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Hydrodynamic equations are used to describe the flow of the
electrons and ions of a fully ionized gas under the action of an
electric field, E, of arbitrary magnitude. The dynamical friction
force exerted by the electrons and ions upon each other through
the agency of two-body Coulomb encounters is evaluated. In this
connection the electrons and ions have been assigned Maxwellian
velocity distributions which are displaced from each other by
their relative drift velocity. This treatment yields a dynamical
friction force which maximizes when the relative drift velocity is
equal to the sum of the most probable random electron and ion
speeds. For relative drift velocities in excess of this value the
friction force decreases rapidly. As a consequence, it is found that
a fully ionized gas cannot exhibit the steady-state behavior
characterized by time independent drift velocities which has
previously been accredited to it by other authors. Instead, it is
shown that the electron and ion currents flowing parallel to the
existing magnetic fields increase steadily in time (i.e., runaway)
as long as a component of the electric field persists along the
magnetic field. Drift velocities which greatly exceed the random
speeds of the plasma particles can be created in this manner.

The theory yields a critical electric field parameter, E., which
is proportional to the plasma density and inversely proportional

to its temperature. It is a measure of the electric field which is
required if the drift velocities are to increase and exceed the most
probable random speeds in the gas in one mean free collision time.
For electric fields in excess of E. runaway proceeds even faster.
In smaller fields runaway occurs when Joule heating has depressed
E, sufficiently. Several interpretations of E, are given in terms of
the collisional phenomenon involved.

Within the framework of the hydrodynamic equations it is
shown that the well-known (temperature)? electrical conductivity
law can be recovered, provided E<E, and the electron tempera-
ture is held constant.

Numerical solutions giving electron temperature and drift
velocity as a function of time are presented for a range of the
ratio E/E.. The assumption of the displaced Maxwellian distri-
bution is justified on the basis of a comparison between the rate
of Joule heating and the rate of equipartition of random speeds.
Moreover, it is found that the use of an anisotropic velocity
distribution does not affect the runaway phenomenon in any
important way.

The possibility of runaway induced across magnetic fields by
steep pressure gradients and its relation to diffusion across mag-
netic fields is examined and discussed in detail.

I. INTRODUCTION

N evaluating the electrical conductivity of a fully
ionized gas the conventional treatment follows the
methods of Lorentz! or Chapman and Enskog.? The
starting point of these calculations is the time-inde-
pendent Boltzmann equation, and the method of solu-
tion follows a perturbation scheme in which the electron
velocity distribution is expressed as a sum of spherical
harmonics, or in powers of some small expansion
parameter. Generally, it is assumed that encounters
between particles occur with sufficient frequency to
bring about a Maxwellian distribution in the absence
of the electric field. The introduction of a weak electric
field is then found to give rise to an electrical current
which is linearly related to the perturbing field. This
method of solution is assumed to yield correct answers
provided the average random electron speed is very
much larger than the electron drift velocity. In this
limit the electrical conductivity is the well-known
(temperature)? law, and the numerical results obtained
by several authors® are in good agreement. The assump-
tion that a steady-state velocity distribution is attained

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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several mean free collision times after the electrical field
is turned on is basic to these time independent treat-
ments.

In the present paper we wish to consider the problem
of electrons moving through a gas of positive ions under
the influence of a static uniform electric field of arbitrary
magnitude. From the start we avoid the usual steady-
state assumption and search for the time-dependent
behavior. Our main results indicate that the conven-
tional concept of an electrical conductivity along
magnetic field lines, which is based upon a Stokes law
dynamical friction force, is of limited applicability.
The rapid variation of the Rutherford cross section
with energy is responsible for strong deviations from
a Stokes’ law and rules out the existence of a collision
controlled steady-state drift velocity for the electrons
and ions. Instead, we find that the drift velocities of
these particles steadily increase with time as long as a
component of the electric field persists along the
direction of the total magnetic field, and relativistic
effects can be ignored.

This is the so-called “runaway’ effect which has
become important in connection with controlled fusion
research.

The results presented in this paper* are based upon

¢For earlier results, see H. Dreicer, Ph.D. thesis, Physics
Department, Massachusetts Institute of Technology, 1955 "(un-
published). Results of this work are also reported in W. P. Allis’,
Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. 21,
p- 436. The results of the present paper were first reported at a
classified joint British-American Conference on Controlled
Thermonuclear Research held at Princeton University, April,
1957 (unpublished). See also H. Dreicer, Proceedings of the Third
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the two-fluid (electron-ion) hydrodynamic equations.
These equations yield most of the important runaway
effects. However, when the problem is examined in more
detail, additional effects come to light which we have
treated by means of the Boltzmann equation. These
results are to be presented in a subsequent paper, where
we also discuss the experimental implications of the
runaway effect.

II. RUNAWAY IN THE TWO-FLUID HYDRO-
DYNAMIC APPROXIMATION

A. Derivation of Equations

In this section we shall consider a completely ionized
gas of infinite extent subjected to a magnetic field, B,
and placed under the influence of an electric field, E, at
some initial instant of time. The pressure of the gas is,
in some parts of the calculation, assumed to vary from
point to point in space. For simplicity we assume that
in addition to the electrons only protons or deuterons
are present. Their respective masses will be denoted by
m and M. The two Boltzmann equations which we must
consider are

oF, —e JoF,
—tc- vpe+(-—) (E+cXB): V.F,= (—) , (1)
a1 m ot /.

daF;

e aF;
e VF¢+(~—)(E+c><B)~ V. Fi= (—) e,
ot M ot /.

Here F.(r,ct) and Fi(rct) are, respectively, the
electron and ion velocity distribution functions, r and
c are their space and velocity coordinates, and V, is
the gradient operator in velocity space. The collision
terms (9F./df). and (9F./d%). are in this paper repre-
sented by the Fokker-Planck equation

(a:;a) -z, [ _;:k[z?a(Ack}aa]

2

2 Gckacj

[Fa<Ackch>aﬂJ}, @3)

where repeated Latin indices are summed over, and
the summation of 8 over ¢ and ¢ indicates that each
type of particle encounters both electrons and ions.
The average velocity increments are related to the
Rosenbluth H and G potentials® through

(Ack)ap=0H op/ dck, 4)
<ACkACj>aﬂ= 62Ga5/3cka()j, (5)

International Conference on Ionization Phenomena in Gases,
Societa Italian di Fisica, Venice, 1957, p. 249; and H. Dreicer,
Proceedings of the Second United Nations International Conference
on the Peaceful Uses of Atomic Energy, Geneva, September, 1958
(United Nations, Geneva, 1958).

&8 Rosenbluth, MacDonald, and Judd, Phys. Rev. 107, 1 (1957).
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where
Mat+mg Fg(r,c\t)
Hp(r,ct)= P“f a3, (6)
mg w
Gas(r,c,t)=T, f wFg(r,c’ 0)d%, @)
and
w=|c—c'|, (8)

e? 2 A
I‘,,,=47r< ) loge(——), 9)
471’601%,,( ?o

e0=1/36wX 10~ coulomb volt™ meter~!, m,=mass of
the a constituent, A=Debye radius®, and po=average
impact parameter for a 90° Coulomb deflection. Only
short-range two-body Coulomb encounters between a
given particle and its neighbors inside of a Debye sphere
have been counted in the evaluation of H and G.

For problems involving electric fields of arbitrary
magnitude there is at present little hope for obtaining
an analytic solution to the Boltzmann equation in a
closed form. Nevertheless, with the help of the con-
servation laws of momentum and energy we can make
some general statements which are helpful in under-
standing the basic features of the problem. In this way
we are also led to a useful approximate treatment. We
first consider a plasma which is distributed uniformly
in space and is under the influence of uniform and static
electric and magnetic fields, E and B. In strong magnetic
fields the charged particles circle magnetic lines many
times between collisions, and the entire electrical cur-
rent is produced by the component of E along B. The
component of E perpendicular to B leads merely to a
translation of the plasma as a whole with the drift
velocity (EXB)/B2. We shall ignore this motion by
choosing E parallel to B.

The electrical current density is given by

j=‘}’Le(V¢—Ve),

where 7 is the electron (or ion) particle density, and the
drift velocities are defined by

1
Vo=— fFucdsc.
7

The first-moment equations are obtained by multi-
plying the Boltzmann Egs. (1) and (2) by mec and
integrating over all velocity space. This results in

(10)

v,

m

AL f Fu(e)) VHode, (1)
at "
aVi M

M————6E=— fF,g(C,i) Vclfieds(/‘. (12)
at 22

6 P. Debye and E. Hiickel, Z. Physik 24, 190 (1923).
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These equations state that the time rate of change of
momentum along B is for each constituent gas a balance
between the electric force and the dynamical friction
force arising from electron-ion encounters. Encounters
between like particles do not alter the total momentum
of the parent gas and therefore do not contribute to the
dynamical friction. The total momentum of a neutral
plasma subjected to a steady electric field must be
conserved. To prove that this is so we need merely
show that the dynamical friction force obeys Newton’s
third law. With the help of Egs. (6), (8), and (9), we
find

m
m f R f f Fu(e)F(c'0) V.

1
X (_«) d3cd?c’
w

= —MfF,-(c’,t) Vo H.d,

and addition of Eqgs. (11) and (12) yields

ave M dv;
=— (13)
at m Ot

This result shows that the electrons carry nearly the
entire current generated by the electric field.

With the help of Eq. (11) we find that the power fed
into the elcctron gas from the electric field can be
divided into the following two terms:

m

d V2 V
—neE-ve=11~( )-mve'fFe VH . d. (14)
dt\ 2

The first term on the right-hand side gives the increase
of electron drift energy with time. The second term
describes the rate with which electron-ion encounters
convert electron drift energy into random energy. Most
of this random energy is stored in the electron gas,
however, because of the finite ion mass, some of it is
transferred to the ions. The total rate of Joule heating,
Q, is given by

sz(ve~vi)-fFe V. H . (15)

Joule heating involves the conversion of drift to
random energy. Accordingly, since encounters between
like particles cannot alter the drift energy of the gas,
Joule heating occurs as a result of electron-ion collisions
only. In collisions between like particles random energy
is, however, exchanged very efficiently, and a Max-
wellian velocity distribution, displaced by the instan-
taneous drift velocity, tends to be established. We see,
therefore, that the rate of Joule heating and the
dynamical friction force which gives rise to it can be
indirectly influenced by like-particle encounters, in-

H. DREICER

asmuch as the precise form of the velocity distributions
plays a role in the rate of electron-ion encounters.

In the limit of weak and strong electric fields this
problem exhibits certain simplifying features. In strong
fields we may consider the effect of electron-ion en-
counters to be a small perturbation on the motion which
the electrons and ions execute in the applied electric
field. To a good approximation, then, the electrons and
ions are accelerated independently and at a constant
rate. Moreover, if we remember that the velocity
distributions are, under these conditions, altered largely
by collisions between like particles, then it becomes
apparent that these distributions will tend asymp-
totically in time to Maxwellian distributions which are
centered about the drift velocities.

These notions have led us to the consideration of the
displaced Maxwellian distribution

Fa(r,e,va(?))

=n(0)[Ba(r)/m ]} exp[—Balc—va(®)|*], (16)

where

Ba=ma/2kT (),

as an approximate solution which satisfies the Boltz-
mann equation on the average. Subsequent analysis
shows that this distribution leads to many correct
results even in the limit of weak electric fields. The
H,; function required for the solution of the first
moment Egs. (11) and (12) may now be evaluated by
substituting Eq. (16) into Eq. (6). Straightforward
integration results in

m+M &:(B8:tq)

Hei:nre s (17&)
where K
b= [ exp-
2(x) =— exp(—#%)dt,
\/7" 0
q= C*Vi[,
| (17b)

In many problems the average random electron speed
greatly exceeds all random ion speeds, and in this limit
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Fic. 1. The variation of the dynamical friction function ¥
with the relative electron-ion drift velocity (expressed in units
of 874,
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we can simplify H,; appreciably by dealing with an ion
gas at zero temperature. We adopt this procedure and
also neglect all terms of order m/M compared to unity.

This leads to
H,=nl,/q, (18)

and after another integration Eq. (11) takes the form

97,
m( )—I—eE=——eEC\I/(z), (19)
at
where
82(3) —2d 8s/d3
W)=
Z2
2= 8| Ve—Vil,
=m/2kT,, (20)

el ,=nml B..

The ¥ function presented in Fig. 1 accounts for the
variation with relative drift velocity of the dynamical
friction force exerted by the ions on the electron gas.
The total magnitude of this force depends also upon the
coefficient E. which, as we shall demonstrate shortly,
plays the role of a critical electric field parameter.

The velocity dependence of ¥(z) can be understood
with the help of potential theory, since the potential
H.s and the velocity distribution Fg bear the same
relation to each other in velocity space as do electro-
static potential ¢ and electric charge density distri-
bution p in real space. From Eq. (6) we find the exact
analogy to be

R) & Hs(¢),
¢(R) s(c) (21)

Mo+mg
p(R) & ———TaF(c),
mg

p(') o
¢<>f|R wox

In particular, when F, is spherically symmetric about
V., we can obtain the dynamical friction force, MV H,,
which acts on an ion moving with the velocity v; by
making use of Gauss’ theorem. Moreover, we can im-
mediately state that the contributions arise only from
the electrons whose velocity ¢ is interior to the sphere
defined by

where

22/,

A further simplification results from the circumstance
that as far as the calculation of the force is concerned,
all of the electrons in the sphere act as if they were
moving with the velocity v.. Gauss’ theorem taken
together with Egs. (6), (9), and (21) then yields

A= |v,—v,|?=
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[M V., (c)]e=v:

M? 4 *
=—T B, f 2 exp(—2)di
m (m)i2 J,
4 z
=mnl B, f 22 exp(—1?)dt, (22a)
()i Jy

and this is just eE ¥ (z). In the limit of small z, the
number of electrons in the sphere is proportional to 2%
and this force takes the form of a Stokes’ law :

4
2. (22b)

¥ ——)3\/7r

For 2>>1 essentially all electrons are inside of the sphere

f 2 exp(——tz)dt-—>f 22 exp(—1?)dt,
0 0

and

¥(z) = 1/22 (22¢)

The maximum of ¥(z) occurs at the most probable
speed z=1. Above this speed the inverse square law
falls off faster with z than the number of electrons
which contribute to the force can increase with z.

B. Uniform Plasma in Parallel Electric
and Magnetic Fields
1. Critical Runaway Field at Constant Temperature

We can solve Egs. (13) and (19) by a method of
successive approximations. To zero order in m/M, v,
is the solution of

dv, e ’ e
—+—EY¥(x)=——E,
at m m

(23)

where
1
x= ﬂezve,

and to first order, conservation of momentum yields
v;=— (m/M)v,.

With the electron temperature held fixed Eq. (23)
yields two different kinds of solutions. The first is
characteristic of an applied to critical field ratio which
obeys the inequality

E/E,<¥(1)=0.43. (24a)

In this case, v, starting from zero initial value tends
monotonically to a terminal value v.,(<@,%) which is
the solution of the transcendental equation

E=E¥ (8.}0.). (25)

The second type of solution is associated with the
opposite inequality

E/E.>¥(1). (24b)
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CRITICAL ELECTRIC FIELD IN VOLTS/CM

DENSITY IN CM >

FiG. 2. Critical electric field, E, as a function of the particle
density with the average electron energy, 3T, treated as a
parameter. The cutoff factor, In(\/po), was assumed to be 10
for all conditions.

Starting from any initial condition, we find in this case
that the particle acceleration is always positive. Con-
sequently, as time proceeds v, and v; increase without
limit, i.e., the electrons and ions ‘“run away.” We find
it useful to speak of electric fields which are appreciably
larger than, or smaller than, E, as “strong’ and “weak”
fields, respectively.

It is useful to ascribe to the critical field a physical
interpretation in terms of the collisional phenomena
involved. Let us consider electron-ion encounters. For
electrons moving with the most probable random speed,

B¢7%, these occur approximately with the frequency
v=nul' 8. = (¢/m)E L. (26)

Thus, in order to double the speed of an average
electron in the mean free time between collisions, the
acceleration required is

B hv=(¢/m)E.,

and the required applied field must therefore equal E..
A somewhat different interpretation can also be put
forward. In terms of the Debye radius

eokTe 3
()
ne?
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we can write E, in the form

e A
E.= In ( —).
4 egh? o

Since the value of the logarithm ranges roughly from
5 to 20, we see that E, is equal to the electric field at a
distance of about A\/2 to A/5 from a positive ion. In
weak fields, therefore, most electrons are scattered in
ionic fields whose magnitude exceeds that of the applied
field. The opposite holds true for strong fields. These
statements can be expected to hold even though the
Debye sphere about an ion becomes distorted and
somewhat displaced in a strong field.” A graph giving
E. as a function of density and electron temperature is
shown in Fig. 2.

2. The (Temperature)* Law

In the weak-field limit we can solve Eq. (23) with
the help of Eq. (22b). At constant temperature, the
solution which satisfies the initial condition 2,(0)=0 is
given by

3(w)t

) E
2.() =—— — 8 1—exp(—4ut/3/m)].  (27)
4 E,

After a few mean free collision times, the corresponding
electrical conductivity takes the form of the well-known
(temperature)? law

3(m)de? f2kT .\ ?
o=nev,= ( ) .

4T o m

(28)

Comparison of ¢ with the conductivity, oo, calculated
on the basis of conventional perturbation theory yields

oo/c=1.977,

for an electron-proton mixture.® The origin of this
discrepancy probably originates in our assumption
that the distribution can be described by a displaced
Maxwellian distribution, whereas in fact electron-
electron encounters probably do not occur frequently

enough to make the distribution completely
Maxwellian.
For arbitrary applied electric fields in the range
E<EN(1),

a more accurate electrical conductivity than oo is
obtained by solving the transcendental Eq. (25). We
then find that the conductivity is a function not only
of temperature, but of applied electric field and density
as well.

7 B. B. Kadomtsev, J. Exptl. Theoret. Phys. U.S.S.R. 33, 151
(1957) translation: Soviet Phys. JETP 6, 117 (1958).
8 L. Spitzer and R. Hiarm, Phys. Rev. 89, 977 (1933).
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3. Joule Heating

Dynamical friction heats the electron gas at the rate
d
Py(x)=—(3kT")
dt

=eE B V¥ (x). (29)

Our choice of the displaced Maxwellian distribution in
this problem implies that electron-electron encounters
partition this random energy equally and instantly
into all degrees of freedom. Actually, we must expect
the relative growth rates of the random energies in
each degree of freedom to be a balance between the
Joule heating rate and the rate of electron-electron
encounter. If the Joule heating rate exceeds the latter,
then the velocity distribution will appear distorted
from spherical symmetry when viewed in the coordinate
frame moving with the drift velocity. A rough measure
of the accuracy of our approximation can thus be
obtained from a comparison of these rates. Figure 3
shows that x¥(x) maximizes with an amplitude of
0.525 at «=1.5. The quantity

P;(1.5)=0.525¢E8:,

therefore represents the maximum Joule heating rate.
The rate of mutual encounter between electrons of
average random speed in a Maxwellian distribution
of electrons is given by the frequency », and the
amount of random energy exchanged by these in unit
time is approximately

P~2kT w=eE (1.

A comparison of P, and P;(x) shows that P, is roughly
equal to P;(1.5), and it therefore exceeds P; appreciably
for almost all values of x. This result indicates that the
use of the displaced Maxwellian distribution should be
qualitatively correct as far as the gross features of this
problem are concerned.

0.6 T T T
0.5 N
0.4 - .
=
S 03 —
»
o2 -
o -
o | ! . L
0 ] 2 3 a

X

F16. 3. Dependence of the Joule heating rate expressed in units
of eE.8,7% upon the relative electron-ion drift velocity. The latter
is e;cpressed in units of the most probable random electron speed,

B
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Fi16. 4(a). The variation of electron drift velocity (expressed in
units of 8,7%) with time for a range of the parameter E/E.. The
initial conditions are x(0)=0 and 7¢(0)=T,o. (b). The variation
of electron temperature (expressed in terms of the initial tempera-
ture T',0) with time for a range of the parameter E/E.. The initial
conditions are x(0)=0 and 7',(0) =T"so.

An important consequence of Joule heating is that
runaway can occur for any nonzero applied electric
field. Indeed, if initially the gas is subjected to a weak
field, i.e., E<E,¥(1), then the monotonic increase of
temperature with time guarantees the eventual reversal
of this inequality, and in general what we consider to
be a weak field will in the course of time evolve into a
strong field even though E remains constant.

Equations (23) and (29) have been solved on a 704
IBM digital computer for the variation of electron
temperature and drift velocity with time. Typical
results are presented in Figs. 4(a) to 9(b). The quan-
tities x, E., and » are defined by Eqgs. (20), (23), and
(26), in terms of the electron temperature Ty at time
t=0, i.e.,

w ()= (m/2kT w0)*vo(§) =Bao*ve (1),
E.=n(m/e)T L0,
v=nl"oB k.
The initial conditions are described in the caption of

each figure. We find that the time required for the
electron drift velocity to increase from zero to 8.,7% is
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Fic. 5(a). The variation of electron drift velocity with time for
E/E.=0.1. The initial conditions are x(0)=0 and 7°.(0)="7 .
(b). The variation of electron temperature with time for
E/E.=0.1. The initial conditions are x(0)=0 and 7. (0) = T'.o.

roughly one mean free collision time provided that the
applied electric field is approximately equal to E..
This result is in agreement with the interpretation we
have assigned to E.. The Joule heating processes pre-
sented in Fig. 4(b) show a steady initial increase in
T./Te followed by a leveling off to an asymptotic
value. This behavior can be understood by comparing
the ratio of P; to the power P, going into drift motion.
With the help of Eq. (23) we find

Pj v (x)

Pa (E/E)—¥(x)
This relation shows that the energy gained from the
applied field can be very largely stored in the form of

drift or directed energy since in the limit of runaway
we have

and this expression approaches zero with increasing v..
For E/E<L1, x quickly reaches the terminal value it
would assume in the absence of Joule heating. Its
subsequent increase follows the rise in temperature
and thus takes place more slowly. This behavior is
“illustrated in Figs. 5(a) and 5(b) and to a lesser extent
in Figs. 6 and 7.
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The energy stored in drift motion may eventually be
dissipated and converted to random energy by the
removal of the electric field or the growth of magnetic
fields perpendicular to E. Examples of several such
cases are presented in Fig. 8. These curves show that
the rate of Joule heating decreases with increasing
temperature.

Figures 9(a) and 9(b) illustrate the behavior of x
and T',/T .o when the electrical field is initially exceeded
by the dynamical friction force. At first the drift
velocity decreases, however, in time Joule heating
decreases the dynamical friction, and the situation is
reversed.

Runaway may be avoided by use of alternating
electric fields. Ultimately, however, its frequency must
increase with time in a manner dictated by the amount
of Joule heating which takes place.

4. Displaced Anisotropic Velocity Distribution

In order to test the effect of incomplete equipartition
of the random energy, we have repeated some of the
calculations carried out so far, making the new as-
sumption that the electron velocity distribution has
the cylindrical form

F.(c.(0); ab)= (ve—0)<c.< (v,+0)
2ra?b
o<a
=0 for all other velocities.
°~'o T T T T T T T T T T T T T T T T
o8} 1
o6} ]
X - .
o4l i
o2} 4
S T I T ST —

TIME IN UNITS OF (I/v)

F16. 6. The variation of electron drift velocity with time for
E/E.=0.2. The initial conditions are x(0) =0 and 7, (0) = T.o.

5 T T T L T T T T T T

o [ 2 3 4 5 6 7 8 9
TIME IN UNITS OF (1/v)

Fic. 7. The variation of electron drift velocity with time for
E/E.=0.6. The initial conditions are x(0) =0 and T.(0) =T 0.
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The variable ¢, is the radial velocity component, and
a, b defines the thermal spread of the distribution in
the two orthogonal directions. Again the ions are
assumed to be stationary, and with the help of Eq.
(18) we have

Heiznre/(cr2+cz2)%~

The dynamical friction force defined by the right-hand
side of Eq. (11) is now easily evaluated with the result

mdve/dH- eE=— eEc*@(S,f) )
where

eEX=nml/a?
P(£0) =L+ =L (E—1) 7] -2,
£=0,/b,
¢=a/b.

In the limit of large £ we find as before
1
(7)) — —.
52

Weak and strong electric fields are defined as in Eqgs.
(24a) and (24b) by their relation to the electric field
defined by

E=E*(1,0).
With the help of ®(£¢) presented in Fig. 10 we note
that E.*®(1,{) is nearly proportional to {. This obser-
vation permits us to conclude that anisotropic distri-

butions will not alter our previous conclusions in any
important way.

5. Effect of Random Ion Motion

So far in our discussion we have restricted the ion
temperature to be zero. Clearly, we shall obtain very
similar results provided

BI<KBE.

In studying the effect of random ion motion the relevant

T ™ T T
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Fi1c. 8. The variation of electron temperature with time for
E/E.=0. The initial and final conditions shown are: (a) x(0) =100,
To(0)="Teo, x(105)=24; (b) x(0)=75, T,(0)=7T0, x(4.6X107)
=15; (c) x(0)=060, T.(0) =T, x(2.8X10%) =8.
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Fic. 9(a). The variation of electron drift velocity with time for
E/E.=0.2. The initial conditions are x(0)=1.0 and T,(0)=T\,.
(b). The variation of electron temperature with time for
E/E,=0.2. The initial conditions are x(0)=1.0 and 7.(0) = T,o.

parameter is therefore

v=(B./Bi)*. (30)

The extreme limit ¥>>1 is easily obtained by distrib-
uting the electrons into a delta function at v, and
distributing the ions according to a Maxwellian dis-
tribution characteristic of the temperature 7%; and
displaced by the drift velocity v;. The dynamical
friction force is then obtained from Gauss’ law in the
form

feiz _28Ec\I/ (V_IZ) ’

where E, is again defined by Eq. (20). This expression
has a maximum at the most probable random ion speed,
and the critical field y72E, is inversely proportional to
kT:/M.

The extension of the theory to a plasma whose
electrons and ions possess random speeds of the same
magnitude, i.e., y=1, is readily carried out. Details
of this calculation are presented in Appendix I. [See
Eq. (42) and Fig. 117]. As one might expect, the sum
of the most probable random electron and ion speeds
enters into these results. The maximum of the
dynamical friction occurs approximately when the
relative drift velocity between the electrons and ions
is equal to [ (2kT./M)+ (2kT./m)]}, and the critical
electric field is proportional to the inverse square of
this quantity. We may conclude, therefore, that the
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Fi16. 10. The variation of the dynamical friction function ® (&,¢)
with the electron drift velocity for a range of values of the ani-
sotropy parameter ¢.

random motion of the ions does not alter the phe-
nomenon of runaway in any essential way.

6. Comparison with Other Work

The main results obtained in this paper are based
upon the strong deviation of the dynamical friction
force from a Stokes law, especially for large drift
velocities. This behavior, embodied in the ¥ function,
has led to fundamentally new results. In this connection
it is useful to compare this work with the earlier work
of Giovanelli® which is based upon a Stokes law over
the entire velocity range and also results in a critical
electric field. Giovanelli considers the balance between
the rate at which electrons gain energy from the electric
field and the rate at which they lose energy as a result
of elastic collision with ions. He concludes that for
electric fields in excess of a certain critical field E/**
the electron energy grows in time without limit. E/**
depends upon the ion mass and ion temperature and is
given by

. 2V3 wamin

o T=—

9 ugeM?

where w0 is the velocity of electrons whose kinetic
energy equals the mean kinetic energy of the ions. The
quantity « is related to the mean free path, I, for
electron-ion encounter through the expressions

1=1/(wns?),

Q=a/ u12,
where the electron speed is represented by u;. Giovanelli
takes « to be equal to 1.57X10° cm3-sec2.

This result may be compared with the critical field
derived in this paper only if we let #Q? stand for the

9 R. G. Giovanelli, Phil. Mag. 40, 206 (1949).
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momentum transfer cross section. This yields

To et
—=27 f
u dmut Jg

'm inimum

4ret A
Tat= In (——)
m2 f()

With this result Giovanelli’s critical field becomes

/2

(1—cosf) csc(6/2) sinddo,

or

. 8mV3 &8 In(N/ po)
9 u@(mM)t

There is a functional difference between this ex-
pression and our result [Eq. (20)] which arises in the
following way. Giovanelli retains the Stokes law for all
velocities and restricts his treatment to weak electric
fields so that the energy gained by electrons between
collisions is small compared to the average random
speed. Under these circumstances the increase in the
magnitude of the drift velocities is caused by Joule
heating alone. He then finds that a runaway in electron
energy develops when the electrons gain energy from
the field faster than they can transfer it to the positive
ions by elastic encounter. This effect depends strongly
upon the mass ratio m/M and the ion temperature,

F1c. 11. The variation of the generalized dynamical friction
function x (v; z) with relative electron-ion drift velocity for several
values of the parameter .



ELECTRON AND

and accounts for the appearance of M and u, in E**,
In fact, for infinitely massive ions (i.e., m/M=0) E**
vanishes in a manner which is independent of the
electron temperature and the particle density. The
considerations which led to the critical field, E,, derived
in this paper are based upon the transfer of momentum
between electrons and ions, and therefore our results
are independent of the ion mass to the extent that
m/M can be neglected compared to unity. In particular
E, does not vanish for the case of infinitely massive
ions unless #/T,=0. It is important to note that our
critical field appears in the theory only because the
dynamical friction force has a maximum when con-
sidered as a function of the drift velocity. This deviation
from a Stokes law can in general result in the runaway
of the drift velocities, even though little or no Joule
heating takes place. Furthermore, as we have shown,
this kind of runaway can develop in periods which are
very short compared to the characteristic electron-ion
energy exchange times which enter into the mechanism
considered by Giovanelli.

C. Currents Across Magnetic Fields

In a uniform plasma subjected to a strong magnetic
field, charged particles circle magnetic lines many times
between collisions, and the application of a time inde-
pendent electric field, perpendicular to B gives rise to
the same drift velocity, (EXB)/B? for all charged
particles. Under these circumstances, the dynamical
friction force between the electron and ion gases is
zero, and the question of runaway does not arise.

However, in the presence of a pressure gradient,
VP, at right angles to the magnetic field the situation
is somewhat more involved. If we ignore collisions there
is a magnetization current

() =VXM(r), (31)
where

_ ’}’l/k(Te‘*‘T,) B

B [ B ]B’

which is at right angles both to B and VP at r. The
quantity M is the magnetic moment per unit volume
which arises from the circular motion of electrons and
ions about magnetic field lines. The current j is due to
the incomplete cancellation of elementary particle
currents at r and arises when a pressure gradient
exists. Although the charges do not actually drift
perpendicularly to B and VP, we can still assign drift
velocities v, and v; to the electrons and ions which are
a measure of this incomplete cancellation. The current
j is then given by

(32)

If we perturb this situation by introducing collisions,
we give rise to a dynamical friction force, f.;, which
acts to oppose the relative drift between electrons and
ions. First order orbit theory then gives rise to a

j=ne(vi—v,).
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diffusion drift!®

fe’iXB
Va= s
eB?

which is in the same direction for both electrons and
ions, namely along (—VP).

With the particles distributed according to displaced
Maxwellian distributions, f.; is given by Eq. (42) in
Appendix I. However, within the accuracy of our
treatment we may follow the comments in Sec. 5 and
use the approximate formula given in Eq. (43), i.e.,

s ek, [ 2z ] (33)
[ Y| — y 33
vH1 Ly}
where 2 is defined by Eq. (19). By combining Egs. (31),
(32), and (33) we find that the magnitude of ¥ depends
upon the steepness of the pressure gradient.
Let us estimate the pressure gradient which results
in the maximum value of ¥. We proceed from the first-
moment equations which have the form

v, 1 (Vve—vy)
m—"Fm (Ve V)Vet— V(nkT ) +——Fo
ot n [Ve—vi
= *6(E+V3XB),
v, 1 (vi—ve)
M—+M(v;- V)vit— V(nkT)+ Jei
ot n [ve—vi]
=¢(E4+v,;XB).

For simplicity, B is now assumed to be along the z-axis
and V(nkT.,;) along the x-axis of a Cartesian coordinate
system. In the absence of collisions we find for the
static drifts

v,

1 9 z
(Ve,)y=————(nkT, ) ——, (34a)
! neB dx B

(ve,i)e=Ey/B. (34b)

In the presence of collisions these become modified to
the form

~

Yoy = ——— ———(%kTe‘{"”mvexz) —"j) (353)
neB dx B
1 9 E,
V= ——— -——(%kTi"*—nMvizz)_'—) (35b)
neB dx B
Eu fei 1
vez=_+_+_— ‘—(nmvezvey)) (363)
B eB neB dx
Ey fei 9
Vip=—t—t—— — (M0, (36b)

B eB mneB dx

10 T,. Spitzer, Astrophys. J. 116, 299 (1952).
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In the laboratory phenomena generally encountered,!
fei/eB is smaller than the relevant random speeds.
Moreover, the drift E,/B due to induced electric fields
must by definition be small in a static situation. The
diffusion drifts v., and v;, are therefore also smaller
than the relevant random speeds, and we can neglect
the drift energy compared to the random energy in
Egs. (35a) and (35b). The relative drift velocity is now
given by

[Vey—=0iy| =—— . (37)

J
—[nk(T.+T)]
neB|dx

The maximum of ¥ occurs when its argument becomes

unity, or
ﬁiﬂe 3
) [vey—viy| =1.
ﬁe+6i

By combining Eqgs. (37) and (38) we find that this
condition requires appreciable variation in the particle
pressures in a distance of one Larmor radius. For even
steeper gradients the dynamical friction decreases, and
the diffusion velocity vz induced by electron-ion en-
counters falls off as the inverse square of the pressure
gradient. In this event the diffusion caused by like-
particle encounters remains.’? Equations (33), (36a),
and (36b) indicate the deviations which we may expect
from the usual linear diffusion law. These deviations
turn out to be relatively unimportant as long as the
pressure variations occur over many Larmor radii.

(38)
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APPENDIX I. EVALUATION OF THE DYNAMICAL
FRICTION FORCE

In this section we calculate the dynamical friction
force when both the ions and electrons are distributed
according to displaced Maxwellian distributions. Fol-
lowing the analogy prescribed in Eq. (21) we easily
obtain the potential H, given in Eq. (17). The
dynamical friction force exerted upon an electron
moving with the velocity ¢ by all of the ions is given by

qdfé, (51'%9)
m VcHei—_— '—'eEc e—l* - 3
gdgl ¢

(39)

with the relative speed ¢ defined as in Eq. (17b). The

1t See, for example, J. Honsaker ef al., Nature 181, 231 (1958);
L. C. Burkhardt et al., Nature 181, 224 (1958); P. C. Thoneman
et al., Nature 181, 217 (1958); T. Coors et al., Physics of Fluids 1,
411 (1958).

(1”5C. L. Longmire and M. N. Rosenbluth, Phys. Rev. 103, 507

956).
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force exerted upon the entire electron gas acts in the
direction of the relative drift velocity (v;—v,), and we
need only sum over the component of 39 in this direc-
tion. In the subsequent integration over all electron
velocities we introduce a spherical coordinate system
whose origin is at v;, and whose polar axis coincides
with the unit vector k defined by

k= (ve—vs)/|ve—vil.
The cosine of the polar angle is then given by

r=(a/q9) k.

The total dynamical friction force averaged over all
electrons is given by

Bey?
——(—~) mfk~ V.H.; exp[ —B.|c—v.|]d%
™

=—¢E.(2/y/7) exp(—z)D(y;2), (40)

where

D(v;@:]{)‘w[jlu%[&(z/v)]

Xexp(—x?+2zxu)dux?dx

1
z=B2|v.— v,

Integration over u results in
o ¢ (x)
D(y;2)= f exp(—a%+2zx5)——dx
o 22x
-+
é(x)
— f exp(—a?42zx)—dx,
o 42252
where we have used the definition

¢(x):xd_

X X

d [52(95/’)’)],

and the oddness property ¢(—x)= —¢(x). Integration
by parts results in

1 pt
D(v; z)=—2—; f ¢ (x) exp(— x>+ 2zx)dx
3" Y o

1 ptelde ( )
—— exp(—ua?42zx)dx,
42 J_, xdx

and with the use of the definition

—+00
J(z;7v)= f 8a(x/v) exp(—a?+2zx)dx,
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we can rewrite D in the form Dynamical friction force
Y+l pt 7*+1 2
D(y;8)=—— f x exp[—— ( )xH—sz]dx = —~eEc[—— exp(—23)D(v; z)]
(m)iyia J_, v? VT
(42)
1 =—eEx(v;2).
——J(v;2). .
222 The bracketed term which is represented by x(v;2)

The first integral on the right-hand side of this equation
can be evaluated analytically, and D is finally given by

J(v;2)

plays the role of the ¥ function introduced in Eq. (19).
Indeed for y=0 it is precisely the same function.

We have evaluated J(z;v) numerically, and x(v; 2)
is presented in Fig. 11 as a function of z with v as a
parameter. Within the accuracy of our treatment these

1 v?
D(y;g)=—— - 22|~ . .
;%) (y*+1)k exp[(72+1)z ] 252 (1) curves may be represented by the single formula
2
The total dynamical friction force is obtained by x(v;2)= \I/[ 4—]. (43)
combining Eqgs. (40) and (41): v1 L(y*+1)}
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Third Law of Thermodynamics
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A new formulation of the third law is proposed stating a universal connection between the lower limits of
the energy and the entropy of any physical system. As consequences of the new theorem are derived the
Nernst heat theorem, a theorem concerning the lowest energy state of mixtures, and the nondegeneracy of

the energetic ground state of physical systems.

1. INTRODUCTION

WELL-KNOWN formulation of Nernst’s heat

theorem (NHT) is the following!': At absolute
zero the entropy S of a chemically pure substance
assumes the value zero. The term ‘‘chemically pure”
requires a few remarks. The theorems of statistical
thermodynamics state that a mixture of chemically
different substances, a mixed crystal for instance, has
an entropy different from zreo at any temperature and
hence also at 7’=0. The same applies to a crystal
consisting of two isotopes of the same element as long
as the spatial arrangement of the isotopes shows the
characteristics of a statistical mixture. If, finally,
isotopes are excluded and only one sort of nuclei is
allowed, one can assume internal degrees of freedom—
nuclear spin or general state variables of the nuclei—and
again these degrees of freedom can be the source of a
statistical disorder which prevents the entropy from
vanishing as T" tends to zero. These considerations seem

* On leave of absence from the Institute of Theoretical Physics,
Technische Hochschule Aachen, Germany. Now at the Institut
fiir Kernverfahrenstechnik, Technische Hochschule Karlsruhe,
Germany.

L M. Planck, Vorlesungen iiber Thermodynamik (W. de Gruyter,
Berlin and Leipzig, 1930), nineth edition, Chap. IV, p. 6.

to prove that the NHT is not very valuable from a
merely practical point of view because an unambiguous
application to a given physical system requires all its
degrees of freedom to be known. On the other hand,
the theorem has a very successful history of applications
even to systems of unknown internal degrees of freedom.
This shows that the weakness of the theorem does not lie
in its content but merely in its formulation.

Simon? has defined the term “chemically pure” as
“being in internal equilibrium.” It seems certain that
this definition covers all cases where the NHT is valid.

To call the NHT the third law of thermodynamics
however does not seem appropriate because of the
explicit use of the concept of temperature. The actual
meaning of the third law is a universal connection
between the energy and the entropy of any physical
system. Hence the explicit use of a property which
cannot be defined for all physical systems is certainly
not suitable to formulate a law of such generality.

The first and the second law of thermodynamics can
be considered as theorems concerning the existence of
the two quantities energy and entropy. These laws are

2 . Simon, Z. Physik 41, 806 (1927); Frgeb. exakt. Naturw. 9,
222 (1930).



