) The quantity A\;=¢E;/Z is then a function of
the single variable Za.

RESULTS AND DISCUSSION

The terms of Eq. (4) have been evaluated numerically
for the four states considered. In calculating these
energies, eight groups of plane waves were included in
each case except I'ss, for which nine were used. The
numbers of plane waves involved are 128, 126, 104,
and 108 for I'ss, T'1s, Hes, and Hys, respectively. The
second order perturbation is believed to be correct
within about one or two percent in each case. The results
are, in atomic units:

Hyy: E=239.478/a—0.2905(Z/a)—0.0026722,
Tosr: E=78957/a2—0.7679(Z/a)—0.0050922,
Tio: E=78.957/a?—0.3435(Z/a)—0.00499.22,
Hyy: E=118.43/a2—0.8740(Z/a)—0.0106522.
The results are shown in Fig. 2, where the dimen-

sionless parameter A=aE/Z is plotted as a function of
Za,

JOSEPH CALLAWAY

In considering these results, we observe first of all
that the coefficients of the various terms decrease quite
rapidly. This feature can be expected to continue in
higher orders of perturbation theory. The size of the
matrix element is indicated by the second term in the
equations, and no energy denominators smaller than
8r2/a? appear. Thus, the perturbation expansion should
be quite well convergent for small Za.

For small values of Za, the series are dominated by
the kinetic energy. Band calculations suggest this
ordering also obtains for the transition metals at the
actual lattice spacing.! Thus the much larger separation
of the d-band levels at the corner H than at the zone
center I' appears as a consequence of the degeneracy of
the latter in the free electron limit.
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F1G. 2. The dimensionless parameter A=aE/Z is given as a
function of Za for the four states considered.

For large Za, the energies of the states must approach
the same limit, depending only on Z. Although the
perturbation series is certainly numerically unreliable
in this limit, the results presented above suggest that
the order of the d-band levels, might be quite different
for large Za. In order of increasing energy, we might
have Hoy, T'asr, T'12, H12; the order of the levels at the
zone corner being reversed. Such a situation, which
would correspond to the idea of a d band split into two
parts, has been suggested.?® The splitting, in this model,
would be a consequence of the nonspherical character
of the potential. A numerical calculation, not employing
perburbation theory, indicates that the separation
does not occur for Za<50. Considering this, it seems
unlikely that the d band is split in the transition metals
at the observed atomic spacing, unless the splitting is
brought about by exchange and correlation interactions
in some fashion as yet unclear.

6 J. Callaway, Phys. Rev. 99, 500 (1955).



