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Three-Pion Contribution to the Electromagnetic Structure of the Nucleon
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In this paper the contribution of three pions to the. scalar electromagnetic form factors of the nucleon
are computed by using the 6xed source meson theory without rescattering corrections. The (y,3m) interaction
is taken phenomenologically as a point interaction. It is shown that for those values of the (y,3w) coupling
constant compatible with photoproduction experiments, the experimental charge distribution could be
roughly 6tted with a cutoff in the. dispersion integral of the order of 7 pion masses.

l. INTRODUCTION

~ 'HE electromagnetic structure of the nucleon has
been in the last year the object of considerable

attention by theorists. Recently Federbush, Goldberger,
and Treiman, ' and Chew, Karplus, Gasiorowicz, and
Zachariasen, ' have investigated the problem using
dispersion theory. The agreement between theory and
experiment is still rather unsatisfactory. This is prob-
ably due to our still incomplete knowledge of the
physics of the nucleon.

A very important and completely open question is
the scalar part (in isotopic spin) of the nucleon form
factors, which cannot be explained in terms of the
simple model of a photon interacting with a single pion
in the nucleon cloud. FGT have shown that the only
reasonably possible way of interpreting the large scalar
radius of the charge is in terms of three-pion states.
This model is analogous to a previous one proposed by
Tamm4: a photon produces three pions by passing
through nucleon-antinucleon intermediate states. Those
pions are then absorbed by the physical nucleon.

In this paper we want to consider in some detail the
contribution from three-pion states,

Our point of view will be the following. We shall
phenomenologically postulate the only possible local
(y,3w) interaction, '
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p, (x) are the real pion 6elds and eq„„, is the completely
antisymmetrical fourth rank tensor. More complicated
nonlocal interactions are not considered because of the
high mass of the intermediate nucleon-antinucleon'
states responsible for the e6ect expressed by the
interaction (1).

'Federbush, Goldberger, and Treiman, Phys. Rev. 112, 643
(1958), hereafter referred to as FGT.

'Chew, Karplus, Gasiorowicz, and Zachariasen, Phys. Rev.
110, 265 (1958).

3 An excellent account of the present theoretical situation can
be found in S. Drell, 1958 Annual International Conference on
IIigh-Energy Physics at CERN, edited by B. Perretti (CERN,
Geneva, 1958), p. 20.

4 See, e.g., I. Tamm, 1958' Annual International Conference on
High-Energy Physics at CERN, edited by B. Ferretti (CERN,
Geneva, 1958), p. 34.

~ We use here x&=x, x&=y, xa=z, x4=it, and a system of units
in which k=c=1.

The constant X is a new unknown parameter. It
could in principle be obtained from very accurate
measurements of the cross section for photoproduction
of two pions on a nucleon. Chew and I.ow' have sug-
gested a general extrapolation method which could be
used to separate the effects of the interaction (1) from
the remaining "nucleon" terms (see Fig. 1). For the
moment we can only give a rough upper limit for X by
requiring the effect of (1) not to exceed the whole
experimental cross section for y+X —+ E+rr+rr. We
obtain )«6.

The expectation value of H;„&(x) in the physical
nucleon state is computed in the static model neglecting
the contribution of the ~, -', resonance, which has been
proved to be unimportant in the two-pion contribution.

The calculation of the magnetic moment and of the
charge is going to diverge very badly, However, we
shall be able to express all observable quantities in
term of a spectral representation which is the static
counterpart of the relativistic dispersion relations,

1 t" gran(a')
Grs(q') =— do',

x' Ij (sp) ~ o' +q

i" gs'(~')
Gsa(q') =— do'.

rr ~is„)~ o'+q'

The spectral functions will be finite and strongly in-
creasing with the "mass" 0.

We are aware that our numerical results can only be
taken as a rough indication. The main reason is that,
as in the case of two pions, the recoil sects of the
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' G. F. Chew and F. E. Low {to be published).' S. Fubini, Nuovo cimento 3, 1425 {1956).

FIG. 1. Two possible graphs contributing to two-pion photo-
production; (a) shows the graph by which our interaction LEq.
(1)j contributes to two-pion photoproduction; (b) is a typicai
nucleon graph of the same process. Nucleon lines are sohd,
photon lines wavy, and meson lines broken.
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nucleon can be very important' and. therefore a relativ-
istic dispersion analysis of the problem is very desirable.
However, we feel that this first field-theoretical explo-
ration of the problem might be of some use since it
gives the rigorous 1/cV-+0 limit of any relativistic
analysis without rescattering.

2. CHARGE AND MAGNETIC MOMENT DENSITY

In order to obtain charge and magnetic moment we
have to eva, luate &@o(H;„i(x)~40&, where ~40& is the
physical nucleon state.

By expanding the pion fields g, (x) in the usual way,

From (3') and (3"), taking in account (4), we finally
obtain, in the zero-meson approximation, for. the
needed expectation values,

&+o I a.a.a~ I+o&

-'(f/ )'( )*' (P) () (k)
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y (&)
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(2») **
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&ep[LH, a,a,ag.,jJeo&=0,

&eo i QH, a„ta,ag,j I eo& =0, (3)

where H=HO+H'; Ho is the free-pion field's Hamil-
tonian, and B is the usual static pion-nucleon inter-
action,

H'= Z~(V~aa+ Va'a~'),

Vi. i(kr):(fi"/p)——o k7 ivy(k) (2»)—:.

By explicit evaluation of the commutator one obtains:

—(~,+~,+»)&+0 ( a,a,ai, ( +0)
= &+0 [ V,ta,a~ ] +0&+&+0 f V,tata,

( +o&

+&~ol V.t, , I I"& (3')

—(~.+»—~.)&+o I a'a. ai t +o&
= &+o I

V~'a"a.
I +o&+&+OI V.'a. 'a~ I+o&

—&+o( V„a,ai, (+0&. (3")

l,et us now remember the identities:

al ~+o&= —(»+H) 'Vi'~+o&,

a~au ~+0&=(»+»+H) 'Vat(»+H) 'V~'I, +0&

+(~a+~i +H) 'Vi'(~i+H) 'Vi'~+0&. (4)

' J. D. %alecka (to be published); and reference 1 and 2.
This point is discussed in detail in Bosco, Fubini, and Stan-

ghellini, Nuclear Phys. 10, 663 (1959).

H;„~(x) can be cast into a linear combination of expec-
tation values in the physical nucleon states of three pion
creation or annihilation operators. To be more specific,
the different kinds of expectation values are the
following:

&+o
J a,a,ai

J +0&, &+0 f
a 'a, ai f +o&,

and their complex conjugates.
We must now evaluate expressions (2) using the

static model and neglecting the rescattering corrections,
as previously stated. In doing this it is important to
pay attention to the order of meson operators: all the
creation operators must be placed to the left of the
annihilation operators. '

I.et us use the following identities:

0"7 p 0"T p 0 T q
O'T p 0 T q 0 7 y+ —+, (5)

CO& Mq GOq COy Mq M~

&~to
(
a ta a Jg (

ep&

i(f/~)'(4 )'
, ~(p)~(V)~(k)

(8copGpcg(dk) *

OT p 07 p 07 q 07 y 07 q 07
x + . (6)
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In (5) and (6) f is the renormalized pion-nucleon
coupling constant and (o.v) „means e ps~. Expressions
(5), (6), and their complex conjugates, after quite
simple but rather tedious calculation allow us to write
down the expression for the charge and current density:

e(&/I") (f/I )'(4~) '

(2s)'

p (ki k2Xk )'
X I I p(k, )it(k, )p(k, )

Xexp(i(k, +k2+k3) x)d'k, d'k, d'kg, (7)

3ie(~/p') (f/p)'(4~) ~

j(x) =
(2m)'

t I I
(e ki)(kg k,)(k,xk,)

X
I112 I32

X~ 1+ ~i(k,)i(k,)i(ka)
»,+~~.

Xexp(i(ki+k2+k3) x)d'kid'k2d'k3. (8)

3. SPECTRAL REPRESENTATION OF CHARGE
AND MAGNETIC MOMENT

Our purpose is now to obtain a spectral representation
for charge and magnetic moment corresponding to (7)
a.nd (8).
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TABLE I. Values of 0., magnetic moment, and P for different r,x,
the charge being normalized to one, in units 6/2.

5
7

11
15

Charge

0.047
0.026
0.011
0.0063

Magnetic
moment

1.7
1.1
0.'l0
0.48

130
5.4
0.19
0.025

Prom here on we neglect the cutoff functions, since
they aGect only the high-energy behavior of our inte-
grands.

From (7), by performing the integration, one obtains

Our final step is to put p(r) in the form

e—ro

p(r) = ~( )
J3„ r

Kith an obvious change of variable we get

p00 e &"

3 e("/H') (f/p)'
p(r) = — (2/r'+6p/r'+/p'/r'

4
+4p3/y6+p4/ys)e 3rr (9)—

Qoi I

100
I

i50
I

200

Pro 2. S.pectral functions (1/Xfs) [gp(os)/a3$ and
(1/xf') (gss (o )/a'g sersiss 6'.

yields

where

"" gs'(a')
Gss (q') =—

!
d~',

3I I3I'o+g
3ekf'

(P' —1)'
2' ~p 5040 &pI

X (200—105P+ 112P' 70P' —140P'——216P')

1
(112+15P+80P3+ 10P3—16P3)

720 Lpj

I

250

p(r)=e '"" F(k+3p)

We can immediately obtain G($) =F($+3p) a—s the in-
verse Laplace transform of rp(r)e3&". Furthermore, since
rp(r)e3&" is of the form P„=4 (3e/r"), F(o)=G(o3—p).—
is of the form P„L(o—3p)" '/(I —1)!j which insures
that the spectral function vanishes at the lower limit
of integration.

In this way, from (9) one obtains

1 e()t/p') (f/p)' !'" e
—"'

p(r) =- . da (a—3p)'
4 840m:

&& (o +9osp+12a p, —3ap3 —3p ). (11)

If, as usual, we consider the Fourier transform
Gie(qs), we get

1 I" gi'(')
Gts(iI )—

3r ~ (3r)' a' +g
where
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a
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I

—3- in++(P' —1)&j, (13)
Ep)

and p=(o —p)/2p. Its derivation is similar to the
previous one, though much more cumbersome. The
details are given in the Appendix.

It is evident from the expressions just obtained for
gis(os) and gss(a'), that our integrals are strongly
divergent. In order to obtain some indication we shall
limit our integrals to some values 0, of the "mass. "

In Fig. 2 are shown the curves representing
(1/)~f') Lgi'(a')/a'j inu»ts e/2, and (1/) f') Lgs'(a')/o'j
in units e/2M.

We give in Table I the values of the scalar magnetic
moment and of et=re(ries) which experimentally is
between 0.03/p, ' and 0.05/p', for different values of
0-,.-. These values are obtained by normalizing the
charge to one (in units e/2). In the last column the
corresponding values of X are given. n is in units 1/p .

4. COmCLUSroms

It has been shown in the preceding sections that the
The analogous calculation for the magnetic moment three-pion contribution to the electromagnetic structure
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of the nucleon can be simply computed in the static
no-rescattering approximation.

From this preliminary investigation it is still dificult
to draw any conclusion whether the three-pion eGects
could reasonably account for the scalar part of the
charge and magnetic moment of the nucleon.

From our calculation it follows that for those values
of A compatible with photoproduction experiments, the
experimental charge distribution could be roughly fitted
with a cutoG in the dispersion integrals of the order
of 7p.

The magnetic moment (whose experimental value is
—0.06 nuclear magneton) comes out rather large and
with the wrong (positive) sign.

It is difficult to predict whether accounting for the
recoil eGects would remove such discrepancy.

One trivial 1/M correction is to define G2 (0) =i4s+ —,
'

(in units e/2'), because the expectation value of the
current in the physical nucleon is related to the total
magnetic moment. Such a correction goes in the right
direction but is still insufficient.

Therefore, we should finally like to point out that a
relativistic computation of the three-pion eGects would
be very desirable in order to see whether a large charge
eGect is compatible with a small magnetic moment.

APPENDIX

We start from (8) and perform the angular integra-
tion, We get

j(x)=—3e(l /~')(f/~)' x t" p'dp
4 X- ji(pr)

~9/2 r 4p GD

r" k'dk t" q'dq
X

I

'
~

j (k ) j (q )
0 p GO@

k'dk I" q4dq
r 't ji(kr) j—g(q-r)

o a o

QMg MA;r' ' ' — gi(kr)[qg2(qr)
~ +404

k'q'—r 'ji(qr) j dkd-q I, (A1)
CONGO&

where j&(kr) is the spherical Bessel function.
By using the explicit expressions for j& and j2, the

integrals Jo"j i(kr) (k'/co&')dk and fo"j2(kr) (k4/~42)dk
can be evaluated by elementary methods.

The double integral also can be transformed, by
multiplying and dividing by ~,—coj„. and using the
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relation

r" sin(qr}
I' qdq= ~in cos(kr) (for r) 0).

Then (A1) can be written in the form

3(4~)'e(l /I") (f/u)' x t's
3(x)= X-I —+- ie-"

(2m)4 r (r' r']
kdk

2r 5, ~ sin2kr
4p Mg„-

k'dk
4r ' — cos2kr

k'dk
+r 2

CGA; 4p
3r —' ~ sin2kr

or, in equivalent form,

k'dk
cos2kr

3(4~) 'e(li/~') (f/u)'
j(x) = ~X-I —+—Ie- "

r Er2 ra)(2n)4

d 3 d' 1 d'r-
dr 4 dr' 8 dr' )

kdk
X sin 2kr . (A2)

~0 MIc

For our purpose it is useful now to write the integral
fo"(k/coq) sin2krdk in the form

p" k sin2kr
dk=

4 ()

do!.
(~2 ~2) 4

(A3)

This identity follows from the fact that the integrand
has the branching points at k=&ip. The integration
path is shown in Fig. 3.

By inserting (A3) into (A2) with some manipulations
one finally obtains j(x) in the form

(y-v)' 1
+ 3~I I+I

2 ) L 2 ) .r4

(v—wl' (v —
s ~' 1 v —

s+ 4~I I +31 I
—+~

(A4)
(i.(v —~)/23' —u'}'*

I.et us remember the relation between current and
magnetic moment density,

x dp, (r)—j(x) =4 X-
r dr
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The first integrand in (AS) then clearly vanishes, and

p(r) =— dv
"v

."dLP(~)/~j e--
da.

One obtains in this way, by reversing the order of
integration,

then

Pro. 3, Path of integration to be used in order
to obtain formula (A3).

3 e(X/y2) (f/I2)2 ~" e-"
p(r) =- da

7rsl2

P nC (v)o"-'dv
n=1

d~(r) 3 e(l/~')(f/I )' l" (V
—~i ' 1

dr 4 2r"2 ~2„& 2 ) r4 The C„are

X
'

(A6)",&I:(v-~)/23'-u')'

(v u&
' —(v—

u &
' 1

+»I I+I
2 2 r'

(v —~&' (v —y~'1 (v —ui

C2= (v —p)/5040,

7
(—v'+2~v —Sw'),

960

We write now de(r)/dr in the form

{L(v—~)/27 —~')' 7
C2= (v' —312v'+3p'v+1S~'),

1152

then

d~(r)
dv F((r) e '"da, — 7

(~2v2 2~2v 14)—, —
96

I (r)=— I

"F(o)
e '"da-, 7

(v' Syv'+ So'v' —1Sv'v'+30m'—v).
960

and, by integration by parts, we get

P(v) e &"

~(r) = — dv

p" dI.F(0)/0 j e—'"
dv d(r. (AS)

da.

Co does not contribute to (A6).

7
C i= (9v' —63pv'+17Sp'v' —245p2v'+140' v').

13.440

The Fourier transform of I2(r) yields

where3e(&/I')(f/I)' (v —~&'1 (V —vl'
I
—+»I(2 jr4 (2) C-(v)dv

@„(o-)=22"
~ (C(v —~)/23' —~') '

(v—v)' 1 (v —vl' (v vl' 1-
+I I —,+ 4.

1 I+3I&2) The p,„(0) can be evaluated by quite elementary, if

rather lengthy, methods. When the results are inserted

1, I(
"

I

into (AS), we obtain for g. (0') the expression (13) of
r' ) r' J ( 2 i thetext,

With considerations analogous to those on formula 3ep/&2) (f/&)8 ~~& d&2

(10) one can see that G($)=P($+v) is the inverse F2e(q2)= p o"—'g„(0), (A7)
Laplace transform of the function 22r '

. & (2~)
' 0' +g ~—i


