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Structure Theorem for the Photon Propagator
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A simple theorem relating the structure of the bare and dressed photon commutators and propagators is
derived, and its implication, with respect to the choice of photon gauge, is discussed.

1. INTRODUCTION
''N a recent paper, Bogoljubov and Sirkov' have
~ - criticized the form of the photon propagator
assumed by Gell-Mann and Low, ' and have emphasized
the need of using a gauge-invariant form in order to
obtain a consistent renormalization procedure. Such a
gauge-invariant propagator has also been utilized by
Umezawa et a/. ,

' 4 in their discussion of the renormali-
zation program. Because of this evident need to con-
sider a gauge-invariant quantity (thereby avoiding the
danger of mishandling gauge-variant terms), it seems
worthwhile to state a simple but pertinent theorem
relating the structure of the bare photon propagator to
that of the dressed (unrenormalized) propagator. The
physical content of this theorem may be expressed by
the statement that the gauge-variant portion of the
bare propagator is unchanged by the fermion-photon
interaction; and that although one usually expects to
renormalize only the gauge-invariant par t of the
dressed propagator, nevertheless its gauge-variant
portion must also be renormalized if the dressed photon
operators are to be proportional, but not equal, to the
renormalized photon operators. This observation is
made plausible by an examination of the propagator
constructed in reference 3; but since the theorem also
provides a similar relation connecting the bare and
dressed commutators, it perhaps merits a formal state-
ment and proof.

(c) at equal times the photon and current operators
commute;

(d) all matrix elements of J,(x) vanish outside of a
suKciently large volume in configuration space;

the theorem to be proved states that

ct„ct„D„„'(x)= ct„ct„D„.(x)

With the usual choice" of the free-field commutator,
D„„=b„„D(x),the right-hand side of Eq. (1) vanishes.
The dressed commutator D„,' can therefore not have the
form D„„'=b„„D'+ct„ct„G,where G is a gauge-variant.
function satisfying G=O, since such form together
with Eq. (1) implies that D'=0. On the contrary,
G must contain a (gauge-invariant) term, G, , which
obeys the relation E]D'+CI OGi ——0.

A similar statement holds for the unrenormalized
photon propagator,

ct„ci„Dp„„'(x)= ct„ct„Dr„„(x),

where, with the usual choice' of the bare propagator,
Dy„„=b„,Dy(x), the right-hand side of Eq. (2) does not
vanish. This relation will be proved in a manner similar
to that used in deriving Eq. (1), and also by direct
construction in momentum space using the gauge-
invariant form of the photon self-energy II„„.

The proof of Eq. (1) may be obtained by first cal-
culating

2. DERIVATION zD„„'(x)= —i(ol&l J„(x),a„(o)halo&, (3)

Consider first the unrenormalized photon commutator

iD„,'(x—x') = (0 l std„(x),A „(x')]
l 0),

where the photon and current Heisenberg operators
satisfy the relations

B„J„=0.

Under the following general assumptions:

D„„'(x)lep=o=D„„(x)l*p=o=o;

and then finding the solution of Eq. (3) which obeys
the boundary conditions of assumptions (a) and (b).
Writing

D„„'(x)=D„„(x) i~' d'y —~(x,y

x(0l~L~„(y),~„(0)jlo&, (4)

Eq. (4) will be a unique solution for D„„'(x) if there
exists a Green's function X)(x,y) with the properties

,m=b(x —y), X l., =o=O, an/ax, l.,=o=O, (S)
(b) D„.'(x)

l
~p =o= D„,(x) l

Tp =o=6„„b(r);
cpso ~so for all points y. LIf there is a particular function satis-

fying Eq. (5) it must be unique. ) Constructing X) out
of the available Green's furictions: it must contain one

'N. N. Bogoljubov and D. V. Sirkov, Nuovo cimento 3, 845
(1956).' M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).' Umezawa, Tomozawa, Konuma, and Kamefuchi, Nuovo
cimento 3, 772 (1956).

'S. Kamef'uchi and H. Umezawa, Nuovo cimento 3, 106
(1956).

5 This assumption will be held until the discussion following
Eq. (12). As the remarks following Eqs. (6) and (10) indicate,

0 both Eqs. (1) and (2) hold in the stronger sense: B„D„„'=B„D„„,
Bit,Daisy = BittDp'py.
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member which is a, solution of the inhomogeneous wave
equation with a b(x —y) source; further, any of the
Green's functions obeying the homogeneous wave
equation may be multiplied by a factor e(&yp)
=+yp/ I yp I

with a resulting change in the form of their
boundary conditions. If one uses the convention of
dehning all Green's functions in terms of the usual
contour integrals, each having the common multi-
plicative factor —(2pr) ', that function which satisfies
the conditions of Eq. (5) can be written as

&(x,y) =D~(x—y) —sD"'(*—y)+pe( —yp)D(x —y)
= s (e(—yp) —e(xp —yp) }D(x—y),

and Eq. (4) then becomes'

D. '( )=D"( ) —— d'y( (—y) —( —y))2J

yD(x —y)(ol&[J„b),A„(0)jl0). (6)

The remainder of the proof then consists of applying
f)„ to both sides of Eq. (6), and using current conser-
vation to obtain

t' f)

+
& ax„ay„)

&((0 I
tl [J„(y),A, (0)1 I 0)

= »b(yp)D(x —y)(o ln[J~(y) A (0)3 I o)

By assumption (c), the equal time commutator of J4
and A„vanishes; what remains is the relation

metric representations of the commutators as given by
Kallen' and Wightman. '

The corresponding relation between the propagatoxs,
Eq. (2), can be obtain by writing

Dp„,,'(x—x') = (Ol rfT. ..(A„(x)A,(x')) IO),

which, using the previous assumptions (a) and (b),
satishes the equation

UD,„.'(x) = UD,„„(x)+(OI~T. ,(J„(x)A,(0)) IO). (7)

The boundary conditions on Dp„„' suggest a different
approach, at this point, from that employed above.
Applying the operator f)„f)„(rojust f)„alone) to both
sides of Kq. (7), using current conservation and as-
sumption (c), one obtains

~.~.& (D~"'(x)—D~"(*))=o

which ha, s the solution

r)„r)„(Dr„„' Dp„.) =—aD(x)+bD&" (x),

where a and b are constants. ' The boundary conditions
imposed on Dp„„', as well as on Dp„„, are such that the
left-hand side of Eq. (8) has positive frequency de-
pendence for xp&0 and negative frequency dependence
for xp&0; the right-hand side of Eq. (8), however, has
a frequency dependence proportional to

8 slnkxp —z6 coskxp

ls[(b+ri)e~kgp+ (b rr)c ikzp] k—)0

For xp)0 one must require b+a=0, while for xp&0
the requirement is b —a=0; therefore a=b=0, and
Eq. (8) reduces to Kq. (2).

f)„D„,'(x) = f)„D„,(x)+— dp„(e( —y) —e(x—y))

»(x—y)(OI ~[J.b),A.(0)j I »

By assumption (d) this surface integral reduces to (the
difference of) two volume integrals as yp-+ ~ po.

Finally, since the limit (c(—y) —c(x—y)1~, ~„=0,
each such volume integral multiples a zero coeKcient.
[One needs the reasonable implicit assumption that all
matrix elements of J„(y) yield well-behaved volume
integrals as yp —+ &~.) Operation with f)„[necessary
if Eq. (3) is written symmetrically in J„and A„] then
yields Eq. (1). This relation is sa, tisfied by the para-

p Performing the y integration of Eq. (6) will yield a covariant
result on the indices p, ,I because the function multiplying Q(x,y}
has the space-time dependence of a commutator; that is, the
quantity

is an invariant function of x. An extension of this procedure
permits one to attempt a spectral representation for D„„'without
assuming relations between the one-photon matrix elements of
A„and its asymptotic form, as used in reference 7.

3. DISCUSSION

In momentum space Eq. (2) reads

k„k,DF„,'(k) = k„k,Dr „,(k),

and may be obtained in a direct way by the use of the
rela, tion

Ds„,'(k) = Dr„,(k)+Dp„i, (k) IIi.(k)Dp..'(k), (10)

where the function II„„(k)is the sum of all proper photon
self-energy parts, assumed to have the gauge-invariant
for Dl

II„,(k) = (b„„—k„k„/k') II(k').
' G. Kallen, Helv. Phys. Acta 25, 417 (1952). Both Eqs. (1)

and (2) are satisfied as relations between the renormalized Gelds
A„and A„(0), even through the corresponding commutators obey
different spacelike commutation relations; this is because Kallen's
formalism is just an operator gauge transformation away from
the more conventional equation for the renormalized 6elds.

A. S. Wightman (private conversation).' This argument is shorthand for setting Eq. (8) equal to

J d'y (&(x y)f (y)+D"'(* y) g (y) I—, —

where f and g are even functions of y but are otherwise arbitrary.
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then one cannot simultaneously write

A p Z3 2 pQp Dppp Z3DI+JIQ (12)

since the latter statement, together with Eqs. (9) and
(11), leads to the requirement that Zs=1.

If one begins with the more general bare propagator

Dp„,(k) = (3„„—Xk„k,/k')Dp(k'),

Eq. (10) then requires the dressed propagator to have
the form

Dp„.'= (b„, k„k./k')Dp'—+ (1—X) (k„k„/k')Dp.

In order for the usual multiplicative renormalization of

With Dp„„=b„,Dp(k') and Dp'=Dp+DpIIDp', Eq. (10)
requires that Dp„,' have the form

Dp„.'(k) = (5„,—k„k./k') Dp'(k')+ (k„k,/k') D p (k'),

which evidently satisfies Eq. (9). One sees that if only
the gauge-invariant part of Dp„„' is renormalized,

(11)

Eqs. (11) and (12) to hold, one must choose

Dp„.,'= (5„.—k„k„/k') Dp, '+ [(1—X)/Zs) (k„k„/k') Dp.

Since Z3 is probably zero, in the interest of keeping a
finite function finite one should probably choose X= 1;
the propagators then have manifestly gauge-invariant
forms, with Eqs. (2) and (9) vanishing identically.

Aside from this desirable property, it is interesting to
note that in this special gauge, calculations to first
order in e' yield a convergent result for the re~r-
malization constants Zi and Z&, that is, the only di-
vergence present in the electron's self-energy, Z, is that
corresponding to a mass renormalization, 8m." Sub-
tracting the latter, the quantity Z —8m is finite, as, by
virtue of Ward's identity, is the corresponding vertex
operator.
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