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The interaction between the electromagnetic 6eld and a number
of identical atomic systems, individually characterized by an
electric dipole moment and two energy levels, is analyzed for the
case where the atomic systems are inside a lossy cavity and
exposed to a coherent driving field, resonance being assumed
between atomic system, cavity, and driving 6eld.

The problem of introducing loss into a quantum-mechanical
formalism is treated first. Formal operator expressions are obtained
for the field variables which include the absorption and the
fluctuation (both thermal and quantum-mechanical) effects of
the loss mechanism. Expectation values are then obtained for the
field strength and the 6eld energy which are valid for times short
compared to the lifetime of the excited state. It is shown that the
spontaneous-emission energy in the field increases initially as the
square of the time and approaches a steady-state value after a
transient period which is of the order of the cavity relaxation time.
The induced emission contains two parts: incoherent emission

induced by the thermal 6eld, and coherent emission induced by
the driving 6eld. The incoherent induced-emission energy has
the same time dependence as the spontaneous-emission energy,
and the ratio of the former to the latter is the number of photons
in the thermal (inducing) Geld. The coherent induced-emission
energy does not approach a steady-state value, but, after a
transient period, increases linearly with the time. The ratio of the
coherent induced-emission energy to the spontaneous-emission
energy is equa], initially, to the number of photons in the driving-
6eld energy, but becomes Pt times as large after the transient
period, where P is the reciprocal of the cavity relaxation time.

The expectation value of the rate of energy emission by the
atomic systems is also obtained. It is shown that the ratio of the
downward- to the upward transition probabilities has the well-
known value of (I+1)/I, where ii is the field energy in units of
the photon energy, only in the absence of a coherent field.

' 'N the first article of this series, ' some of the problems
~ ~ peculiar to the interaction between a group of
similar atomic systems and a coherent electromagnetic
field were discussed. The atomic systems, referred to as
molecules, were contained in a resonant cavity with
perfectly conducting walls. The problems examined
pertained mainly to the questions of coherence of the
emission and the correlation of the molecular states.
For these problems the idealization of a lossless cavity
made possible a more illuminating discussion by
eliminating complications which are not significant.
There are other important problems, however, for which
the cavity loss is of significance, such as the amplitudes
of the induced- and spontaneous-emission fields in the
cavity. Thus, for a constant-current radiating source
inside a cavity, the field energy approaches a constant
value if the cavity has some loss, while in the lossless
case the energy increases indefinitely. For a realistic
discussion, therefore, of the amount of spontaneous
and induced emission and, in particular, of its time
dependence (it is in this respect that interesting results
are obtained), cavity loss must be considered. This is
the purpose of the present article.

In the lossless case it was not necessary to include a
driving mechanism to maintain a zero-order oscillating
field in the cavity. Only an initial field was needed,
since, because of the absence of cavity loss, this field
continued to oscillate, in the lowest order, without
change. (The interaction with the molecules is of higher
order. ) In the present case, however, an initial field will

soon be damped out, so that a driving mechanism must
be provided. We will, therefore, insert into the cavity,
as our driving mechanism, a classical dipole of pre-

' I. R. Senitzky, Phys. Rev. 111,3 41958), hereafter. referred to
as I.

scribed dipole moment. The molecules, driving field,
and cavity are all considered to be in resonance.

In Part I a method of introducing loss into a
quantum-mechanical formalism is presented. Ex-
pectation values for the field strength and energy in
the cavity in the presence of a driving field and a single
molecule are derived and discussed in Part II. The
power emitted by the molecule is considered in Part
III, and expressions for the field due to a number of
molecules are given in Part IV.

In order to explain as simply as possible the method
of introducing loss into a quantum-mechanical formal-
ism, we consider a cavity without molecules and without
a driving mechanism; we have only the radiation field
and the loss mechanism.

The effect of losses, or resistance, is the coupling of
the electromagnetic field to the thermal bath, thereby
converting electromagnetic energy into thermal energy.
However, a coupling mechanism works in either direc-
tion. It will, therefore, transmit thermal (and also, as
will be seen, quantum-mechanical) fluctuations to the
electromagnetic field.

In order to have a loss mechanism which behaves
like a resistance, we impose the following two require-
ments: (1) The loss mechanism must be nonresonant.
(2) The state of the loss mechanism is determined
mainly by the temperature 'of the thermal bath to
which it is coupled, and only slightly by the field in the
cavity. The first requirement may be met by con-
sidering the losses to be due to a large number of
electric dipoles, the resonant frequencies of which are
continuously distributed. The second requirement will
be considered later.
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We consider, therefore, a cavity with walls which are
still perfectly rejecting, but include inside the cavity a
large number of dipoles, each one labeled with index"j"and having (angular) frequency cu;. For simplicity
we take each dipole to be of the type studied in I, that
is, having only two energy states, their difference being
Ace, , and having no permanent dipole moment; but now
there are dipoles within the cavity for all (positive)
values of co;. The number of dipoles per unit frequency
range (dipole density) is p(a&, ), which is a slowly varying
function of co, . The notation used' will be essentially the
same as that in I, except that the dipole moment oper-
ator of the dipoles constituting the loss mechanism will
be designated by 1, the symbol y, used in I, being
reserved for the rnolecules to be introduced into the
cavity later.

The Hamiltonian for the system of cavity field and
dipoles is

H=Hfie]d+P, H, +47rcP Q, I','u(r, ), (1)
where II,- is the Hamiltonian of the jth dipole con-
taining its internal variables, r, is its position in the
cavity considered to be fixed, and

Hs ig= 2rrc I + ((u'/87ro )Q (2)

We have not indicated explicitly any coupling of the
dipoles to the thermal bath, and this requires some
explanation. If the number of dipoles were small, then,
in order for the loss mechanism to absorb a given power
from the field and still satisfy the second requirement
(i.e., that its state be determined mainly by the tem-
perature of the thermal bath), the dipoles would have
to be coupled tightly to the thermal bath so that they
would transmit the energy to the bath almost as soon
as they received it from the field. If, however, we take
the number of dipoles to be very large, then the coupling
to the thermal bath may be taken to be weak; and if
the period of time under consideration is not excessively
large, this coupling may be eliminated entirely. In the
latter situation we merely require that the initial state
of the mechanism be determined by a temperature; the
very large heat capacity of the total number of dipoles
makes it possible to satisfy the second requirement.
Our treatment will refer to this idealized situation, in

which the effect of the coupling to the thermal bath on
the motion of the dipoles may be neglected.

For simplicity we consider u(r, ) to have the same
va, lue U for all j, and designate by I'; the component of
I", along U. The equation of motion for F, is

iltdF, /dt= [I',(t),H, (t) j, (3)

which, together with

ac
H, =H, (0)+ U dt, [H;(t,),F,(t,)ji'(t, ), (4)

ih "o
' The 6eld is described by R= —4~cP, II= ~)&A, A=Q(t)u(r),

P=P(t)n(r), where LQ(t),P(t) j=tA, and n(r) is a norrnahzecl
function describing the spatial dependence of the field for the
mode under consideration, the normalization being J'yg'(r)d'r = 1,
+hpre U is the vo)+me of the cavity,

gives

dI', (t) 1
=—[F,(t),H;(0)]

dt ih
4mc

+ dtr[F (t) LF (tr)»(tr)3'(tr)j (5)

As stated in our second requirement concerning the
loss mechanism, the effect of the field on each dipole is
small. We may, therefore, approximate F, and B;under
the integral sign in Eq. (5) by F,&" and H,"&, which
are the corresponding operators for the dipole un-
coupled from —or unperturbed by—the field. ' We
approximate further by neglecting [P(t&),F'+(t)) com-
pared to I's'(t)P(t~) under the integral sign. ' The first
term on the right side of Eq. (5) becomes dF, "&(t)/dt
[see discussion following Eq. (I, 12)$. We thus obtain

4mc
I', (t) = I',"' (t)+ U

jl2

pt )tr
X dt, dt, [F,&'~ (t ),LF,N&(t,),H; ~'~]jP(t,). (6)

0 ~o

Our treatment of the dipole resembles perturbation
theory. Thus, we obtain Eq. (6) from Eq. (5) by con-
sidering only the lowest-order interaction in the ex-
pression for the dipole moment. It should be borne in
mind, however, that our treatment of the field must not
be a perturbation treatment, since we are dealing with
a large number of dipoles, and their effect on the field

may be great. In fact, as will be seen, the effect on the
field is described by the product of dipole density and
dipole moment, and this product need not be small even
though the dipole moment itself is small.

It is interesting to note that the substitution of the
unperturbed dipole operators under the integral sign
in Eq. (5) has the effect of making the dissipative
system linear. The perturbed operators F, and H,.
contain, in general, a dependence on P, so that the
dipole current is a nonlinear function of the field.
However, F,")and B,") are independent of I, and their
substitution results in a linear dependence of the
current on the field.

Denoting the off-diagonal matrix elements of F,-(o) by
I', ' and making use of the relationship [see equa. tion

E':xplicitly, in the energy representation of the free dipoles,
we have (in accordance with I)

where 82(j)—EI (j)=Ace;. Also, see discussion following Eq.
(I, t2).

Since I'("(t) is uncoupled from the field, one might at first
glance expect that it commutes within the 6eld. The latter,
however, is not uncoupled from the dipoles, and its description
contains I"()(t'), t'4t. WVe can obtain a rough estimate of the
neglected commutator by using Eq. (21) to evaIuate it. It can be
showy. that the approximation is justified for our purposes,
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preceding Fq. (I, 13)]

[I', "'(t),[r, ' (t,) II ' jj= 2A&u;-l"' 'I, co-sro, (t t, ),—(7)

where

I,—= ~
—1 0~

(0 1&

for the jth dipole and unit matrix for the other dipoles,
we obtain

8m-c

I', (t) =I',&oi(t)+ UI'I, ~ dti P(ti) sinro;(t —ti). (8)
~p

This is an operator equation, Fj&p~ and Ij being operators
with respect to the dipole coordinates, and P being an
operator with respect to the field coordinates. For con-
venience in later calculation, we make an approxi-
mation at this point, replacing J, by its expectation
value (times the unit operator), (I;). Since our end
results will be expectation values anyway, this approxi-
mation only eliminates, in effect, higher order quantum-
mechanical interaction terms than the second (which
are related to correlation effects between dipole and
field fluctuations), and is consistent with the approxi-
mation previously made with respect to the dipole
moment.

Utilizing the expressions which describe the Geld in
terms of its initial value and the dipole moments,
namely [see Eq. (I, 5)j,

Q(t) =Q&" (t)+4m-c P dti I', (ti) U cosro(t —ti),
j Op

We carry out the fi integration in the last term of Eq.
(11). Noting that the significant contribution to the
integral (for t))ro ') will arise from the ro, &o terms, we

ignore the (ro,+ro) ' terms compared to the (co,—cd) '
terms. The result for the last term in Eq. (11) is

8' Gl ~t
U'I' P (I,) I dt, P(t,)

0

@sin,'-(ro, —co) (t, —ti) cos-,'(ro, +re) (t—ti). (13)

We can now carry out the summation by converting it
into an integration, making the usual approximations
which go with the fact that the main contributions to
(13) come from the terms for which oo; co (again for
t))oo '). We obtain, thus,

M p, t

P(t) =P&"(t) ——U P I
dti I', &'&(ti) sinrd(t —ti)

c j "0

where

P—= —(4n'(o/5) U'I's(I, ) p (ro), (15)

(I,)„being the average expectation value"" of I, for those
dipoles the frequency of which is in the neighborhood
of oo. Since P"i(t) and I""(t) are known operators, Eq.
(14) is an integral equation for P(t). We can cast it into
more familiar form by transforming it into a differential
equa, tion. Remembering that

P&o&+~spool 0
M

P(t) =P&"(t) ——Q dt, I';(t ) U sincd(t —t,),c~ ~p

we have

P+pP+ 'P=-( '/)U2 I", "(t) (»)
where

P"&(t)=P(0) cosset —(co/47rc')Q(0) sinrot,

Q'oi (t) =Q(0) cosrot+ (47rc'/oo) P (0) sincot,
(10)

we obtain

and

8vcco
U'I' P (I,), dt, dt, P(t,)

0 0

&(sinro, (ti —ts) sinro(t —ti), (11)

Q(t)=Q&'&(t)+4irc P ~ dti r, ioi(tr) cosro(t —ti)
1 o

32K'2c2 ~4
+ Usrs p (I,),I dt II dts P(t,)

Xsin&o;(ti —t2) coscd(t —tt). (12)

P(t) =P"i(t) ——U Q dt, I';i" (t ) sinro(t —t,)
CO

c j p

It is worthwhile noting certain interesting features of
Eq. (17). In the absence of a loss mechanism, the field
satisfies Eq. (16). If we were to include cavity losses
phenomenologically, we would most likely only add the
PP term to the left side of Eq. (16), leaving the right
side zero. Then we would have an operator equation in
quantum mechanics identical to the dynamical variable
equation in classical mechanics —a common situation.
However, the term on the right side of Eq. (17) is very
important, even if one ignores thermal fluctuations,
since, as will be seen in the subsequent analysis, it
accounts for quantum fluctuations which are formally
responsible for spontaneous emission.

The initial conditions contained in Eq. (14) are
expressed in terms of P(0) and Q(0). In connection with

Eq. (17), we need initial conditions in terms of P(0)
and P(0), the latter, as obtained from Eq. (14), being

P (0) = —(rd'/4s c')Q (0)—PP (0). (18)

We can now write down the solution of Eq. (17). The

' It is assumed that (I;) is a slowly varying function of ~;.
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solution of the homogeneous equation satisfying the Since
initial conditions is (I'~'"&=2lei(j)u~(j) Ii' cos(~~t+h&~)

6)
e-~e' P(0) cosa&'t —— Q(0)+-,'PP(0) sin~'t, (19}

M 4' C

and a particular solution which is zero initially is so that
2 (U"(I))=o (25)

where t&, is the phase difference between a2(j) and a, (j)
I see Eq. (I, 10)$, and since e, is a random variable,

where

CO pt
U P dhi I', &'& (t~) e '@' '» sinu'(t —ti), (20)

G)C 1 ~p

~'=—~L1—(P/2~)'3'*.

(E(r)&= —4&rcu(r)(P(t)&=Eou(r)e le' sinu&t. (26)

The amplitude of the oscillations decays exponentially,
and we have the same expression for the expectation
value of the Geld as that which would be obtained for a
classical Geld if we set

We assume that P/~&&1. We can, therefore, write, as
the approximate expression for the complete solution,

p /((Qn (27)

p(t) =e *e'p&" (t)

GO pt
U P ~

dhi r~ &(ti)e 'e~ & slnco(h —ti).
C ~~o

where "Q" is the quality factor of the cavity. '
To obtain the expectation value of the energy of the

field, we evaluate
(21)

(Rye&d&=2nc (P )+(co /8irc )(Q ). (28)

In an entirely analogous manner, we obtain

Q(h) = e-'«Q&»(h)

+4ircU P dti I';&"(ti)e he&' '» cosa&(t —ti). (22)
o

Equations (21) and (22) are the explicit expressions for
the operators P and Q in terms of the initial operators
P(0), Q(0), and I', (0).

It is easy to justify these expressions intuitively. The
resistance in the cavity acts as an absorber and an
emitter. The absorptive properties account for the
factors containing p, and the emission accounts for the
second term in both expressions.

To illustrate the significance of these expressions, we
solve two simple problems, the solutions of which are
well known. ' The insight gained thereby will be helpful
in the subsequent analysis of more complicated situ-
ations. We will obtain the expectation values for the
Geld strength and for the energy.

In order to obtain expectation values, we must
describe the initial state of our system. We take the
field to be oscillating, initially, with amplitude Eou(r),
in the manner described in I. The initial state of the
jth dipole is described by ai(j)pi( j)+a2(j)y2( j),
where yi(j) and g2(j) are the lower and upper energy
states, respectively, and

lail'+
I
~ I'=1 (23)

I ~2(j) I'/I ~i(j) I'= exp( —tI~ /&T) (24)

6 See H, B.Callen and T. A. Welton, Phys. Rev. 83, 34 (1.951),
whose methods are applied by J.Weber, Phys. Rev. 90, 977 (1953).

We consider the dipoles to be, initially, in equilibrium
with a thermal bath at temperature T. In accordance
with the principles of statistical mechanics, the phases
of ai(j) and a2(j) are random, and we may set

Now, the expectation value of all cross terms in P' and
Q'

I
see Eqs. (21) and (22)$ vanishes, since

(P~o&r',
&
=9"o&&Z,(r,'o&&= 0,

Q (r,(»l'„(o»=Q (I',N)& Q (I'„(»)=0

(29)

The value of

2~c'(P "&')+(~'/8~c') (Q&'»&

pt—U'P dh,
2 ~O ~O

dt~(1' ~o&(h,)I' &'&(ti)&e l@" " '"

X sin&a(t —ti) sin~(t —4), (30)

for P' and the corresponding term for Q'. Noting from
the equation following Eq. (I, 17) that

(1,(o&(t,)1,(0&(t,)&
—I ~(

I
z, I2e' (~i—~2&

+
I
g

I

e ~~&«&—'») (31)

we obtain for expression (30)

CO
t t

J
P(2t tl t2)

Xsin~(t —ti) sin&v(t —t2) P e'"&&" "' (32)

which is shown in Appendix A to be equal to

M f
7r O'I'p(cu)— dh, e e&' '» sin'—u(t ——ti).

C' "0
(33)

' In order to distinguish the quality factor from the coordinate
of the cavity Geld, we use quotation marks about the former.

is the expectation value of the initial energy of the
cavity field and, according to Eq. (I, 18), is given by
Eo'/8ir+-', theo. We are thus left with only the evaluation
of
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The corresponding term for Q' is

16irac'O'I'2t&(co) dti e e" ") cos'«(t —ti). (34)
dp

Multiplying (33) by 2irc', (34) by ~'/8n. c', and adding
the results, we obtain, as the part of the energy due to
the dipoles,

—:h (1-e-")(-(f )-)-' (35)

where we have made use of Eq. (15). Since

9)= I~ (i) I'—I~ (i)I',
we obtain from Eqs. (23) and (24)

(—(I;)„) '= 1+2Lexp(h~/kT) —1j '. (36)

We have, therefore, as the part of the field energy which
comes from the initial 6eld,

(Eo'/8ir+-', ha)) e—e', (37)

and, as the part of the field energy which comes from
the dipoles,

—,'h«(1 —e—e')+h&u(e""'" —1)
—'(1—e—e') (38)

We see that the initial classical energy, 802/8', decays
as e t", that is, at the classical rate. It is interesting to
note that the initial zero-point energy in (37) also
decays at the same rate, but that the zero-point energy
due to the dipoles, in (38), increases at a compensating
rate to keep the total constant, so that at absolute zero

(H, ) =o=(Eo'/8 )
—e'+-', h . (39)

For Pt))1 the zero-point energy is due entirely to the
dipoles. This illustrates, in part, the significance of the
right member of Eq. (17), or the second terms on the
right sides of Eqs. (21) and (22). These terms also
account for the second term in (38), which for T)0
gives the thermal field energy. Since it was assumed
that at 1=0 there is no thermal held energy in the
cavity, this energy builds up from zero to a steady-
state value

cavity in the presence of a driving field. For simplicity
we consider, at 6rst, the presence of only a single
molecule inside the cavity. This molecule is the same
as that considered in I. Its internal energy is described
by a Hamiltonian B, which, for the free molecule
(uncoupled from the cavity field), has the eigenvalues
E~ and E2, with E2—Ej=S~, and the eigenstates q~
and p2. The position of the molecule in the cavity is
r, and its dipole moment is y . The component of
dipole moment along u(r ) is designated by p . For the
free molecule, p (0) ha, s the off-diagonal matrix
elements y and the diagonal matrix elements zero. The
initial state of the molecules is specified by aipi+a2+2,
where Ia&I'+ Ia2I'=1. The phase difference between
a2 and c& will be designated by 8 .

For the driving mechanism we consider a classical
dipole of prescribed (oscillating) electric dipole moment

D(t) =—Do sin(cot+t&)

situated at ri&. Instead of Eq. (1), we now have for the
Hamiltonian

H=Hs ig+P& H~+H, „
+4&rcP(g, I'; U+y u+Dur&), (41)

where ui& is the component of u(ri&) along the driving
dipole. In accordance with Eq. (I, 5) we must add to
the right side of Eq. (11) the term

dtlITm(tl) u+D(tl)uD j SinM(t tl) .
c Jp

We notice that this has the same form as the I',"~ terms
in Eq. (11), and may be included in the subsequent
analysis leading to Eq. (21) merely by adding up (t,)
+uDD(ti) to P, UI', '0&, so that instead of Eq. (21) we
now have

G)

P(t) = e le P«& (t) —— dti e l@' "&LP UI',' &(ti)
g Jp

+up (ti)+ur&D(ti)] sin«(t —t,). (42)
h~ (eh(u/kT 1)—1 40) In a similar manner, Eq. (22) is replaced by

which is in agreement with Planck's radiation law.
Perhaps the most fundamental justification for the

second term on the right sides of Eqs. (21) and (22),
from a quantum-mechanical viewpoint, is the com-
mutation relationship between Q and P. The contri-
bution of the first term towards I Q,Pj is ihe e', which,
standing alone, would obviously result in a violation of
the uncertainty principle. It is shown in Appendix 8
that the contribution of the second term toward the
commutator is ih(1 —e e'), which is just what is needed
to produce the correct commutation relationship,

LQ,Pj=ih.

We come now to the central problem, namely, the
consideration of the behavior of molecules in a lossy

t

Q(t) =e '*e'Q«&(t)+4~c " dti e 1@'-"&Ip UI' «&(t,)
aJ p

+up„(ti)+uDD(ti)] cos«(t —ti). (43)

Equations (42) and (43) are no longer explicit expres-
sions for the operators P and Q in the manner of Eqs.
(21) and (22), since p is now one of the three dynamical
variables, P, Q, and y, which are to be obtained from
the equations of motion. Equations (42) and (43) are
two of these equations, and the third is the same as
F.q. (I, 9):

h~-(t) =h. (t),H-(t) j (44)

We proceed now to solve these equations by means of
perturbation theory along the same lines as those in I.
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The new feature is the inclusion of losses and a classical
driving 6eld. It should be pointed out that only the
interaction between molecule and field is treated by
perturbation theory. The other interactions are treated
more precisely.

There is good reason for the use of perturbation
theory (besides the fact that it offers a method of
solving the problem) in the analysis of the interaction
between molecule and field. The processes of spon-
taneous emission, induced emission, and absorption
have meaning only within a perturbation-theory —or
small-signal —framework. Outside this framework these
processes become intertwined and inseparable, and a
discussion of them individually, which is very helpful
in an understanding of the interaction, is impossible.
The limitations of perturbation theory, of course, are
well known. In our case the theory is valid only for
times short compared to the lifetimes of the initial
states; that is, for times short compared to the time
required for the expectation value of the molecular
energy to change substantially. This time depends, of
course, on the strength of the cavity field. For fields
which are not too strong, it will be much longer than
the cavity relaxation time, P . In the following dis-
cussion, the time is to be understood as properly
restricted in accordance with the above considerations.

We now expand P, Q, and y in powers of the coupling
constant between molecule and f&eld (considered to be
included in y) in the following manner:

p —p[pl+ p[&&+p[p&+. . . (45)

It is important to distinguish between P~" and P~')

(and likewise for the higher orders). P'» describes the
cavity field uncoupled to the loss mechanism, the
driving mechanism, and the molecule; while E""
describes the cavity field coupled to the loss mechanism
and the driving mechanism (to all orders) but un-
coupled to the molecules.

In setting up the equation of motion, we have con-
sidered the initial time to be t=0, and the initial con-
ditions refer to this time. For our present purposes, it
is more convenient to take the initial time to be —~.
This has the effect of eliminating the P& ' and Q"&

terms in Eqs. (42) and (43), and changing the lower
limit of the integrations to —~. Physically, these
modifications mean that the initial oscillating field and
the transient part of the driving field have been damped
out before the time under consideration. Now, we want
the molecule to enter the cavity at t=O. A~lathemati-

cally, this is accomplished if we consider the position
of the molecule, r, to be a function of the time, and

where

(dND

PD = Dp cos(cot+8)—:PDp cos(p&t+8),

4mcND

Qg) Dp sin(&dh+8) —=QDp sin (p&t+8) I

Pr = U P i dt& F,&P& (t,)e te" "' sin&p(t —t&),
c

Q& =47rcU g dh& I', &»(t&)e [e&' '» cosp&(t —t&),
—Oo

M (
P,= ——u dt, y„(t&)e ie" '" s&n&p(t —t&))

c &0

Q~=4acN J~ dt& y~(t&)e 'e" "' cos&p(t —t,).
0

The zeroth order expressions for P(t) and Q(t) may be
written down immediately. We have

P'"(t) =P»(t)+Pr(t),
Q'"(h)=Q (h)+Q (h).

(49)

It is obvious from Eq. (44) that y [p&=y '». We can,
therefore, write

CO f'
P["= ——u ' dh& y &p&(h&)e e&'—"& sin&p(h —t&), (50)

c p

Q["=4~ceJ Chip &»(t&)e le&' "& cosp&(t —t,). (51)
0

In order to obtain second-order terms, we need an
expression for y "'. This is given by Eq. (I, 13) with
P") replaced by P&":

8m-c
["(t) = UPI ' dt& P['& (t&) sin&p(t —

h&). (52)

(There is no damping factor under the integral sign
because the molecular oscillations are not damped
internally. ) We thus obtain

8x
P['&(t) = p&m~y I~ dh& p[ &(t&)(—1—e '*e&' '»)

"0
(53)

X cosp& (t h&)&—
= (p [pl) D+ (p [p&) r

We have then

u[r (t)]=0, t(0;
u[r.„(t)j=u, t) 0.

(46) 32Ã f
Q['& (t) = c'0,'y'I I dh& P["(t&) (1—e le&' "')

0

P(t) =P +P.+P„
Q(h) =Q-+Q.+Q„

(47)

(4S) =—(Q'")D+ (Q"')r,

(54)
g s&n&p (t—
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where an approximation based on p/~p&(1 has been
made, and where (P"')D, (P'-"')t refer to the p:.irts ol
P&" due to PD and PL, respectively, according to Eq.
(49) (and likewise for Q).

We can now obtain expectation values for the field

strength. Up to second order in y,

(E(r,t)) =ED(r, t)

8m.

+—piuu(r)
I
aiap

I y sin(p~t+0„) (1 e—'e')

8m.

+ ~~%ED(r, t) (I ap[' —
I
ai [')

hp'
X[-',Pt-(1-.—:)], (55)

where use has been made of Eq. (I, 10). En(r, t) is the
driving field, 8 given by

En(r, t) = —(4ir/p)p~unu(r)Dp cos(&8+AD),

—=Enpu(r) cos(cut+tt).

It is to be noticed that as P approaches zero, Eq, (55)
becomes identical with Eq. (I, 19), which is the ex-
pectation value of the field for the lossless case. In this
comparison we identify the driving field in the lossy
cavity with the zeroth-order held in the lossless cavity.

Our main interest is in the expectation value of the
energy of the field. To this end we must calculate the
expectation values of the squares of P and Q, respec-
tively. We have, up to second order,

(P')=&P'"'&+&P"")+&(P'"»"'))+(fP'"P"')), (56)

Xe 'fi"' " "i sinp~(t —ti) sinpi(t —ti). (62)

Noting, from the equation following Eq. (I, 17), that

((7'"(t ) 7'"(tp))&=27'cos~p(tp —t ), (63)

we obtain

GOS+
(1—2e lfi'+e e')

C2 2
(64)(P[i]2)—

where we have neglected p~
' compared to P '. We also

have

order term in Q', we have, as the lirst-orcler term of the
energy,

(Hfi, ifi~'~)=2MuyP 'Ia]ap[EDp(1 —e le') sin(e —0), (61)

which corresponds to the first-order term in Eq. (I, 18),
and approaches the latter for vanishing P. Equation
(61) is the expression for the coherent spontaneous-
emission (or absorption) energy arising from the inter-
action of the coherent molecular oscillations with the
field, and depends, obviously, on the phase relationship
between the molecular oscillation and the field oscil-
lation.

The second-order part: of (P') is composed of two
parts, (P"")and ((P'" P"')). For the former we have,
from Eq. (50),

and a similar equation for (Q'), where fA,B}=AB+BA. —
Now

(P'"')=P '+(P '),

since, by previous reasoning,

&(P'" P"')&=2P ((I'"') )+((P (P"') )) (6i)

(57) &(P'2i)ii) is obtained from the last term in Eq, (55) by
replacement of L&'D(t) by PD(t), so that

(PDPr& =PD(Pi) = 0. PD((P "i)D) = ppu'pPD ' cos'(pit+tz) ( I
a2

I

'—
I
a,

I
')58'j

8x

We obtain (Pr') from Eq. (33) by changing the lower
limit of the integration to —~ . We do the same for Q',
and obtain for the zeroth-order energy expectation
value

X [-,'pt —(1—e—:e')]. (66)

+DO
+-', hp~+(&fieid"') =

8m
z

elzco/ Ie T

Also, by methods similar to those used in deriving Kq.
(33) (and using previously mentioned approximations),59
we obtain

which is, of course, the sum of the energy of the driving
field, the zero-point energy, and the thermal energy.
The first-order term in Eq. (56) is

((P"' P"'))=2P (P"') (60)

and can be obtained in the same manner as the first-
order term of Eq. (55). Combining this with the first-

As our driving mechanism, we chose a dipole. There are other
possible driving mechanisms for a cavity, such as a loop or an
iris. It is obvious that a classical driving mechanism will produce
a classical driving 6eld in the cavity. %e can, therefore, ignore
the mechanism and consider the problem as specified in terms of
a classical driving field, given by ED{r,t).

CV2Q2y2

&(Pr~(P i)r})= (la, l' —[a, l')
C2 2

We have, thus, for the second-order part of P',

2pi'u'y' t I
a, l' —[a, [P)

(1—2e '"+e ")[ lap['+ I (6g)
cpp2 E e(pral kT)

Calculating the second-order Q' terms in a similar
manner, we obtain for the second-order energy of the
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field,

(H«id&')) = h(1 —2e '*e'+e e')
/ I

apI'+
e&A(u/kT) 1 ]

photon, and becomes, for Pt»1,
Ei)p'/Sir

pt. (74)

Enp'/Sir
h(Pt+2e l~' 2)—(l aplP —lail') (69)

where
h —8~~2u2~2/P2

It will prove convenient to break this up into two terms:

(H«id"')pp»«~e»p= hl apl'(1 —2e '*e'+e ~'), (70)

(Hfield)induced =Ei)p'/Sir
h(Pt+2e *" 2)((a—pl' lai['—)

h(
~
ap ~' —

~
ai ~') (1—2e—*'~'+e—e')

(71)
e(ho) j)t'. T)

We see that for pK(1, we have the same situation as
in the lossless case, with the energy increasing from
zero as the square of the time. For Pt&)1, the spon-
taneous-emission energy in the cavity approaches a
steady-state value; the induced-emission energy ap-
proaches a function which has a constant rate of
increase as far as the coherent emission is concerned,
and a steady-state value as far as the incoherent
(thermally-induced) emission is concerned.

Let us consider first the case for which the tempera-
ture of the cavity is suKciently low so that Ap)/kT))1.
Then we can neglect the thermally-induced emission
compared to the spontaneous emission. For a molecule
in the upper state, the ratio of induced-emission energy
to spontaneous-emission energy (which is also the ratio
of coherent to incoherent energy) starts out initially as

The considerations regarding coherence and in-

coherence are the same as those for the lossless case,
and are discussed in detail in I. According to these
considerations, the second-order spontaneous emission

[Eq. (70)$ is incoherent, the first term of the induced
emission (the part induced by the driving field) is

coherent, and the second term (the part induced by
the thermal field) is incoherent. The latter behaves in

all respects like the spontaneous emission. The ratio of
the thermally-induced emission to the spontaneous
emission is

kT/kp) f—or kT/kco)&1,
(e(li sr J kF) 1)

—1 (72)
=e &"'"r) -for kp)/k T»1.

for pt)&1.

Ei)p'/87r
pt

kT
(76)

Although for measurement purposes and for appli-
cations (such as masers, for instance), the field proper-
ties are the most significant ones, the study of the
molecular behavior is also of interest. Returning to the
Hamiltonian of Eq. (1), we see that

ihdH /dt=47rcuP[H, y j,
so that

dH /dt= 47rcuPdy /dt. —
(77)

(78)

Using the expressions for E"&, Et", and P"', as well as
those for y '" and y &", all of which have been derived
previously, we obtain

(H„~P))=0, (79)

(H„n))= —Ei)pp)uy
~
aiap

~

sin(0„—8), (80)

where an oscillatory term has been neglected, and

Since the driving power is P(EDp'/Sm), this ratio is also
equal to the number of photons sent into the cavity up
to time t (ignoring transient effects). It is interesting
to note that for a given driving field strength in the
cavity, the steady-state value of the ratio of induced-
to-spontaneous emission increases with increasing loss
in the cavity. However, for a given driving power, the
ratio of induced-to-spontaneous emission is indepertdertt
of losses in the cavity. It is also important to note that
the ratio increases with the time during which the
molecule is exposed to the field. (It should be remem-
bered that the time considered is small compared to the
time in which the molecule radiates all its energy. )

For the case of A&u/kT((1, we can neglect the spon-
taneous emission compared to the thermally-induced
emission. As far as the time dependence and coherence
properties of the thermally induced emission are con-
cerned, they are identical to those of the spontaneous
emission. In view of Eq. (72), the ratio of coherent-to-
incoherent-emission energy in the cavity field, corre-
sponding to (73) and (74), respectively, now becomes

Enp'/8~
(»)

kT
for Pt((1, and

Enp'/Sm
(73)

Q2 "—
Gy

(II„~")= —Ph(1 —e l&')
i
a2i'+

ey"]~r) 1

—(~/@)uVE o't cos'(~t+0) (I

apl�'

—
I ail'), (81)

which is the familiar quantity expressing the (driving
field) energy in the cavity in units of the energy of a where the usual approximations have been made.
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(H~ )—=—(Hfield)spent. +P(Hfield)spout. ~

cA

which is equivalent to the statement that the incoherent
power emitted by the molecule is equal to the rate of
increase of incoherent energy in the field plus the
incoherent power absorbed by the walls —a result
which we would certainly expect.

We look now at the induced emission radiated by
the molecule, which (for An)/kT»1) is given by the
last term in Eq. (81). its average value (averaged over
a cycle) is

—(II '));„d„„d=-,' (co/A)u'y'EDo't(l a, l' —
l

ail�')

(84)

By comparing this with the first term in Eq. (71), we
see that we cannot make a statement such as Eq. (83)
about the induced power. Thus,

(Hfieldi ))induced+P(Hfieldi ))induced
dt

coN2p2

Er)os(pt+e le' 1)(l asl'
l

a—il2) (85)

We see that for small t it is true that the right side of
Eq. (85) reduces to the right side of Eq. (84), but after
the transient period the latter is only one-half the value
of the former. This seemingly paradoxical situation is
resolved when we realize that our driving mechanism
is one of prescribed dipole moment or prescribed 6eld.
The amount of power it emits into the cavity depends
on the total field in the cavity, and one can readily see
that the second-order part of the power emitted by the
driving mechanism is just the difference between the
right sides of Eqs. (85) and (84).

The ratio of induced-to-spontaneous power, or of
coherent-to-incoherent power, emitted by the molecule
is (still for An)/kT&&1)

1 EDO /87r
Pt(1 —e le') '

2 Aco
(86)

For small t this expression is just the number of photons
in the expectation value of the cavity energy, but in the
steady-state condition it increases linearly with the time
and may be interpreted as one-half the total energy sent
into the cavity, in units of photons, up to time t. For a
temperature such that Ao)/kT((1 the same consider-

Let us consider first the case for which An)/kT»1, or
very low temperature. Then the thermally-induced
emission is negligible. The spontaneous (and also in-
coherent) power emitted by the molecule is

—(H ")),p,„e ——Phlasl'(1 —e le'). (82)

By comparing this with Eq. (70) for the spontaneous-
emission energy in the field, we can see easily that

ations apply here as those for the energy in the cavity
field: The ratio of coherent-to-incoherent power
emitted is given by (86) with Ace replaced by kT.

The result of Eq. (81) is interesting from several
points of view. From a fundamental viewpoint, one
should note that the spontaneous-emission power, or
the spontaneous transition probability, depends on the
environment of the radiator. This fact was recognized
by Purcell, ' who gave, as the spontaneous transition
probability for the case of resonance between molecule
and cavity,

(87)8m "Q"y'/A V

where V is the volume of the cavity. If we take the
steady-state value (by neglecting the exponential term)
of the expression for the spontaneous-emission power
given in Eq. (82), average u' over the volume of the
cavity (which gives V '),' and divide by A&o (which
converts power into transition probability), we obtain
Purcell's formula. It should be further recognized,
however, that the transition probability is not constant
in time, as may be construed from Purcell's formula;
and, although it approaches a steady-state value, the
time taken to approach this value ()2/P) may be
considerable, depending on the "Q" of the cavity. The
incoherent (thermally) induced. transition probability
has the same time variation as the spontaneous tran-
sition probability, as is evident from Eq. (81).

Also of fundamental interest is the fact that the
coherent induced transition probability, which is the
right side of Eq. (84) divided by Ao), is not consta, nt at
all, but increases linearly with the time. It depends on
the cavity only through the strength of the driving field.

An interesting quantity is the ratio of power emitted
by a molecule in the upper state to power absorbed by
a molecule in the lower state, or its equivalent, the ratio
of the downward-to-upward transition probability. For
the case of an incoherent field in free space, this ratio
has the well-known value"

(m+1)/e, (88)

(e(fi~/ sT) 1)—1 (89)

' E. M. Purcell, Phys. Rev. 69, 681 (1946)."See, for example, W. Heitler, The QNuntlm Theory of
RaChatioe (Oxford University Press, New York, 1954), third
edition.

where e is the average number of photons per mode.
For the case of a coherent field in a lossless cavity, it
follows immediately from the results in I that the ratio
is the same. In the present case, the situation is some-
what different.

Let us consider, first, the absence of a driving field.
Then the only zero-order field in the cavity is the
(incoherent) thermal field. The ratio of thermally
induced to spontaneous power emitted, by the molecule
is the ratio of the second term to the first term in the
square bracket of Eq. (81), which is, for lasl' 1,
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But this is, a,ccording to (40), just the number of
photons in the thermal field. It follows, therefore, from
Eq. (81), that the ratio of the downward- to upward-
transition probability, when the induced emission is
due to the thermal field, is given by (88). This, of course,
was the original basis for the derivation of the Einstein
transition coefficients. It can be shown that the same
situation exists when the induced emission is due to any
incoherent field.

The situation is different, however, in the presence
of a coherent field. Let us consider the case for which
the thermal field in the cavity is negligible. Then, the
ratio of the downward- to upward-transition proba-
bilities (averaged over a cycle) is, from Eq. (81),

a,s we clid in I, tha. t u(r ) =u for all m. Then, by the
same methods used for a single molecule, we obtain

K(r, t) = En(r, t)+ (8ir/P)cvuyu(r)

XP
I
ai(m)a2(m)

I
(1—e

—le') sin(cot+&„)

+BE,(r, t) I
-,'Pt —(1—e—'ej) $

XZ-I I a~(m) I' —
I ai(m) I'], (93)

aliCl.

+~DO hQ)

(Hseid) = + g It(d+
8w e&""~")—1

+2—uyEDO(1 —e
—l~') P I

ai(m)a2(m) I
sin(9 —8)

where e here, too, is the number of photons in the
(driving) cavity field. For small Pt this ratio approaches
(88), but for Pt))1 it approaches unity.

The ratio of induced to spontaneous emission is also
of interest in masers. Since induced emission is coherent
and spontaneous emission (when the molecule is in the
upper state —we are not concerned here with first-order
coherent spontaneous emission) is incoherent, the
induced emission is identified with signal and the
spontaneous emission with noise. The ratio of the two
determines the ultimate signal-to-noise ratio attainable.
In previous calculations, " the ratio was considered to
be m. We see now, however, from Eq. (86), tha. t after
the transient period the ratio is larger than n by a
factor of -',Pt.

Thus far we have considered only a single molecule.
%e can generalize our discussion quite easily to apply
to a large number of molecules in the cavity. Returning
to Eqs. (42) and (43), we sum the third term on the
right side of both equations over all the molecules in
the cavity; that is, instead of a single term we now have

co

dti y„(t,)u(r„)e i~(' '» sinu&(t ——t,) (91)

in the expression for P(t), and

~t—4icep
'

dtiy„(ti)u(r„)e ''e(' '»cos(v(t —ti)
m

(92)

in the expression for Q(t). For simplicity we assume,

"M. W. P. Strandberg, Phys. Rev. 106, 617 (1957); Shimocle,
Takahasi, and Townes, J. Phys. Soc. Japan 12, 686 (1957). The
author is indebted to Professor Townes for pointing out, however,
that the latter reference refers to molecules which have an infi-
nitely wide frequency response and are therefore not of the type
considered in the present discussion. A separate analysis is needed
for the case where there is a significant spread in molecular fre-
quencies, and this will be given in a subsequent article. In general,
a molecular-beam maser has a very narrow frequency spread,
while a solid-state maser has a much more significant frequency
spread.

I'-'no'/8ic
+ B(pt+2e le' —2) p I I a2(m) I' —

I ai(m) I'j

a2 m 2 g~ m 2.

+B(1—e le')' P I
a, (m)

I

'-+-
'l7t e(ht»/ 0T)

+B P Ia, (m)a2(m)a, (m')a, (m')I
m+m

X (1—e '~')' cos(8 —0 ). (94)

YVe see that the expectation value of the field strength
(to which only the coherent part of the field contributes)
produced by all the molecules is the sum of the fields of
the individual molecules. As for the energy, all the
molecular terms except that last are the sums of the
corresponding terms in the held energy of a single
molecule. The last term gives the effect of interference
(either constructive or destructive) in the coherent
spontaneous emission of the molecules. The consider-
ations pertaining to the combination of the radiation
from many molecules are the same as those in the loss-
less case, and are discussed in detail in I.
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APPENDIX A

We show that expression (32) is equal to expression
(33). Since most of the contribution to the integral of
(32) comes from the terms co, (d, we can set

p e(&j(jj j2) —p((d) )I d~. e EGIN(jl j»'
)

0

(1A)

chal e'"&=7ctj(it)+i(J'/rj,
0

(2A)

where it is important to note that ~, assumes positive
values only. Now
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where (P/it is known as the principal value" of 1/it and and
has the property that

pb
d&7 f(rt)&y/rt= lim

e~p—a —a

f(n) &' f(n)
dit + drt- we obtain, for the last term in Eq. (5A),

pt ~t
The integration over the 8(ti —t2) term may be per-
formed immediately, and yields (33). The integration
over the (P/(ti —t2) term vanishes, as shown by the
following argument: Introduce a change of variables,

8= ti+t2,
(3A)

The part of the integrand multiplying (P/it is an even
function of rt. &P/it is an odd function of it. The limits are
transformed in the manner

47—ria&U'I' dti dtiI since(2t —ti —t2)
&p ~p

+sin~(ti —t2))e tt'&" " '» P, I; sin~, (ti—t2). (6A)

We make the approximation, which was used in
originally obtaining Eqs. (21) and (22), of replacing
l; by its expectation value and then bringing it through
the summation sign as (I,)„.Noting tha, t for purposes
of evaluating (6A),

1
dt2 f(t„t2)=- d$ dit

"p 2 ~p

p2t ~2t—$

+ d$
—(2~—$)

drt p((,rt), (4A) we have

P sinu), it = p((u)
Jp

=p(~)&f'/n,

Cko~ sinm~q

(7A)

where f(ti, t2) =—p(&(, )rtThe. se limits are obviously
symmetrical about zero for the q integration. We thus
have a symmetrical integration over an odd function,
which is zero.

APPENDIX 8

From Eqs. (21) and (22), we have

LQ (t),P (t)]= ihe-&' —2~i&v U'r'p ((v)(I,)„

df dit e '~&2' t'—Lsina&(2t —()+sinu&rt], (8A)

where the limits of integration are the same as those in
Eq. (4A). Carrying out the it integration first, we find
that the contribution from the sin~(2t. —$) term
vanishes; and for the sinMg term we have

—4~(uU'P P
a Jp

~t
dt's dt~

V'
p

r
8g —slnmg =z' (9A)

)(&, '&& ' '~ '» cos~(t ti) sjn~(t t2)— — for sufficiently large cv. Making use of Eq. (15), we

XI r,&'&(t ),I'„&Oi(t )]. (5A)
Since

0 ~ i~~-
r, «~(t) = 1'I

(e' i'i 0

p2t

fQ, Pj=ihe @+'ihP d( e lt-'&" r'
4 p

"See, for instance, reference 10, p. N. =ihe ~'+ih(1 e &') =i—h. —


