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(ii) s&1 where C is the Euler-Mascheroni constant. This region
of s is seen to be pertinent to B&&81, where we derive

Using an expansion for lni' s in powers of s, we can
find

—P(s) =-+C+e(s), s& I (I.23)
and thence Eq. (5.19).
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In the classical phenomenological thermodynamic theory of Gibbs, equilibrium is defined as the state of
maximum entropy at constant energy, and a theorem is proved (the energy theorem) which asserts that the
equilibrium state is the state of minimum energy at fixed entropy. This theorem is not true for systems at
negative absolute temperatures. By examining a familiar statistical model which can exhibit negative abso-
lute temperatures we find the correct form of the energy theorem. It turns out that at negative absolute
temperatures the state of equilibrium of a system with a given entropy is that in which the system has its
highest energy.

INTRODUCTION

HE nuclear spin experiments done by Purcell and
Pound' on a pure I.iF crystal which exhibited

long spin-lattice relaxation times' ' have shown that it
is possible to induce negative absolute temperatures in
systems which are thermally insulated and which have
the property that each element of the system has an
upper limit to its energy. In a recent analysis, Ramsey4 '
has shown that the Kelvin-Planck formulation of the
second law of thermodynamics must be revised if it is
to be applicable to systems capable of negative absolute
temperatures. In the present article, - we shall discuss,
in terms of a simple and now familiar statistical model,
some consequences of the existence of negative absolute
temperatures for the classical thermodynamic theory
of Gibbs.

Gibbs starts his development of phenomenological
thermodynamics' ' with a variational definition of
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equilibrium as the state of maximum entropy at fixed
energy. This definition is used to derive general condi-
tions which must be fulfilled by hypothetical states if
they are to be equilibrium states. '

Often in classical thermodynamics, ' instead of apply-
ing the definition of stable equilibrium directly, one
uses its main consequence, which we shall call the
energy theorem; i.e., the theorem which asserts that the
state of equilibrium of a system with a given entropy is
that in which the system has its lowest energy. Using
the statistical model, we shall show that this theorem
must be modified when negative absolute temperatures
are possible. We shall show that at negative tempera-
tures the equilibrium state of a system with a given
entropy is that in which the system has its highest
energy. In order to obtain a satisfactory formulation of
the energy theorem it will be necessary to examine
carefully certain points which are usually tacitly taken
for granted in texts on statistical mechanics.

I. THE MODEL

We consider a thermodynamic system consisting of a
large number E of distinguishable localized elements;

Examples of the derived necessary conditions for equilibrium
are the statements that the temperature must be uniform and the
heat capacity must not be negative.' See reference 7, pp. 55—62.
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e.g., the lattice points of a crystal in a magnetic field.
Following Ramsey, ' we assume that the Hamiltonian
@ of the system can be split into two parts

@=@0+@;.»,

IL EQUILIBRIUM

We are now ready for our main definition:
A state b of the system is called a state of eqttilibrium

if for all states a, ahab, such that

where 9;„» is the portion of @ arising from the inter-
action-of the elements of the system, while the inequality

E(a) =E(b),

S(a) &S(b)

(2 1)

(2 2)
Oo=g @, (1 2)

is the sum of those portions @,of @ that depend only
on the individual elements. We assume that O;„», com-
pared to Oo, makes only a negligible contribution to the
observed total energy, so that the E elements are nearly
independent. The portion Sp;„» plays a role in inducing
those transitions by which the different elements ex-
change energy; but the details of this exchange are not
considered here. It is assumed, however, that the ex-
changes take place often enough to make the concepts
of equilibrium and temperature physically meaningful.

We assume that each of the Q; has only a fir»ite
ngmber of equally spaced eigenvalues,

6i = 'tt, 6) z 1) 2p 5$ ~ (1.3)

In particular, we assume that ns« lV, and that the
energy levels ~; are independent of j; i.e., of the ele-
ment. For example, the e; may correspond to the spec-
troscopic spin energies of a system of identical nuclei
at the lattice points of a cyrstal in a magnetic field.
Note that, from the present point of view, a change in
the applied field produces a new system.

A state a of the system is defined by an m-tuple
{rt~~, n2~, . e '} of integers n, subject to the
conditions

0&n,'&N, Q e, =~V. (14)

E=E(a)=Q e,'e, .
i=1

(1 5)

We neglect the contribution from @;„».
The erttropy S of the system, also a function of the

state a, is proportional to the logarithm of the number

of ways in which the S elements can be divided among
the m energy levels e, such that the population of the
ith level remains equal to e,' for i = 1, 2, m. We have

(1.6)

The integer e, is the number of elements in the ith
energy level, ~;~

The Aztermal energy E of the system is a function of
the state a and is given by

E=E(a). (2.5)

We denote the class of states which satisfy Eq. (2.5)
by Cz. The maximum of the entropy for the states a
in 6~,

Max S(a) = S(E), (2 6)
Qg

exists and is attained for some state b in C~, so that
S(E)=S(b).

We show that this maximal state b has the property
that e,~/0 for all i = 1, 2, m. If we had, for example,
v~~=0, then we could construct a new state a in 6~
by changing e&'=0 into e& =2,and by making appro-
priate changes in the populations of highly populated
energy levels in such a manner that E would remain
the same; i.e. , E(a) =E(b). It is clear from Eq. (1.6)
that the change from n&'=0 to e~'=2 would amount
to increasing Sby k log2, while the changes in the highly
populated levels would aGect S but slightly. Thus, we
would have S(a))S(b) in contradiction to the assump-
tion that b is the state of maximum entropy at fixed
energy. Hence, n,'WO for alii.

As is customary in statistical mechanics we now re-
place the e; by continuous variables and approximate
the entropy in Eq. (1.6), with the help of Stirling's
formula, by

m

S(a) =k{N ln/V —Q e, int», '}.
s=1

(2.7)

The class Cg corresponds to those points in the space
of m-tuples {e&,e2', rt '} which satisfy Eqs. (1.4)
and (2.5). These points fill a portion of a hyperplane
in the e space. S(a) attains its maximum in. the
jrtterior of this portion (not on the boundary) because

holds.
In other words, a state is an equilibrium state if it

has maximum entropy among all states with equal
energy.

It is clear from Eq. (1.5) that the energy E of the
system is bounded; i.e.,

(2.3)
where

Et=Net=Ne, Eg=Ne =Nme. (2.4)

If a value of E between E~ and E, is prescribed and if
E is a multiple of e, then there are finitely many states
a such that
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Q(a) =S(a)+AN(a)+IJE(o) (2 8)

must vanish for a=b; i.e., for e; =n, b. Here X and p
are Lagrange multipliers. The usual derivation gives

e,'40 for the maximal state b, as we have seen above.
Hence, by a known theorem from calculus, the first
variation of S(a), subject to the constraints N(a) =N
and E(o)=E, must vanish for a=b. This means that
the derivatives BQ/Bit,' of the function

(2.11) that

lim E(P)=Ne =E„ lim E(P)=Nei=E~. (2.14)
p—++oo p~ —oo

Hence P varies between —~ and +~ as E varies be-
tween E~ and E,. The equilibrium states form a one
parameter family and either E, (E&&E&E,), or p,
(—~ &p&+ ~), may be used as the parameter. Let
Eo be the value of E at p=0; we note that

~,b g ~pei
) (2.9) Eo (N/m) ——P e,.

i=1
(2.15)

N=AQ ee" (2.10)

and
m m

E=E(P)=NQ eee",/Q e~".
i=1 i=1

(2.11)

We compute the derivative of E(p) with respect to p
and get

1 dE(p)
(Z "")'

m m m

= (2 e' ")(Z "')—(2 " '*)'
i=1 j=1 i=1

where A=e~'~ and P=p/k.
We now show that the numbers A and p are ue~guely

determined by E and the prescribed energy E. Sub-
stituting Eq. (2.9) into Eqs. (1.4) and (2.5), we obtain

We remark that it is not very hard to give a rigorous
mathematical justification for replacing the integers e,'
by continuous variables and for using the asymptotic
formula of Eq. (2.7) instead of the precise entropy
function of Eq. (1.6). Such a justification is based on
the fact that Eq. (2.7) is not only an asymptotic ap-
proximation for Eq. (1.6), but also the derivatives of
Eq. (2.7) approximate the derivatives of Eq. (1.6) with
e,'! replaced by I'(e,'+1) for nonintegral e; . This
follows from the known limit

f d
lim

~

—1nI'(x+1) —lnx
~

=0.'" idx J

III. THE ENERGY THEOREM

For equilibrium states, the entropy 5 may be re-
garded as a function of either the energy E or the
parameter P. We investigate the nature of the function
s=s(p).

Substituting Eqs. (2.9), (2.10), and (2.11) into Eq.
(2.7) we find

m m

(e,—e,)'e "+"', (2.12)
i=1 j=l

m

S(P)=k(»n(Z "") PE(P))—
i=1

(3.1)

which shows that dE/dP is always positive. Hence E(P)
is a strictly increasing function of p and thus has a
single valued, strictly increasing, inverse function:

p= p(E) (2.13)

Once P has been found from Eq. (2.13), Eq. (2.10)
yields a unique value for A.

We summarize: In the class of states Cz (defined by
the condition that a is in 6E if and only if E(o)=E)
there is one state b for which the first variation of S(a)
vanishes. This state b must be that state for which 5
has a maximum, because we have shown that the maxi-
mum is attained at an interior point, and hence the
first variation does vanish at the maximum. Thus, b is a
state of equilibrium. The e,~ are given by Eq. (2.9)
where p and A are the unique solutions of Eqs. (2.10)
and (2.11). Each equilibrium state is characterized by
its energy E, which can vary between the values E& and
E, given by Eq. (2.4). Since E(P) is an increasing func-
tion of p, we can also characterize the equilibrium states
by their corresponding values of p. It follows from Eq.

Hence, by Eq. (2.11)

ds(p) dE(p)= —kp (3.2)

Since dE(p)/dp is always positive, it follows that
ds(P)/dP has the same sign as —P. Hence, we have

ds(P)/dP) 0 if —~ &P&0,
dS(P)/dP&0 if 0&P &+~, '

ds(p)/dp= 0 if p= 0.

An investigation. of Eq. (3.1) shows

lim S(P) = lim S(P)=0,
p—++oo p—+—m

S(0)=So——kN inn'.

(3.3)

(3.4)

(3.5)

ds(p)
t

- - dE, (p)
t=k NQ e„ee"/Q ee" E(P) P——

dP
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So
We can now state the energy theorem: l,et a value 5

of the entropy be prescribed such that 0&S&SO. Con-
sider the class Cq of all states a such that

S(a) =S. (3.7)

Eo

FIG. I. Entropy versus energy at equilibrium.

Since E(P) is a strictly increasing function of P, it
follows from Eqs. (2.14), (3.3), and (3.4) that the graph
of S ~ersls E, for equilibrium states, has the form in-
dicated in Fig. 1, where E&, E„EO, and So are given by
Eqs. (2.14), (2.15), and (3.5)."It is clear that S has an
absolute maximum S=SO for E=Eo, i.e. , P= 0. 'I he
left branch (E&EO) of the curve corresponds to nega-
tive values of P, the right branch to positive values of P.
If we define the terrtperatlre T of an equilibrium state by

(3.6)

we see that the left branch of the curve corresponds to
positive temperatures, while the right branch corre-
sponds to negative temperatures. The maximum point
corresponds to T= & ~, and the endpoints correspond
both to T=O. The states of negative temperature all
have higher total energy than the states of positive
temperature.

' Of course, this graph has the same form as that exhibited by
Ramsey in references 4 and 5 for the case m =4. Incidentally, from
Eq. (2.7) on, all our arguments are independent of the equal
spacing of energy levels e;.

Then there are two equilibrium states b» and b2 in Cq, and

E(b,) &E(a) &E(b,) (3.8)

for all states a in 68 different from b» and b2.
In other words, the equilibrium states have mieimlm

or maximmm energy among all states with equal entropy.
Proof. We h—ave already established the first part of

the theorem, for we have proved that for equilibrium
states the function S=S(E) has the graph shown in
Fig. 1, and it is clear from Fig. 1 that there are precisely
two equilibrium states b» and b~ with the prescribed
entropy S. Now, let the energies of these two equi-
librium states be Ei=E(bi) and E2=E(b~). Consider an
arbitrary nonequilibrium state a in Cq. Denote its
energy by E=E(a). There is precisely one equilibrium
state b in Cg, i.e., there is one equilibrium state for
which E(b) =E=E(a). By the inequality (2.2), we must
have S(b))S(a). Hence the state b corresponds to a
point on the curve of Fig. 1 which is above the line
S=constant=S(a). It follows that the corresponding
energy E(b) =E(a) must be between Ei and E2. 'This

proves the inequality (3.8).
The equilibrium states which correspond to minimum

energy at constant entropy are on the left branch of
the curve of Fig. 1 and hence have positive temperatures.
The equilibrium states which correspond to maximum

energy at constant entropy have negative temperatures.
We observe that the points (E,S) corresponding to

non-equilibrium states lie above or on the E axis and
below the curve of Fig. 1. It follows that no nonequi-
librium states are possible for S=SO.


