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APPENDIX E. THE CASE OF EQUAL MASSES AND
RANDOM FORCE CONSTANTS

The equation of motion of the (p —1)th atom of a
chain of random masses and equal spring constants is,
from (1),

where

Similarly
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Substracting we obtain
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(g 1) and this is of exactly the same form as (1) with constant
m and random o,.
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By using a combination of the moment-trace method and a new method, the "delta-function" method,
the vibrational frequency spectrum of a randomly disordered, two-component, isotopic, linear chain has
been computed for a wide range of the concentrations of the two kinds of particles and of their mass ratios.
In addition the particular case of a chain in which the mass of one of the isotopic constituents becomes
infinite can be treated exactly, and the results of this analysis shed light on the form of the spectra for
lattices with large but finite mass ratios for the two constituents. The spectra are characterized by the
disappearance of the square-root singularity at the maximum frequency which is found in ordered one-
dimensional lattices, and by the appearance of impurity bands, the nature of which is discussed. Finally,
the zero-point energy of a randomly disordered lattice is calculated and compared with the zero-point
energy of an ordered lattice and of the separated phases.

1. INTRODUCTION
' "N a previous paper' a method for obtaining the
~ - moments of the vibrational frequency spectrum of
a disordered two-component linear chain was described,
and explicit expressions for the even moments up to p2o

were given. In the present paper we apply these results
to the construction of frequency spectra of disordered
isotopic linear chains for a wide variety of concentra-
tions of the two kinds of particles and of the ratios of
their masses. In obtaining these spectra the moments
are used in two diRerent ways: In the first method,
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the spectrum is expanded in an infinite series of Legendre
polynomials whose coefFicients are linear combinations
of the moments; in the second method, which is believed
to be new, polynomial approximations to a Dirac
delta-function are used to give the value of the spectrum
at any point as a linear combination of the moments.

We begin by considering a particular one-dimensional
disordered lattice problem which can be solved exactly,
namely the case in which the mass of one atomic species
becomes infinite, and obtain the distribution of normal
mode frequencies for this case. We then obtain spectra
for the finite-mass case by the two methods mentioned
above. The zero-point energy of a randomly disordered
linear chain is also calculated. In an Appendix the
relation between asymptotic properties of the moments
and the high- and low-frequency behavior of the
spectrum is discussed.
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2. SPECTRUM FOR A DISORDERED LATTICE WITH
THE MASS OF ONE OF THE ATOMIC

SPECIES INFINITE

In one dimension there is one disordered lattice
problem that can be solved exactly: the case in which
the mass of one species of atom is infinite. We believe
that the details of this spectrum shed some light on the
problem of the disordered chain with the mass of one
of the atomic species very much larger than that of
the second.

The essential simplification introduced by an infinite
mass is that the linear chain is divided into "islands"
of light masses bounded by "walls" of rigid atoms. In
higher dimensions even the infinite-mass case is dificult,
if not impossible, to solve analytically. Consider a
chain of S atoms and let T be the probability that a
light atom occupies a given lattice site. Then the
probability of having an "island" or run of n light
atoms is, in the limit X~ ~, r"(1—r)'. A run of
length zero corresponds to a single infinite mass, and
the probability of this is (1—r). The normal mode
frequencies of a chain of n particles of mass m enclosed
between rigid walls are

srs
~=~z,

)
1-cos—

~
2

n+1 j

=coL, sin S=i) 2) ''' 0
2 (n+1)

Thus every rational number in the interval (0,1) except
for the end points generates a frequency given by Eq.
(1). We now derive that weighting factor which is to
be associated with a given rational number. Let us
assume that s/(n+1) is reduced to lowest terms. This
ratio can be realized in many diferent ways since

s/(n+1) = 2s/(2n+2) = . Hence the probability
associated with the frequency &oL sin[srs/(2n+2)) is

prime to e, is known from the theory of Lambert
series'; hence the probabilities given by Eq. (2) sum to
unity, as they must. We therefore see that the frequency
spectrum for a one-dimensional disordered lattice con-
taining atoms with an infinite mass is given by a series
of lines (delta functions) with varying weights located
at a set of points in one-to-one correspondence with the
rational numbers. There is also a delta-function at the
origin of strength (1—7) which corresponds to the zero
frequencies due to the infinite masses. The spectrum
differs essentially from a normal one-dimensional spec-
trum of a chain of S atoms. Although this also consists
of Ã lines, we can divide these lines into groups in
which the variation of their magnitudes is less than
any given quantity ~, and as S~ ~ the number of
lines in each group becomes large and the spectrum
tends to a continuous function. However, as S~ ~ in
our particular case the limiting function still exists
only at points given by Eq. (1). Thus, near any one
point of the spectrum there will be infinitely many
others, but from Eq. (2) we see that the closer any
other point comes to the first the larger is the difference
in their magnitudes [since by Eq. (2), these magnitudes
depend only on n and not on sj.

Some idea of the distribution of frequencies in the
spectrum can be obtained from Table I which lists the
expected distribution of frequencies in (0,&oL) in inter-
vals of &oz/10 for r=

It is possible to calculate the behavior of the expected
integrated frequency spectrum in a neighborhood of
the maximum frequency. Let 1V(&o) be defined as
J„'"Lg(to)d&o, where g(co) is the expected frequency
spectrum. We shall study the behavior of X(&o) in the
neighborhood of to=ooL. From Eq. (1) we see that we

must study the fraction of frequencies in an interval
specified. by the requirement that s/(n+1) be close to
one. For simplicity we take e large and set s= e. Then
the length of the interval to be considered in the
frequency domain is

(1 —r)sr~
(1—r)s P r»+(z —i) =

k=1 in+1

The relation

&+ io(n+ 1)7
(1—r)' 2 =1

P $ T+1

(2)
coL—oo=ooL~ 1—sin

E.

S(n+1)s

'En ) f'
i=cozi 1—cos

2(n+1) ) i 2(n+1) i

where p(n) is the number of integers less than and There will be frequencies in this interval which

TABLE I. Fraction of frequencies in the intervals L(j—1)coo/10, jcaz/10].

zLt/416

Fraction

0—0.1

0.5019

0.2

0.0038

0.3

0.0120

0.4

0.0504

O.S

0.0760

0.6

0.0183

0.7

0.0052

0.8

0.1719

0.9

0.0902

1.0

0.0703

g., Knopp, Theory and Apptecation of InPnste Serees (Blackie and Son, j td. , london and Glasgow, 1951), p. &48,
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correspond to the rational numbers

I+1 v+2

2N 2m+1
~ 0 ~ ~ ~ ~

2n+1 2e+2

3e 3m+1
) etc.

3m+1 3n+2

for large n. Hence the desired density is given by

iV (~)= (1—r) exp-
Lg(1 —~/~~) 3'

From this result one can obtain some information
about the behavior of E(~) for a disordered chain with
a finite ratio of masses. We first note that the moments
are a linear combination, with positive coeS.cients, of
the v„L=r/m"+(1 —r)/M"j. ' The moments of a dis-
ordered chain with masses m, M and probability r are
thus bounded below by the moments of a disordered
chain with masses m, ~ and probability r. But the
moments are also bounded above by the moments of a
disordered chain with masses m, ~, and probability r,
where r(r'(1. This can be seen from the inequality

1—r
m" 3f" m"

r+ (1—r) (m/M)
(7)

m"

The last term on the right is an expression for v„ for a
disordered lattice with masses m, ~, and a probability
r'= r+ (1—r) (m/M). Let us now consider the function
E(cs) for a disordered chain with masses m and M and
probability r and compare it with 1V„(~) for a chain
with masses m and ~ and probability r'. It is shown
in the Appendix that it is impossible for 1V(co) to be
strictly greater than or equal to X„'(~) in any neighbor-
hood of co=a&i.. Similarly it cannot be strictly less than
or equal to E„(&o). Therefore it behaves qualitatively
like X„'(&o) about a)=(ol,

3. DETERMINATION OF THE SPECTRUM
FROM THE MOMENTS

If all the moments of a spectrum are known, it is
clear that the characteristic function can be written
down, and hence the spectrum derived exactly. If only

The expected fraction of frequencies is therefore equal to

(1 r)2( ra+ m+1+ m+2+. . .

+ rsvp+ rsvp+2+ rsvp+4+. . .+rsn+ rsn+8+. . .+. . .)
r2"

=(1—7)' +- + . . =(1—r)r" (5)
-1—r 1—r2

a finite number of moments is known, we can neverthe-
less derive approximations to the spectrum which will

improve steadily with the number of exactly determined
moments. We shall be concerned with a chain in which
any atom can have mass m or M (M) m), these values
occurring randomly with frequencies r, 1—r, respec-
tively. Then v„ the sth moment of the M ' distribution
will be equal to

P= (1—)/, $=m/M.

By Rayleigh's theorem' no frequency of the random
chain can be greater than the highest frequency of a
homogeneous chain of light atoms m. Since we consider
a lattice with only masses chosen at random, the
maximum frequency will be equal to that of a lattice
containing light masses only with probability r~, hence
the frequency spectrum is nonzero in at most a finite
region (O,col,) where col, is the maximum frequency of a
lattice with light atoms only. 4 ' The results of the last
section suggest that the high-frequency end is ap-
proached by an exponential tail in the spectrum.

A considerable simplification in the determination of
the spectrum arises when it is known that the spectrum
exists only for a finite range of frequencies. The asymp-
totic values of the moments then determine the behavior
of the spectrum at its upper end. Thus if p„~l,"f(n),
where lim„„Lf(e)J'"=1, then the upper limit of the
spectrum is col, and f(e) determines the form of the
spectrum near co=col. in certain cases; for example, if
f(n) 1/e", then g(&u) A(1—~/&ul, )s '. This result is
derived in the Appendix, and it is shown how a detailed
asymptotic expansion of p„ for large n enables us to
obtain a corresponding expansion of g(cv) near co=col..

In what follows, it will be more convenient to discuss
the dimensionless distribution functions,

f(x) = (ui,g ((or,x), F(x)= a&1.'G((el.'x),

where G(oP) is the distribution function for the squares
of the normal mode frequencies, and is related to g(&u)

by g(&u) =2~G(~'). The even moments of the frequency
distribution function g(&u) are given in terms of these
new functions by

+sk —p sk/(0L = x f(x)dx

1

I x"F(x)dx
"n

Lord Rayleigh, The Theory of Sognd (Dover Publications„
New York, 1945), second edition, Chap. 4.

4G. H. gneiss and A. A. Maradudin, J. Phys. Chem. Solids
7, 327 (&958).

~ Maradudin, Mazur, Montroll, and gneiss, Revs, Modern
Phys. BO, 175 (1958}.
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We restrict ourselves to the consideration of even
moments only since it is these which are obtained by
the moment-trace method. In order to calculate the
spectrum using these moments, the function g(~) is
extended symmetrically from —col, to 0; all odd mo-
ments over this extended range are then zero.

It is easy to transfer the origin to x= 1 and calculate
the transformed moments ~2~. We have

pl
egg ——

J (1 x')"—f(x)dx
0

As we shall see in Sec. 4, these transformed moments are
intimately connected with the evaluation of the zero-
point energy of a crystal lattice. Furthermore, we can
use the above results to obtain the expansion of f(x)
near x=0.

To approximate to the spectrum over the whole
range, two. independent methods have been used. The
first is to obtain the best type of polynomial approxi-
mation with the moments available, and this is achieved
by the use of I.egendre polynomials. The details of the
method have been described previously, ' and will
therefore not be reproduced again here. Since even
moments were available up to p», I egendre poly-
nomials up to the twentieth order were used. It is
important in methods of this kind to maintain a
sequence of approximations rather than to rely on one
approximation of the highest order. By noticing the
di6erences between successive approximations in the
sequence it is possible to assess the reliability of the
final estimate.

The second method, which to the best of our knowl-
edge has not been used before, we have called the
delta-function approximation. This method makes use
of the formula

For one-dimensional lattices the expansion of f(x) for
X~0 is

f(x)=co+c2x +c4x + ' ' ' . (15)

Using the delta-function method we can obtain values
for the coeKcients c2 as follows. We have that

C2 3c4
2Anvan=co+

(2m+3) (2m+3) (2e+5)

+ . . (17)
(2N+3) (2n+5) (2m+7)

The coefficient cp has been determined exactly, ' and we
see that from the relation

(2m+3) L2A „w2
—co)

3c4 15c6=c~+ + (18)
(2m+5) (2m+5) (2e+7)

that the coefficients c2, c4, . can be obtained with
reasonable accuracy provided that a large number of
moments are available. An explicit expression for the
c2 can be derived in terms of limits and di6erences of
limits of the quantities A„v2„as in Theorems 4 and 5
of the Appendix. If the functional form of f(x) for x 1
is known, similar methods using the N2„can give us
precise information about the spectrum in this region.

At an intermediate point of the spectrum we need a
two-sided delta-function, and we have used

b„(x)f(x)dx
00

=A „ f(x) (1—x') "dx
~0

~1
=A„(1—x') "tco+c2x'+c4x'+. )dx, (16)

aJ p

i.e., that

F(x) = F(g)S(g x)dq, O&x&1—,
"0

(12) x)2 n

S(q —x) =A. 1—
I

and the 1th order approximation replaces 8($—x) by a
polynomial of order e, b„(g x). —

However, for the study of f(x) about x=O we need a
one-sided delta-function, and we can use

x&-;,
($-xy' "

(x)
where 3„and B„are given by

(19)

(2m+1)!
8 (x)= (1—x')"=An(1 —x')"

Pn+&(~!)2
(13)

where the normalization constant has been chosen in
such a way that

)t 8„(x)dx=1.

1 (2m+1)!

1—x 2'n+'(et)'
(2o)

1 (2m+1)!
8 ——

x 22n+1(+ ))2

6A. A. Maradudin and G. H. Weiss, J. Chem. Phys. 29, 631
(j.958).
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fore tends to smooth out the oscillations of the correct
spectrum. Both methods (and more particularly the
Legendre polynomial method) are highly sensitive to
the correctness of the moments; several small errors in
the initial derivation of the expression for the twentieth
moment were detected by the obvious incorrectness of
the corresponding approximations to the spectrum.

The delta-function method has the advantage of
great simplicity, and ready application without exces-
sive computational difficulty to moments of a high
order; it provides approximations to a positive function
which are always positive. The Legendre polynomial
method is less satisfactory to use with moments of high
order since a very high degree of accuracy is required
in computing the coefficients of high order Legendre
polynomials, and this leads to heavy computational
work. In the present application we have used the
delta function method largely at the ends of the spec-
trum, as the Legendre polynomials seem to provide a
better estimate in the interior frequency range. If more
moments were available it is likely that the delta-
function method could have wider application; this
might provide an alternative method for accurate
calculations of spectra of homogeneous lattices, where
moment calculations can be carried out quite easily.

I I I I I I I I I

0 CLI 02 03 at4 05 CN CL7 OS 09 LO

Pro. 1. This figure shows successive approximations to the
frequency spectrum of a randomly disordered two-component
linear chain in which the ratio of masses 3f/ra=2, and the fraction
of light masses v =0.5. These were obtained by the Legendre
polynomial method using 16, 18, and 20 moments respectively.

respectively. This function overlaps the interval (0,1)
but this does not aGect our results, since there is no
contribution from outside this interval. Clearly the eth
approximation, F„(x), can be expressed in terms of
moments of up to order 2e for an end point and of up
to order 4e for an interior point of the spectrum. We
can similarly obtain estimates of P(x) and F"(x) at
any point x by using J'($ x), J"($—x). T—he spectrum
and its properties can then be calculated point by
point, the accuracy obtainable depending on the number
of moments available.

The two methods of approximation seem to be
roughly complementary. The Legendre polynomia1
method provides an approximation which oscillates
above and below the correct spectrum, and hence tends
to exaggerate the maxima and minima and oscillations
of this spectrum; spurious oscillations can usually be
separated from genuine maxima and minima since they
are not consistent in successive approximations (see for
example Fig. 1). On the other hand, the delta-function
method produces an averaged spectrum with a breadth
of averaging which is determined by the order of the
approximation, becoming finer as e increases; it there-

4. ZERO-POINT ENERGY OF DISORDERED LATTICES

The zero-point energy of a crystal lattice is given by

Ep= s" Z~ &~'~ (21)

pl
=-',Ap&r. xf(x)dx,

Jo
(22)

where E is the number of particles in the lattice.
Following the method used by Bomb and Salter' for
homogeneous lattices we rewrite Eq. (22) as

Ep/N= ', Appr, L1—(1—x')-)~f(x)dx

=-,'Arpr, P (—1)"~.=p &~j
7 C. Domb and L. Salter, Phil. Mag. 43, 1083 (1952).

(23)

where the summation is over all the normal mode
frequencies of the lattice. Since g(&u)dcp is defined as the
fractiots of normal modes with frequencies in the
interval (pp, rp+dhp), we can replace the sum in Eq. (21)
by an integral to obtain the zero-point energy per
particle as

Ep/N = sA) rpg(rp)drp
0
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Since in the present case we have only the moments Our expression for the zero-point energy per particle
up to p2p at our disposal, it is necessary to estimate the becomes finally
contribution to Ep/X from the sum

(s&s= 2 (-1)"I I»-.
n =11

1P (,)P (—1)-I I.,„—0.023S095cp
(24) X 2 ~=p &44)

The method for obtaining this correction is quite general
and can be applied to homogeneous as well as to
disordered lattices.

Ke begin by obtaining the asymptotic form of e2„
for large N. Since we know that about x=0, f(x) can be
expanded as

f(x)=cp+csx +c4x + ' ' ', (25)

and since the v2„are moments of the frequency distri-
bution function about the origin, then with the aid of
Lemma 1 of the Appendix we can assert that the large-n
behavior of e2„ is given by

40
(1—x') "(cp+csx'+c4x'+ )dx

c, r(-', )r(~+I) c, r(-;)r(~yI)
+

r(N+-', ) 2 r(N+-s, )

c4 r(-,')r(I+1)
+ . (26)

r(N+-,')

If this result is substituted into Eq. (24), we obtain

(—1)" ( 1)nco%' cger
5= Q +

4 -=11 r(-;+I)r(-;—~) g -=11 r(-', +e)r(-; —n)

3c4n (—1)"
Z +" (27)

16 =11 I'(-', +N)I'(-', —I)

S= ——P
4-=» (~+p)(~—s) g.=» (~+p)(~+s)(N —p)

3c4

16 ~=» (44+-', ) (44+-sp) (44+-,') (44 ——,')
(28)

By breaking th6m up by partial fractions, we can
evaluate the sums immediately with the result that

Co C2 C4

2X21 4X21.X23 2X21X23X2~
—". (29)

where we have used the explicit expression for the

binomial coefFicient
I I. With the aid of the relation
(-,'I
(44j

I'(s)I'(1—s) =n/sinn s,

the sums in Eq. (27) are transformed into

—0.0005176cp—0.0000414c4— . (30)

In applying this result to the calculation of the zero-
point energy of the disordered lattice the exact values
of co, c2, c4, which were obtained by the methods of
Sec. 3, were used.

The zero-point energy per particle of the disordered
lattice with the ratio M/m infinite cannot be evaluated
in this manner since the correction terms become
infinite. However, from our analysis of the frequency
spectrum for this case, we know the value of every
normal mode frequency and the probability of its
occurrence, so that we may evaluate the zero-point
energy by direct summation. The sum converges
rapidly, and good accuracy can be achieved in this way.

In order to compare the zero-point energy per particle
of the disordered lattice with the zero-point energy per
particle of the ordered (ABABAB ) lattice and the
lattice in which the isotopic constituents have separated
into two phases, the latter two energies were computed.

The zero-point energy per particle of an alternating
diatomic chain with masses M and m has been obtained
by Mazur, Montroll, and Potts' for a chain with 6xed
ends. In the present case, where we have assumed

cyclic boundary conditions, their analysis leads to the
following expression

where Z(tp, k) is an incomplete elliptic integral of the.
second kind.

The zero-point energy for the separated phases is

computed from the fact that the zero-point energy per
particle of a monatomic linear chain with masses M
and force constants n is (gati/n)(4n/M)& The zero. -point

energy per particle for the separated phases is then

given by

Ep-& i'4 )4ny &

t
4nq &

I

—I+«- )I —
I

.
iV E mi &Mi

(32)

If we normalize this expression to give the zero-point

energy in terms of the maximum frequency of the

4 Maznr, Montroll, and Potts, J. Wash. Acad. Sci. 46, 2 (1956).

Ppordered Qtp& -1
p m y

- $ (M/m))+(m/M)t
-I 1+—I

X n 2 ~. M) P(M/m)&+(m/M)t]:

(n 2
(»)

(4 (M/m)'+(m/M)'J
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tained, and have the appearance of spurious oscillations
introduced by the approximation. On the other hand,
the major peaks are consistent in successive approxi-
mations, and we feel confident that they are not
spurious.

The Legendre polynomial approximation thus seems
to be rather unsatisfactory in the long-wave region of
the spectrum. Fortunately an alternative and inde-
pendent source of information is available for this
region. Clearly the forces in any given region are
independent of the masses, and hence the stress across
any given area, and the corresponding stress tensor,
remain the same as the masses change. Hence for a
large region containing diferent masses the equations
of motion are of the form"

~ p(x,y,z)ii(x,y, s)dxdyds= ' X„ds, (34)

Pro. 2. The zero-point energy for an ordered (ABAB )
diatomic linear chain, for a randomly disordered two-component
chain with x =0.5, and for a diatomic chain in which the compo-
nents have separated into two phases ( AAABBB .), plotted
as a function of the mass ratio M/ra.

disordered lattice, we obtain

where p(x,y, z) is the density of the body at the point
(x,y,s), N(x, y,s) is the displacement of the point (x,y,s),
and I, is the x component of the traction across the
bounding surface of this region. Now it is this macro-

Ep ~ AQ)1,

(33)
l.6

By using Eqs. (30), (31), and (33), the zero-point
energies of the ordered and disordered lattices and the
separated phases were calculated as a function of the
mass ratio for r=&. The results are given in Fig. 2.
For all mass ratios the ordered lattice has the highest
zero-point energy, while the separated phases have the
lowest zero-point energy. This result is in agreement
with results obtained earlier and by diGerent methods
by several investigators. ' "

5. PROPERTIES OF THE SPECTRA

Even moments of the spectrum up to p2p were
evaluated from the expressions given in reference 1 on
the IBM 704 computer at the National Bureau of
Standards for M/m=1. 1, 0.5, 2.0, 3.0, 5.0 and for
g= O.i, 0.25, 0.50, 0.75, and 0.90. Corresponding
approximations to the spectra using Legendre poly-
nomials were also computed with 16, 18, and 20 mo-
ments. We found it necessary to do our calculations in
double precision (i.e., keeping twenty decimal places),
since in the Legendre polynomial calculations many of
the terms arise as small diR'erences of large numbers,
thus necessitating increased accuracy. A typical set of
estimates of the spectrum is shown in Fig. 1 for r=0.5,
M/m=2. The advantage of maintaining the series of
approximations referred to in Sec. 3 will be clearly seen.
At long wavelengths the small oscillations occurring in
successive approximations are not consistently main-

3 08

0,6—

0.4

0.2-

0 0

FrG. 3.
randomly
r=0.5.

I

0.9 1.0
I I I I I I I I

O.l 0.2 0.3 0.4 05 0.6 0.? 0.8
/cu,

The final estimate for the frequency spectrum of a
disordered two-component chain with 3E/m=2 and

' Prigogine, Bingen, and Jeener, Physica 20, 383, 516 (1954).
"A. E. H. Love, A. Treatise on the Jrf/Iathematical Theory of

Elasticity (Dover Publications, Inc. , New York, 1944), p. 76.
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We have used this method to fill in the long-wave-
length part of the spectrum. We also tried the delta-
function method for this region of the spectrum and
found that the resulting curve did not diGer appreciably
from that given by (35).

The curve in Fig. 3 represents our final estimate of
the spectrum for M/m= 2, r= ~ and was obtained from
the twentieth Legendre polynomial approximation at
the upper end of the spectrum (which is terminated
exponentially at the upper end in accordance with Sec.
2) and the methods of the previous paragraph at the
lower end. There are indications (by comparison with
corresponding Legendre polynomial approximations for
the ordered ABAB . . lattice) that the peaks in this
spectrum do not represent inhnite singularities.

In Figs. 4 and 5 we have plotted the frequency spectra
for the case M= 2' as the concentration of particles of
lighter mass nz increases from 10% to 90%. For refer-
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~ o ~ ~ o ~ ~ o 7= ISOl.5
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FIG. 4. The frequency spectra of randomly disordered two-
component chains for the cases M=2m, and 7.=0.1, 0,25, and
0.50.

7= 0.50
7= 0.75

~ ~ ~ ~ ~ ~ ~ ~ 7~ 0.90l.5-

scopic equation which determines the elastic constants,
and hence the long-wave behavior of the spectrum;
and if the region concerned contains a large number of
lattice points, we can neglect density Auctuations and
replace p(x, y, s) by the mean density. We should thus
expect the long-wave behavior to correspond to that of
a monatomic lattice of mean mass.

This result can be established independently for the
linear chain by a perturbation method. ' In fact, the
latter method provides a long-wavelength expansion for
the disordered lattice of the form

i I ~
~ / ~

, I

j I

l) ~
~ Io I ~
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Pro. 5. The frequency spectra of randomly disordered tmo-

component chains for the cases M =2m, and ~=0.5, 0.75, 0.90.
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ence, the spectrum corresponding to v =0.50 has been
included in each figure. We note that for v=0.10 the
spectrum does not dier qualitatively from the spec-
trum of a monatomic lattice containing only heavy
particles in that it increases monotonically to a maxi-
mum at co/col, =0.65 and then drops steeply. (The
additional subsidiary maximum in this spectrum near
the high-frequency end is believed to be associated with
an impurity band and will be discussed below. ) The
corresponding monatomic lattice has a square root
infinity at co/col, =0.7071, and is zero beyond this point.
As the concentration of light masses increases, the main
peak decreases, while the small subsidiary peak in-
creases until at v=0.50 it becomes the dominant peak.
At the same time, a smaller peak begins to develop on
the high-frequency side. As 7- increases further, this
new peak increases while the remaining two peaks
decrease. At r=0.90 the spectrum is almost that of a
monatomic lattice with light masses only. The spectra
for beth r=0.75 and z=0.90 eventually bend over and

approach zero at co/a&1, = 1. It might be remarked that
the spectrum of a lattice containing only 10% heavy
atoms resembles the spectrum of the corresponding

light atom monatomic lattice more closely than the
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Fxo. 7. The frequency spectrum for a randomly disordered
two-component linear chain with M/m=3 and 7-=0.1. Note the
two impurity bands.
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FIG. 6. The frequency spectra of randomly disordered two-
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spectrum of the lattice containing only 10% light
masses resembles the spectrum of its corresponding
heavy mass monatomic lattice. The reason for this is
found in Rayleigh's theorem. ' The addition of a small
number of heavy masses to the light atom lattice will

only depress the frequencies slightly, while the addition
of a small number of light masses to a heavy mass
lattice will shif t the frequencies upward and can
displace the uppermost frequencies into an impurity
band.

In Fig. 6 we have plotted the frequency spectra for
7=0.50 as the ratio M/m varies from 1.1 to 5. (The
spectrum for the case M/m=2 is contained in Pigs. 4
and 5.) It is seen that the change from a rather smooth
spectrum containing no sharp peaks (except at cv=~r, )
to one containing several maxima takes place for values
of the mass ratio approximately equal to two.

In Figs. 7 and 8, we have plotted the spectra for the
cases x=0.1, M/m=3, and x=0.1, M/m=5, respec-
tively. These represent the spectra of homogeneous
lattices with a small impurity concentration. In each
case the existence of two impurity bands is clearly
suggested.

A quantitative explanation for the features of the
spectra is very dificult to give at the present time.
However, some qualitative remarks can be made which
may aid in the interpretation of our results. In the case
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that the concentration of light atoms is small, as in the
case of the spectra of Figs. 7 and 8, the main contri-
bution to the frequency spectrum is associated with
the spectrum of the monatomic lattice composed only
of heavy masses. The maximum frequency for such a
lattice is given by

2.8 l

2.6

2o2 ~

co,„/oir, = (m/M) l, (38) 2.0

Coimp i 1 1

&or, 1 4 2 (2—ns/M)

5+- (4o)
4M)

If we substitute the values M/m=3 and 5 into Eq.
(40), we obtain values of 0.933 and 0.929, respectively,
in good quantitative agreement with the locations of
the second impurity bands in Figs. 7 and 8. We also
note the qualitative feature that the second impurity

"E.W. Montroll and R. B.Potts, Phys. Rev. 100, 525 (1955).
~ Montroll, Maradudin, and Weiss, Proceedings of the Stevens

Institute Conference on the 3fany-Body Problem (Interscience
Publishers, Inc., New York, 1958).

which yieMs values of 0.577 and 0.447 in reasonable
agreement with the values which mark the cutoG on
the first band in Figs. 7 and 8.

The presence of the two impurity bands may perhaps
be explained in the following way. From the work of
Montroll and Potts" it is known that adding a single
lighter-mass-isotope defect to an otherwise monatomic
linear chain gives rise to a localized normal mode of
vibration whose frequency lies above the band of
allowed frequencies and is given by

cv; p/air, = (2—m/M) ".

The broadening of this frequency into an impurity
band for small concentrations of defects has also been
discussed, ' "but the approximation of the spectra by
twentieth degree polynomials is undoubtedly too coarse
to allow us to expect quantita, tive agreement between
the observed and calculated impurity band widths.
Substituting the values (M/m) =3 and (M/m)=5 into
Kq. (39), we obtain values of 0.775 and 0.745, respec-
tively. These values are in good quantitative agreement
with the values of a/air, at which the first impurity
band occurs in the two cases illustrated in Figs. 7 and 8.

The second impurity band is believed to be associated
with the replacement of a heavy atom by a light atom
in an ordered portion of the chain. In the limit of very
long chains we can expect to find "islands" where the
atoms. are arranged in an ordered array, with the ratio
of the number of consecutive light atoms to the number
of consecutive heavy atoms equal to the ratio r/(1 r). —
Then, if in such an island one of the heavy atoms is
replaced by a light atom, the normal mode associated
with such a defect will have a frequency which will lie
above the maximum frequency of the ordered lattice.
The value of this frequency has been calculated only in
the case of an alternating diatomic lattice (ABAB ),
with the result that'
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Pro. 8. The frequency spectrum for a randomly disordered
two-component linear chain with 3E/m=5 and r=0.1. Note the
two impurity bands.

band in Fig. 7 occurs at a higher frequency than does
the corresponding band in Fig. 8, in qualitative agree-
ment with the calculated results. The agreement is
probably fortuitous since with 7 =0.10 there is a greater
probability for finding repeating units of nine heavy
atoms and one light atom than for 6nding repeating
units of one heavy atom and one light atom.

In applying this analysis to the spectrum for the case
M/rN=2, v=0.1, which is illustrated in Fig. 4, we find
that it predicts impurity bands at oi/o&1. =0.816 and
o~/oir, =0.940, respectively. However, only one such
band is observed, at &a/air. =0.87. It is suggested that
this band is associated with the first of the proposed
mechanisms, i.e., it is the impurity band due to the
presence of a small number of light isotope defects in an
otherwise monatomic lattice. It is possible that a
recalculation of this spectrum using higher moments
than available at present would reveal a second im-
purity band at a higher frequency. At present we must
assume that the mass difference is not su%ciently large
for a second isolated band to appear.

For values of 7=0.5 the analysis of the spectra is
more dificult since peaks can now arise from more
complicated sources, and a detailed discussion of Figs.
4, 5, and 6 will not be given,
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In this case, it would appear to be more convenient
to pick the ordered diatomic lattice as our base lattice,
and to regard the disordering as taking place about this
configuration. It is well known' that the ordered dia-
tomic lattice has three square-root infinities: at the
top of the acoustic band, at the bottom of the optical
band, and at the high-frequency end of the spectrum.
For the disordered chain we might expect that the
forbidden band will be filled in and the infinities
reduced to finite peaks. The frequencies at which these
infinities occur, which we denote by or&, co2, and ~3,
respectively, are given in the present case by

COi BS ) * M2 (1)~ M3 f1 tS
I, —=l-l, —=I-+—

l (41)
Ml, 2M) Ml, 42 i Ml, i2 2M)

In addition, one might expect in this case an impurity
band at a frequency given by Eq. (40).

However, the results shown in Figs. 4, 5, and 6 do
not agree well with this interpretation, except for the
positions of the high-frequency maxima in the cases
~=0 5, M/m=2, 3. , 5 which agree qualitatively with
the values predicted by Eq. (40). It may very well be
that the two infinities which occur at frequencies co&

and co3 in the ordered diatomic lattice coalesce into a
finite peak in the disordered lattice. For additional
information on this and other points, we must await
the calculation of higher moments.

Finally, Fig. 9 has been drawn to illustrate Rayleigh's
theorem' that the increase of any mass of a vibrating
system decreases the normal mode frequencies. We
have plotted the fraction of normal modes of a dis-
ordered chain whose frequencies satisfy ~')geol. ' as a
function of the mass ratio M/ec. This fraction equals

MASS RATIO

Fro. 9. This figure illustrates Rayleigh's theorem that the
addition of heavy masses to a system of vibrating springs and
masses lowers the normal mode frequencies of the system. The
fraction of normal mode frequencies satisfying cd)~~cvl2 as a
function of the ratio of the masses of the two constituents of a
randomly disordered linear chain is plotted.

2 for the homogeneous chain, but decreases rapidly for
M/m) 1 until it approaches the value for M/m

APPENDIX. ASYMPTOTIC VALUES OF THE MOMENTS

In the remarks that follow we assume that or1,=1,
with only trivial modifications being necessary to
translate our results for general erg. It is almost immedi-
ately evident that the asymptotic behavior of the
moments is intimately related to the behavior of the
frequency spectrum in the neighborhood of the maxi-
mum frequency. This follows from the fact that
lim„&u =0 for i&el &1 and =1 for ce=1. It is therefore
not surprising that under quite general conditions one
can discuss the behavior of the frequency spectrum at
its upper end in terms of the asymptotic form of the
moments. %e shall discuss the relation between the
form of the frequency spectrum at the high-frequency
end and the asymptotic form for the moments in this
Appendix.

Let the frequency distribution function be denoted
by g(~) and let us define a truncated distribution
function g, (ca) for e&0 by

g, (co) =0 for 0~&a&~& 1—e

=g((a) for 1—&&a) &~ l. (A1)

Denote the kth moment of g(co) by, pq and the kth
moment of g, (&o) by pI, (e). Fundamental to our later
remarks is the following obvious lemma:

Lemma 1.—The difference between the real and
truncated moments is bounded in absolute value by a
function which is Of(1—e)").

Proof: Ke have the estimate

~l—e pl
p„—p„(e)= ' x'g(x)dx~& (1—e)" g(x)dx. (A2)

With the aid of this lemma we can discuss the sense
in which the asymptotic form of the moments is
determined by the behavior of g(co) in an arbitrarily
small neighborhood of co= 1.

Theorem 1. I.et f(ar) ~& 0 be such that

1. Jp'f(u)da& exists" and has moments

f'I,= Jo'(o"f((o)dM

2. g(~) f(co)+=8(co) where for any 8)0 there exists
an ~ such that

I ~(~) I
&& w"en I1 ~l «.

"The existence of Jp'f(co)Ao is enough to insure the existence
of pg.
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3. For any e)0 the truncated moments {i, (c) go to
zero more slowly than (1—e)", i.e., limi, „(1—e)~/

f.()=o .
4. The difference function 8(cu) satisfies lim„ i

~
8(&u) ~/

~ f(~)
~

=0. Then

limi, (pl, /{ i) =1.

Proof: We may write

~i CO

pi ——
, (o~g(cg)d(v=

~

e "g(e')e -'dt
J, 0

—g u k-'» for k-+ ~, (A7)

Hypothesis 3 insures that f(&u) does not go to zero
too quickly. It is clear that if f(co) approaches zero too
rapidly we would not be justified in neglecting contri-
butions from the interval (0, 1—e) as is done in the
following proof.

Proof: %e may write

or the kth moment can be written as the Laplace
transform of the function g(e ')e '. The hypotheses of
this theorem allow us to use a Tauberian theorem" for
the Laplace transform, to assert that

~i, (e)+~i (e)

{. {. |.(—)+{() (A3)
near t=o or

g(e ')e '- E o
n=i I'(g„)

ln'" 'co '

By the proof of Lemma 1 we have the property
[t ~

—t ~(e) ), (pi —p, i, (e) )
(~OL(1—e)~j; hence, using

hypothesis 3 we find

p~(e)
hm' "ta(e) {a

We can also write

(A9)

If the monotonicity properties of g(&u) are not known,
then we may at least assert that

(A10)

pL(e) = 1+ (u "8((u)da)

{1(e)
&'f(u)d~ (A5.) Notice that when there is only a single term, say

Ak, we may expand the logarithm in the vicinity
of += 1 to find

By condition 4 the last ratio must tend to zero as e

approaches zero, thus proving the theorem.
If, as u ~ 1, g(u) —+ A (1—oP) sufficiently rapidly,

where o«1, 2, 3, , then we may assert that pq
-gI'(1 —n)2—

k
—'. U, as co~1, g((u) ~A ln(1 —co)

—'
sufficiently rapidly, then pI, ~A (ink/k).

The question now arises as to the conditions under
which it is possible to reverse the property of Theorem

1, i.e., if it is known that pI, f'I, as k-+ ~ where the
f'i, are the moments of some function f(co) can we assert
that g(co) —+ f(a&) as ~ —+ 1? It is indeed true that under
a wide set of conditions the asymptotic form of the
moments determines the behavior of g(~) in a neighbor-
hood. of co=1 as shown by Theorem 2.

Theorem 2. Let

2 (1—(u) ~—'
g(~)- +O[(1—a)) "—').

()
Another problem along these lines is: Knowing the

form of g(a&) near ~=1, how can we fit the relevant
parameters from the asymptotic form of the moments?
As an example of how this question might be answered,
we have theorems 3 and 4.

Theorem 3: If g(co) can be expanded around a&= 1 in
a series of the form

g(~) = Z ~-(1-~)",
a=0

then, in terms of the moments pj„

pg Qak '" for k —+ ~
n=l

where 0&si(s2&s3( r ~: If it is known that g(~) has
a monotonic behavior near co= 1, then

a„= (—1)"lim (k+2n+1) (k+2m+2)
k-+a (It)2

X5{(k+2n —1)(k+2n)

X5{(k+2m —3) (k+2' —2)6

X6{(k+1)pi,} } (A12)

as co~ 1.

g(~)- 2 ~=- — ——
r(s )

(A6)
ag ——lim $(k+1)pi],

'4 G. Doetseh, Theoric end Asmeedeng der I.ap/uce T~aesfor-
8'oman (Dover Publications, New York, 1945).
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where

~f~= f~i f—~

(—1)"2"-' r(k+$(I+2))
G~= lim

e!Ft (n+1)/2$ " "r(k+$(v+1))
Proof: The moments, p are given by

p, g
——P a„co'(1—

&u) "des.~ "J,

F (m+1)
=k!Q a„

F (v+k+2)

~ (k+1)(k+2) (k+I+1)
(A13)

1I'(k+-,' (I+1))
X~ ~ ~ ~

1 r(k+-;~)

r(k+$)
X& ps . (A20)

r(k+1)

Since we are dealing with the limit of k tending to
inanity we may, for all practical purposes, write
(k+m)(k+m+1) k' and A~d/dk. In this notation
for the case of Theorem 3 we have

or, equivalently,
1a„~ lim k'5"-' —kpf,

(I!)
(A21)

2!u2
(k+1)p~=~o+ + (A14) where the operator S is de6ned as (d/dk)k'. Similarly

k+2 (k+2) (k+3) Eq. (A20) can be written

Hence we have

ap ——limi, (k+1)pp. (A15)
( 1)n2e 1-

g„ lim k&T"-' —k&pi, 1, (A22)
e!FL(n+1)/2j" "

If we take erst differences and use the formulas

6 constant=0,

(k+2) (k+3) ~ (k+m+1)

we Gnd

(k+2) (k+3) (k+v+2)

A{(k+1)pg)=-
(k+2) (k+3)

2 ~ 2 Ia2

(A17)
(k+2) (k+3) (k+4)

or

ai ———lim (k+2)(k+3)h{(k+1)y~). (A18)

If we continue in the same fashion we find, in general,
the expression given by Eq. (A12).

'

Theorem 4 is proved in a similar manner.
Theorem 4: If g(cu) can be expanded around co=1 in

a series of the form

where the operator T is defined as (d/dk)k&.
In Sec. 2 we have shown that the moments of the

disordered chain with masses tn and M and probability
r are less than or equal to those of a disordered chain
with masses m and ~ and probability r'. Denoting
the moments of 1V„(cu) by p„and those of 1V(~) by v„
we have:

Theorem 6: Let p„~&v„with the inequality valid for
e)1. Then X„(ar)—E(&u) cannot be strictly negative
in any neighborhood of co= i.

Proof: Let H(&o) =1V„(co)—E(~). By hypothesis

cu"8((o)d(o&i0, m=0, 1, 2,

where we have re-expressed the moments by means of
an integration by parts. Suppose H(co) were strictly
negative in a neighborhood (1—e, 1) of 1. Then on
some subset E of nonzero measure m(E) which lies in
(1—ei, 1) where ei(e, we must have B(~)( ewhere—
0&0. We may therefore write

1—e

(u"II(s))d(o+ ~a)"H((o)d(u+ t a)"H((o)da)&~0,
J 0 &(&)

then

1 r(k+~)
go= llID P»~Qm F(k+1)

g(~)= Z o-(1—~)'" ""
nM

(A19)

where C(E) denotes the complement of E with respect
to (1—e, 1). The first term is at most Oj(1—e)"j and
must be positive. The second term is negative and less
than —8(1—ei)"m(E), and the third term is negative.
Consequently as n~ ~ the second (or third term)
dominates the sum; hence the sum cannot be positive
as asserted. This proves the theorem.


