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Geometry of Gravitation and Electromagnetism*
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(Received January 21, 1959)

An independent derivation is given of equations first derived by Rainich which show how, under certain
circumstances, the combined theory of gravitation and electromagnetism of Einstein and Maxwell can be
unified and described exclusively in terms of geometry. Some algebraic relations are presented between the
Ricci tensor, the electromagnetic field tensor, and their principal null vectors. It is shown that in regions
of space-time where the two invariants of the electromagnetic field both vanish, the unified theory cannot
apply. Either such regions do not exist in nature or their description in terms of pure geometry has yet
to be found. Advantage is taken of the correspondences between tensors and spinors to carry out most
of the present calculations in spinor space.

I. INTRODUCTION

HE general theory of relativity relates gravita-
tional eGects to the curvature of space. The

electromagnetic tensor has customarily been introduced
apart from geometry, the electromagnetic stress energy
tensor acting as a source of the gravitational field; the
electromagnetic tensor itself satisfying the Maxwell
equation generalized in conformity with the covariance
requirements of general relativity. Thus while gravita-
tion has been expressed as a geometric theory, electro-
magnetism has been coupled to geometry but with the
inclusion of an additional nongeometric element, the
electromagnetic tensor, for its description.

The desire to eliminate this dichotomy has been
perhaps the primary motivation behind the attempts
at producing a unified 6eld theory. Most of these
attempts have involved a generalization of geometry
from the four-dimensional Riemannian geometry origi-
nally used by Einstein to describe gravitation. There
is however a remarkable result first discovered over 30
years ago by Rainich' and rediscovered and discussed
recently by Misner and Wheeler' which shows that such
generalization is unnecessary. In regions where elec-

tromagnetism is the only contributor to the stress

energy tensor and where the electromagnetic field itself
is free of sources, one can replace the entire content of
the combined Einstein-Maxwell theory by a theory
which is purely geometrical. The new geometrical theory
follows as a consequence of the old accepted theories
of Einstein and Maxwell. If classical physics contains
only regions of the aforementioned type or regions of
this type together with line singularities in space-time,
then classical physics can be said to be already unified

and geometrized. Both the gravitational field and the
electromagnetic field are entirely determined by the
curvature of space-time.

The combined Einstein-Maxwell theory can be

*This research was supported in part by the Aeronautical
Research Laboratory.

' G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).' C. W. Misner and J. A. Wheeler, Ann. phys. 2, 525 (195'/}.
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written in the form'

Rob sg.sR—= fa.fs' 4gss f—.sf',
f s —0

fas, c+fsc, a+ fea, s

(1.1)

(1 2)

(1.3)

It has long been known and will be shown again ex-
plicitly in Sec. III that Eq. (1.1) above and the
existence of the contracted Bianchi identity R ",„=0
imply that only four of Maxwell's eight equations (1.2)
and (1.3) can be independent.

The form of the theory represented by Eqs. (1.1),
(1.2), and (1.3) can be called the nonunified form. The
equations however can be shown to be satisfied if and
only if the following set of equations are satisfied:

E=O,

R sR"=5 '(R ~"")/4
n„, —e „=0,

where o. is defined by4

(1.4)

(1.5)

(1.6)

In order to insure that the energy density is positive,
3 In the notation we are using, Latin letters take the four values

1, 2, 3, 0; the proper interval between neighboring points is
given by ds'=g, be'dx. In normal coordinates at a point the
metric tensor is diagonalized and takes the values —1, —1, —1, 1
at the point. (Our subsequent analysis will be carried out mostly
in spinor space; the equivalence between tensors and spinors is
written best with the above choice for the metric in normal coor-
dinates. } g will stand for the determinant )g,q( of the metric
tensor. R represents the Ricci tensor and is symmetric in its
two indices; E is the curvature invariant, R=R . A comma
followed by a subscript, such as, b, means covariant differentiation
with respect to xb. f,s =$2G&/c' jF,s, where—G is the gravitational
constant, c the velocity of light, and F b, the usual antisymmetric
electromagnetic tensor. In Qat space and Cartesian coordinates,
F12= the s component of the magnetic field; BIO= the x component
of the electric field multiplied by c; etc.

„and e ""' are covariant and contravariant totally anti-
symmetric tensor densities of weights —1 and +1, respectively.
They take the numerical values +1 when mnrs are an even
permutation of 1, 2, 3, 0. They cannot be obtained from each
other in the usual way by raising and lowering indices because
of the difference in weights.
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one must also impose the requirement

E.pp &0. (1.8)

The set of Eqs. (1.4), (1.5), (1.6), and (1.8) with the
definition (1.7) contain only the metric tensor and its
derivatives —solely geometric elements. If and only if
these equations are satisfied can one find an electro-
magnetic tensor which, with the Ricci tensor, will
satisfy the Einstein-Maxwell equations (1.1), (1.2), and
(1.3). Equations (1.4), (1.5), (1.6), and (1.8) can be
called the unified form of the existing theory of gravi-
tation and electromagnetism.

In his derivation, Rainich' regarded the tensor f b

as an operator for the transformation of vectors and
used a four-dimensional vector algebra to investigate
the two-dimensional elements which are transformed
into themselves. Misner and Wheeler' have given a
derivation of the unified form based on the introduction
of a new tensor having the same symmetries as the
Riemann curvature tensor. Misner and Wheeler have
discussed a space defined by Eqs. (1.4), (1.5), (1.6),
and (1.8) with the exclusion of all singularities but
allowing a multiply connected space-time manifold.
They have shown how the properties of such a space
lea,d to the concepts of gravitation, electromagnetism,
charge, and mass; but have not shown any natural
origin for spinors and fundamental particles.

From the electromagnetic tensor, f,b, one can deduce
two invariants, f bf'b and ( g)4 „.bf —"f" Afield in.
which both invariants vanish we shall call a null field.
If at least one does not vanish, the field is non-null.
(In flat space with familiar notation, the invariants
are E H and E'—H' A null fiel is one where both
invariants vanish, i.e., E is perpendicular to H and E
is equal to H.) The derivations of the unified form of
the Einstein-Maxwell theory are valid only in the case
of a non-null field and break down in the case of a null
field. Rainich has conjectured that a null field cannot
be physically realized, Misner and Wheeler have sug-
gested the possibility that the unified form may actually
describe the null field case as well as the non-null case.

In this paper we present a third and independent
and simpler derivation of the unified form of the
Einstein-Maxwell theory. We introduce a spinor space
at each point in space-time and exploit the relationships
that then exist between tensors and tensor analysis and
spinors and spinor analysis. The resultant derivation is
simpler than the other derivations in showing how to
construct the electromagnetic field f,b from the con-
tracted Riemann tensor R & when the equations of the
unified form of the theory are satisfied. The proof holds
only in the case of a non-null field just as do the others
referred to. The null field ca,se is also discussed. It is
shown that this case is fundamentally diGerent than
the non-null field case and that Eqs. (1.4), (1.5), (1.6),
and (1.8) are not adequate to describe the null electro-
magnetic field. It is shown that something new must

enter in the case of the null field and that in any case
a geometric theory will almost surely not be adequate
to describe a null field uniquely. Interesting relation-
ships between spinor equations and tensor equations
are exhibited for the null field.

The equations of the theory stated in spinor form
are of intrinsic interest. Moreover the spinor analysis
facilitates the derivation of connections between f,b

and certain vectors in space-time which we make. Some
of these relations have already been derived by Synge5
and Ruse. ' The connections between tensors and
spinors have long been known, Maxwell's equations
have been written in spinor forms, and Dirac's equa-
tions have been written in tensor form. However, in
this paper we actually use these known connections to
facilitate calculations.

The next section describes some relations between
spinors and certain types of tensors. Section III derives
the unified form of the Einstein-Maxwell theory for
non-null fields. Section IV contains some geometric
relations involving the contracted curvature tensor,
R,b, and the electromagnetic tensor, f,b, derived by
use of the spinor analysis. Section V contains a discus-
sion of the null field and discusses the essential dif-
ference between this and the case where the field is
non-null. Section VI contains some concluding con-
siderations.

gmasg . +g apgm. —2h m5 s (2.1)

The Latin index in g p can be lowered or raised by
using the metric tensor g „or g ". The Greek indices

cr, 8 can be raised or lowered by using the antisymmetric

b J. L. Synge, Principal Nni/ Directions Dejin-ed in Space Ti&ne

by an Electromagnetic Field, University of Toronto Studies,
Applied Math. Series, No. 1 {University of Toronto Press,
Toronto, 1935).

H. S. Ruse, Proc. Math. Soc. London 41, 302 (1936).
7 W. L. Bade and H. Jehle, Revs. Modern Phys. 2S, 714 (1953};

this paper reviews spinor analysis and has references to the
previous literature.

E. M. Corson, Introduction to Tensors, Spinors, and Relativistic
Wave Eqnaiions (Hafner -Publishing Company, New York, 1953).
Chapter 2 discusses spinor algebra and uses it in special relatively.
See page 32 ff. for the transcription from the dotted and undotted
indices used below to the more familiar four-component spinors.

v For Hermitean g's, the definition (2.1) is equivalent to the
more usual definition given in matrix notation by g *g"+g"g~*
= —2g ",where the asterisk denotes Hermitean conjugate matrix
(transpose and complex conjugate).

II. CONNECTION BETWEEN SPINORS AND
TENSORS OF CERTAIN CLASSES

Spinor fields have been treated in general relativity' '
from several diGerent points of view. We shall use 'the

notation of Corson~ and shall introduce spinors by an
analytic formalism. The spin matrices, g p, transform
like vectors with respect to the index ns and like spinors
with respect to each index ri,P (cr= i, 2; /=1, 2). We
use a representation in which the g matrices are
Hermitean, g"'s ——

g s (bar denotes complex conjugate)
and define' the spin matrices by
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TABLE I. The connection between certain types of tensors and spinors.

Tensors

xm (real, arbitrs, ry)

y {real, null)
zm (complex, null)

Tmn (real, arbitrary)
T~n (real, symmetric)
T „(real, symmetric, zero trace)

co,„n I'self-dual, antisymmetric)
„(self-dual, antisymmetric, null)

Spinors

@ p Hermitean

4a
4a, 0a

ph)t'tPv . phpPv, I,Pvay

paPPv. ,(,hPPv, I,Pvap, f,hPPv, l,ghvP
p Y

phPPv. phd'tPv pPvap phPPv p/ihPv

phPPv phd vP

@ p symmetric
ya

Connections

( +ma =gmasgnaA'
phppv x„mhp npvT= gg g ~rin

g p g
. pap pap xgnbpagn. p

fundamental spinors ehp, e p, ehp, e"p which are equal to
0 when n= p, and equal to +1 if ex=1, p= 2, and equal
to —1 if a=2, P=1.

By use of the spin matrices g p one can make eor-
respondences between tensors and spinors. Sometimes
these correspondences are one-to-one and sometimes
not. Table I summarizes the correspondences we shall
need in the rest of this paper. One sees in this table, for
example, that a first re spinor determines a null
real vector uniquely but that the null vector determines
the spinor only up to a phase factor.

Table I includes a correspondence for the self-dual
antisymmetric tensor, &e „. If f,& is antisymmetric, its
dual fc" is defined by

gab rg ~c abc—cia (2.2)

/ r)gbm r)gcm r)gbc l&'b—= sg I +
( r)xc rlxb rlx )

(2.3)

The tensor oi,b= f,b+f,—b is self-dual in that oi,b=oi, b

The antisymmetric real tensor f,b gives rise to two
invariants f,bfab and ( g)4„„.ifmnf—"; the self-dual
antisymmetric tensor cu, b constructed from f,b also
gives rise to two invariants o.,go b and co b~'b. It is
readily seen that ~,bee' =0. If the invariants con-
structed from ~,b both vanish, we call co,b a null self-dual
antisymmetric tensor.

In order to permit covariant differentiation of
spinors, it is necessary to introduce a spin connection,
I"p, in addition to the ChristoRel symbol F'b, . The
Christoffel symbol is defined by

AVith the above choices of connections g ",„=0;
g p, „=0; e p„=0; the covariant derivatives of all g
tensors and spinors as well as of e spinors vanish.

III. DERIVATION OF UNIFIED FORM OF
EINSTEIN-MAXWELL THEORY FOR

NON-NULL FIELDS

In discussing the Einstein-Maxwell theory, we shall
find it convenient to construct from the electromagnetic
tensor f,b, the self-dual antisymmetric tensor oi b f,b-—
+f,b The com. bined Einstein-Maxwell theory equa-
tions (1.1), (1.2), and (1.3) can be expressed by

ab ~gzbgv arab q
(3.1)

(3.2)

Equation (3.1) is the stress-momentum-energy equation
of gravitation and (3.2) are Maxwell's equations.

Let us first consider Eq. (3.1) and see how it can be
geometrized.

TheO~em 1: E. b
——,'g bR=cv. ,cob' implieS R—=R =0.

Proof: +„cv '=0; hence the theorem follows.
'lheorern Z: E b

—-'g bE.=or,cob' implies

nection I'"p with undotted indices, the complex con-
jugate 1 "p =—I'

p with dotted indices; a plus sign goes
with contravariant indices and a minus sign with
covariant. Thus, to take a typical example, the covari-
ant derivative of g p is

gm. —ggm. /QXn+pm pc.
pa. gm. pa gm. (2 5)

The Fap„, can be defined" by ga gb ga (g ~mn)/4 (3.3)

Proof: From Table I, we recall that there is a symmetric
(2 4) second-rank spinor g "e such that

(3.4)
This is not the Inost general spin connection that can
be dined but it is good enough for our purposes.
Covariant derivations of spinors and tensor-spinors are
formed according to the usual rules: the ChristoBel
symbols are used with tensor indices, the spin con-

.'o See, for example, H. S. Ruse, Proc. Roy. Soc. Kdinburgh 57,
97 (1937).

For a symmetric second-rank spinor one has the relation

(3.5)

inserting (3.3) into . (3.1) with R=O and calculating
E bR~. , the theorem follows immediately after the
application of (3.5) and the definition (2.1).
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Lemma 1:R'bR, =PQ „Rm"/4 and R=0 imply the
existence of a pap such that R,b

——2g & gb„pjtl~jtl" „'
Proof: E. „is a real symmetric tensor with vanishing

trace (R=O), and can consequently (see Table I) be
expressed by a fourth-rank. spinor as

~ ~

Rmn= gmhPgnjivg (3.6)

PajiPv 1 (PajlXPv+Xh@Pv) (3.7)

The lemma will be proved if it can be shown that rela-
tion (3.3) implies that XPP is proportional to PP. Using
(3.6), (3.7), the relation

g apgm jv 2&0;y&pv) (3.8)

with p'P'p"=p"' p and satisfying the symmetry require-
A fourth-rank spinor satis-

fying these conditions can always be expressed by two
symmetric second-rank spinors,

this type can be written

jdmn =gm"agape (3.13)

There is one ambiguity which must be cleared up.
The equations R=O and R'bRb, =t'1 Q „R "/4 clearly
do not determine the sign of the various components of
E „. If E „satisfies the above relations, so also will

Clearly however only one choice of sign will be
consistent with Eq. (3.13). (qP'p" must be positive,
for example. ) A criterion to choose the proper sign can
be deduced from the stress-momentum-energy equation
(3.1). The value of Rw at a point is equal to minus the
energy density at the point. Consequently Zoo must
be negative. This can be seen also from Eq. (3.11).
In normal coordinates (gii=g22=g22= —1; goo=1;
g,b=0, ahab) at a point, a representation of g, p can be
given by the four matrices

and the symmetry of pap and Xp", one finds readily

vP+X ~'Q Q"PXPP= —p"apaQ ~ 'XppX fpii (3 9)

By virtue of
Q~Xpp+pppX. p = pa~pXp»

(3.9) can. be rewritten as

hXv a&alp Xa.p+Xvg li[ X.Qi ji: f hXvp].
=-'a"'

p "tt ppPPX X"" (3 10)

t'0 1q
gi-p=

&1 Oi

(0 i) (1 01
g -p=[ . I g -p=[E-'0) 0»

With this representation, Eq. (3.11) gives Rpg as

2 [yllyll+ y22y22+ 2y12y12j

(3 «)

(3.15)

This relation can only be satisfied if the second term
on the left-hand side vanishes or is antisymmetric in
the indices 0. and X. Either requirement makes X"&

proportional to pap and this term must vanish. This
proves the lemma. AVe are now in a position to state
and prove Theorem 3.

Theorem 3: If R=O and R'bR =8'+ Rm"/4 one
can give a prescription to find a self-dual antisymmetric
tensor, cv, that satisfies E,~

—~g,~R= ~~,co~'. or~„ is not
uniquely determined; from an co „which satisfies the
requirement of the theorem one can generate a family
co' =e"~ „which satisfies the requirements of the
theorem, 8 being an arbitrary real function of space and
time. This lack of uniqueness is obviously necessary
from the character of the energy equation, (3.1), which
can only fix co „up to an arbitrary phase factor.

Proof of Theorem 2: From Lemma 1, there exists a
symmetric spinor p p such that

Consequently,
Epp (0. (3.16)

Two points summarize the results found so far: (1) If
R,b

—-' g,2Rb= j&pu ', bthen R=O, R'bRb, =ha,RmnR „/4,
and Roo &0; and (2) if the latter conditions are satisfied,
one can find a family of co

' of the form co e", where
0 is an arbitrary real function of space and time, which
satisfies E,~

——,'g, ~E=cv',co'~'. The way to find this
family of tensors has been explicitly exhibited.

So far no mention has been made of Maxwell's
equations (3.2). It is obvious to ask now whether one
can choose 0 so that these equations are satisfied. From
(3.16) the question is whether one can find a 8 such that

~vmn —gmji gn. yap &jp+bgmp.
'

gn. gap&jbe —0

Multiply this expression by g „Pg'"'bp„b and use (2.1) to
get

ab 2gahpgblivg (3.11)
&grh gn. g yvp@ p+grh gn. ~vp y p 0

This can be inverted by multiplying by g'&"g~"'",

yvtiyPv 1gaPvgbvtiR
&g. Pg "P'A'4l'4 "PA', p'—(3.17)

From Eq. (3.12), by choosing KX=pv one can get the
square of the moduli [qP [' [qP [' [qP2[2 by choosing
jjXWpv, one can get relative phases. (3.12) can ob-
viously only determine p p up to a phase factor. p p

being so determined, one has a family of tensors ~ „
determined up to a phase factor. The general tensor of

24 PA "4pA""

This can be satisfied for real 8, if and only if P„, —P, „
=0 and P =Pa„v. The question to be settled is whether
or not there is a geometric relationship which is satisfied
if and only if Eq. (3.17) is satisfied.

With the aid of (3.5) and (2.1), this can be solved to
yield

(3.12)



LOU IS WITTEN

Consider the vector

&g &mnrs~"'"Ra'

R,fR'f
(3.18)

We have already shown how to find co „ from the
energy equation up to a phase factor 8 which is a
function of space and time. Equations (3.17) and (3.29)
tell us that

An easy calculation shows the two relations

(3.19)

gr, ysp gvjl gr. yspyvti (3.27)

Using (3.6) and the Bianchi identity (3.32) one can
now readily show that

—»g 'g"p 4" 4 '4 ~4""

=8'g-'.g"-.4""4 ', 4.4"" (3 28)

Now from (3.25), (3.28) and the definitions of n and
p follows immediately

~-=p-+(~/4)Dn(e""4. i/W" e.') j,- (3 29)

So p, „—p, „=0if and only if

&n, m, 0'm, a= 0 (3.30)

This proves theorem 4, which is now stated.
Theorem 4: If the Maxwell-Einstein theory LEqs.

(3.1) and (3.2)j is valid, then

R=O; R g', =6'g""R /4 ROD&0.

GnmcKm, n= 0, (&n= &g &mnrsR ' Ra /RsjR ) ~

If the latter relations are satisfied, then there exists a
self.-dual antisymmetric tensor, ~ „, such that the
Maxwell-Einstein theory is satished.

Rna, rR s —4gna gs. py X,sr' ~ . .~jiv

+4gn. pgs ~ yjsa, ry. py „ps' (3 20)

Recall the following two spinor relations (see Corson, '
p. 20):

gmPagnpn=gmn&ais+pg ~&mnaiig Pag pssv (3.21)
1

gma gnjip gmn&ap kg &mnaivg a g jip (3'22)

Use these to find

E=— ig 4mnrs—R"' 'R, '= Sig—a,g" ),gys g "y stsP""

+8+ mg pia@j+ivSlg mg ps4 Q Q xQ

(3.23)
DiRerentiate (3.5):

ps' y s+ysiy s &Xayap y (3 24)

Use this in (3.23) to obtain

8&g —sg" O' A;4A"" 84—m4au4, p@""
—S~g 'g pA" 4 ' "4 ~4""+SW' 4 4 ~4" (3»)

The Bianchi identity R ", =G in spinor notation takes
the form

g p "„g(qsP'P ), „=0. (3.26)

DiGerentiate, multiply by g ", to get

(3.31)

Consequently if 9 is known at one point, I', in space-
time, its value at any other point, I', in space time is
given by a line integral

P' -ysXy — P'

n dx 'i—ln-+sj. (3.32)
-4&p'4""- p

gn ~

y pi yjiP 0 (3.34)

The set of Eqs. (3.34) and (3.33) are each four complex
or eight real relations; moreover they are equivalent
to one another. To see this equivalence, note that it is
already shown that (3.33) implies (3.34); that (3.34)
implies (3.33) can be seen by multiplying (3.34) by
g „„P"'„andusing the antisymmetry of PPPqVp in P and i
Note that this equivalence is not true for the null field
for which p"'P can be represented by st"'pP and conse-
quently ppppp"'p„=O. The contracted Bianchi identity
has the form

Rmn 0 gm. gn „(ypaysX)

Multiply by g», to get

o= g"p e'" i-W"+g"pi4PP.I'" (3, 35)

When p=1, @=1;or p=2, @=2, the Eqs. (3.34) are
purely complex by virtue of (3.35). p=1, @=2 gives

The geometry thus determines Maxwell's field almost
uniquely; the only arbitrariness is the value of 8 at an
arbitrary point in space-time which can be arbitrarily
given. It is worth noting that this arbitrariness already
exists in the nonunified description of space and time.
For if ~ " and R " are two tensors that satisfy Kqs.
(3.1) and (3.2), one can create from this solution a
family Of SOlutiOnS giVen by &om"e" and R ". Here S
is a constant, independent of space-time.

The analysis leading to theorem 4 does not hold in
the case of a null field for which R gR =0.For a null
field the self-dual antisymmetric tensor, co „, can be
represented by Eq. (3.4) with paP reduced to the bilinear
product of a first rank spinor p"p=p pp. Consequently
Eq. (3.5) does not hold since p pp~n=pappsfsnpp Oby-—
virtue of the fact that gP&p=0. The null field will be
discussed in greater detail later.

No use has been made in the above derivation of the
fact that by virtue of the contracted Bianchi identity,
only four of Maxwell's eight equations are independent.
However, the remark is so readily proved in spinor
notation that it is presented here. Maxwell's equations
take the form

~mn gmh gn. „y k s—0 (3.33)

'MultiPly by g P gPPs, giving
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the same real pair of equations as p=2, p=1, again by
virtue of ' (3.35). Hence Eqs. (3.34), the Maxwell
equations, contain only four independent equations
because of the contracted Bianchi identity. This proof
is not complete for the null-field case by virtue of the
remark that (3.34) does not imply (3.33) for this case.

0'= 2 (xV'+4"x') (4.1)

ttt»e has three arbitrary complex components; z» and t/e

have four, two from each spinor, so that one of the
four components can be arbitrarily chosen. From x
and Pe four vectors can be formed:

l. 1, u~m Q gmAKQ

/m ggm»nfl t

ptn 2gm»KQ

Pm= ggmattg ~ ~

(4.2)

k and / are real vectors, p and p are complex and
the complex conjugates of each other. All four vectors
are null and each is orthogonal to two other vectors.
The only nonvanishing scalar products that can be
obtained from these vectors are

/"k = —p p =-',AA; A—=t/. x . (4.3)

The rays determined by the four vectors (4.2) are
uniquely determined by (4.1). A new choice of the free
component will merely multiply all components of any
one vector by a factor and may change the naming of
the vectors.

+ „can now be expressed as

+mn 2gtn g tA(xnann+x (/ )
2 gtnttvgnvX @ (4 4 + I/ X )' (4'4)

But e&"'= (XQ"' X"'t/vn)/X t/v'. COnSe—quently,

2A~-= -.g. ~g(x"0"—xV) (xV"+x"0") (4 5)

This can be expanded, using (4.2), as

(u „=2(/nk„-k„/„+p„p. p„p,)/A. (4.—6)

"See reference S. See also J. L. Synge, Relativity, The Special
Theory (Interscienee Publishers, Inc. , New York, 1956), Chap. IX.

IV. SOME GEOMETRIC RELATIONS INVOLVING THE
RICCI TENSOR R„,„AND THE ELECTRO-

MAGNETIC TENSOR

By use of spinor analysis, one can readily derive
some geometric relations involving the tensors E „and
w „and their expressions in terms of null vectors and
of principal vectors. Some of these relations will now
be derived. Proceeding in this direction, one can also
readily obtain the connections already found by
Rainich, ' Synge, "and Ruse. '

The key to these possibilities is that one can express
the symmetric spinor g e of the second rank, which
determines co „and E „, by means of two first rank
spinors, y and t/v».

In this expression co „ is a complex tensor; l, , 0 are
real null vectors, p„ is a complex null vector with p
its complex conjugate; and A is a complex scalar.

One can now show that

mn — 2/ 2 (4.9)

In the case of a null field, A=O, and the above
analysis breaks down. The null field will be discussed
again later in Sec. V.

The relationships between the null vectors, the com-
plex scalar A, E ", and co "can be rewritten by use of
a readily established spinor relation )multiply Eq.
(9.1g) of Corson' by g„„,j:
g /itrg t'p=g /'tpg

'
g &t'/Jt&trp l- g ppg t'tr

l. m, l. q al .. m l. m.

g )emnvtg„. —g, (4 10)
This and (4.2) lead to

2pmpn /mknykn/n &gmnAA g kemtnftk~/( —(4 11)

Consequently,

~mn —2(/mk k /m g te "'kk/t)/A, (4.12)

Rmn AAgmn 4(/mkn+km/n) (4.13)

This means that ~ " and R "are completely determined

by two real nn// vectors and a complex sca/ar; moreover
by the previous work the two real vectors and the comp/ex
scalar are comp/ete/y determined by R „and su . Again,
in the case of a null 6eld, A =0; y =t/v; and all four
null vectors (4.2) degenerate into a single real null
vector.

For the non nl// case, -ap" and R " can be represented

by means of the comp/ex nell vector p" and the comp/ex
scalar A. From (4.11) and (4.2).

2km/n. —77mpn+ 2gmnAA+ pmpn Lg $&mtnkp~p (4 15)

R =(o„,&o = 2(p—p„+p p„+/ k„+k /„f. (4.7)

Equations (4.6) and (4.7) show that the contracted
cnrvatgre tensor, R„„,is completely determined by fogr
nell vectors, two real and two complex; and that the elec

tromagnetic tensor, ca „,is comp/ete/y determined by these
same nell vectors and a comp/ex scalar. The work of the
preceding sections shows how to find these null vectors
and the scalar from E „and co „.Define k to be a
principal vector of &o „ if ~ "k„ is a scalar multiple, P,
of k . Then the four vectors (4.2) are principal vectors
of R and co „.Using (4.15), (4.16), (4.3), (4.4), (4.5),
and (4.6), one gets immediately

~mnP — g Pm gmnP — g +Pm

~mn) —g )m gmn$ — g g)m
(4.8)

~mnp A—pm Rmnp —AApm

otmnp —A pm Rmnp AApm

Moreover the complex scalar 3 is related to one of the
complex invariants of the electromagnetic field and A
to the other,
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Consequently

~""=2(P-1- 1—-J -+g '~-'"'P~S i)l~, (4.16)

Rmn — 4 (gmng g+pmpn+1impn) (4.17)

V. A DISCUSSION OF THE NULL FIELD

A null field has been defined as one in which the two
invariants of the electromagnetic field (often repre-
sented in flat space as E'—H' and I H) both vanish.
In the notation of this paper a null field is one in
which the complex scalar iP „rum"=~ „Mm"=0. We
recall from Table I that for a null field

~mn= gm Ngnaig 4'cr . K

A null Geld is the special case of a non-null Geld in which
the spinor p"" can be written as gPp". For a null field,
Eq. (3.11) still holds for R,b with the understanding
that y.ti=y.qP:

Rnt = 2qn ng~ji4 "4 "4~4 (5 2)

Consequently for a null field, R'&R', =0, since P P =0.
For a null field, the theorems and lemmas of Sec. III
which still apply take the following forms:

Theorem 1:E ~
——,'g,bE=co,co~' implies E=O.

Theorem Z': Rat,——
2,gapR= ~a.~~' for a null field implies

E.'gR', =0.
Lemma 1': E'&E',=0 and E=O imply the existence

of g" such that R ~ 2gJ'——„gi,„iqVqPQ"P„
Proof: 3y Lemma 1, R,t, 2gJ'„g&„i,p'"p"'„, ——Any

second-rank symmetric tensor can be written in the
form of Eq. (4.1), pn&=2i(pnps+p qP). Consequently

the proof given for 'I'heorem 4 completely breaks down
in the case of a null field. We will now give some con-
siderations that show conclusively that Theorem 4 does
not hold for the null field.

The question is whether the arbitrary 0 alluded to
after Theorem 1' can be picked so that cv „satisfies
3~1axwell's equations, a& ",„=0.From Theorem 1', a g
has been found such that

~mn —gmP gn. ynyiei8

Can 0 be chosen so that

~mn —gmli gn. L(ynyi) +,~nyXg $ 0

Ivlultiply by g,„„„to obtain

Equations (5.5) are a set of four linear algebraic
equations for the four unknown variables 0,„.In order
that a set of linear algebraic equations be consistent
it is necessary and sufhcient that the rank of the deter-
minant of coefficients be equal to the rank of the
augmented matrix. If the set of equations is to yield a
unique solution for the four variables 0,„, it is necessary
and sufhcient that the rank of these matrices be four.
Examining Eq. (5.5) at a point in space-time using the
normal coordinate system with the special spin repre-
sentation at this point given by (3.15), one sees readily
that the determinant of coefficients is of rank 2 but the
rank of the augmented matrix is 3. The rank of the
augmented matrix can be reduced to 2 if and only if
the following spinor relationship (5.6) holds:

0 "g"".4i4", =o (5.6)

The lemma is proved if it can be shown that pn must be
proportional to P . A straightforward calculation shows
that

When a=c, the expression can be equal to zero only if
is proportional to t( . This proves the lemma.

Theorem O': If R=O and E'bE~, =O, one can give a
prescription to find a self-dual antisymmetric tensor,
mn that satisfies Eab g gag~ a~& ~ co is not
uniquely determined; from an co which satisfies the
requirements of the theorem one can generate a family
co' =e"~„„which satisfy the requirements, 0 being
an arbitrary function of space and time.

Proof: From Lemma 1', R,b= 2g „,gg. &,qV&"gP'qP. —
Inverting this gives

yK@x~yv & gaPKgbv) g
This will determine p up to a phase factor exactly as
in the non-null case. ~ „ is then given. by Eq. (5.1);
again however Rpp(0 is necessary. So far the results
are in direct correspondence with the results of the
non-null case. However as was pointed out in Sec. III,

Consequently it has been proved that the 0 „can be
described by Eq. (5.5) in an algebraically consistent
way if and only if gPg'"'„phd", ,=0. In this case 8,„ is
described not uniquely but with two arbitrary param-
eters.

Contrast this with the case for the non-null field
where Eq. (5.5) is replaced by

0—gnjj; (y i y~y Xg )

and gni' cannot be represented by p p~. In this case it
is readily shown that the rank of the determinant of
coeKcients of 0,„ is equal to four. So 0,„ is consistently
and uniquely determined by the algebraic equations.

Thus Theorem 4 cannot be applied to the null field
for at least two reasons. Firstly Eq. (5.6) is a necessary
and su%.cient condition for the existence of 0 „ in the
null case; but (5.6) cannot even be given meaning in
the non-null case. Secondly, if Eq. (5.6) holds; 8, is
still not uniquely determined, by (5.5); there remain
two arbitrary parameters. The null 6eld is thus funda-
mentally di8erent from the non-null field.

We have not succeeded in 6nding whether a geometric
condition exists which is a necessary and sufIj.cient
condition for (5.6). Nor have we shown, if (5.6) is
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satisfied, that Eqs. (5.5) looked on as differential equa-
tions for 8, are integrable.

It has already been pointed out that for a null field
the four vectors (4.2) degenerate into a single null
vector, k . From (4.8) one can say that for a null field,

(5.7)

I'his also follows immediately from Lemma 1' with
k =-',g g'Ps. Equation (4.6), in the case of a null
field, approaches an indeterminate form in which the
numerator and denominator both vanish. One can,
however, find an expression for a null Maxwell field
reminescent of (4.6):

~mn —gmi4 gn. &y~yX gm. g—n.&&niy~yX

Let P be an arbitrary spinor not proportional to g';
then

gJtL& — & P p, A

~mn —gm. gn. ~(@x@iyipP pv~ynyi)/(y. pa)

every individual component II, must vanish. Con-
sequently these statements follow:

1. The validity of Maxwell's equa, tions, co ",„=0,
and of the two-component spinor equation, g"„&,it ", =0,
implies the validity of the geometric relation

R' ~'" =0

The same relation follows if the two-component spinor
equation is replaced by the less restrictive equation

g."Q g",&Q",.=0.
2. The validity of the two-component spinor equa-

tion, gn„i,p",„=0, and of the geometric relation,
R „, E"",,=0, implies the validity of Maxwell's equa-
tions, ~ "„=0.Again it is suQicient to satisfy

gm"aQ g ad",n=0

instead of the two-component spinor equation.
3. The validity of the geometric relation

R' ~n, =0
1

Now call
(5 8)

(5.9)

and of Maxwell's equations, cv ",„=0, implies the
validity of g„&i,gag"np", =0.

R' ~"" =0 (5.12)

Define the vector H„,=i' Qa . From (5.4) one can
deduce

R'„, R'",,= —8R "(k„, k",,). (5.13)

Moreover from the definitions of k„and H,
k,„k"„= ', (H H, +H,H ). —-

Consequently

(5.14)

M"" =4(HM, +H.H )R". (5.15)

H H=0 it follows that R „,~""„=0.Conversely, if
H~, +H,H =0 for all nz and s, it is easily seen that

The vector l" is complex, null, and orthogonal to the
real, null vector, k„. Moreover l t = —1.. For a null
field there exists a real, null, uniquely determined vector
k, and a family of complex null vectors /, with the
properties 1 l =0, l l,= —'1, 3 k =0, such that
~mn —,2—n()mkn )mkm)

There is a curious relationship involving the null
field, ~, the two-component spinor, Q, which it
determines, and a geometric equation involving R
Recall first the two-component spinor equation which
has recently been given prominence in regard to neu-
trino theory,

(5.10)

Differentiating the expression a&,„"=g,„n„g"„i,it"pi, and
using the de6nition of spinors (2.1) will yield

~mn —2gmn~yxgn yk +2y ya, m . (5 11)

Now we proceed to prove that p p, =0 if a,nd only if
the following geometric relation holds:

VI. CONCLUDING REMARKS

A considerable effort has been expended in recent
years in developing a quantized theory of general
relativity and in developing a classical unified field
theory. It has been shown here, as has already been
known, that, if the only fields of nature are gravita. -
tional and non-null electromagnetic, the existing theory
can already be described in a unified geometric way.
Consequently, attempts at finding a diferent unified
theory may be superfIuous. On the other hand almost
all the work that has been done towards quantizing
gravitational theory has dealt with gravitation in the
absence of other fields. One would guess however that
the interesting features to be learned from the quan-
tization, if indeed there are any, would arise from the
interaction between the gravitational field and other
fields. It is consequently crucial that this interaction
be treated in the proper way. In considering the inter-
play between the gravitational and electromagnetic
fields, one might suppose that the proper theory is a
quantized version of the unified field theory described
in this paper rather than an independent quantization
of the gravitational and electromagnetic fields. How-
ever, one does not know how to proceed, even in the
most vague way, to quantize the unified field. This is
because the theory has not been derived from a varia-
tional principle. A Lagrangian function for the theory
has not been found, nor has a Hamiltonian density
function. The known techniques for quantization are
thus not applicable to this theory as its present stage
of development.

Another interesting rema, rk is that the unified field
contains partial differential equations of the fourth
order. With few exceptions, one of the latest of which is
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that of Lanczos, " all of the attempts at developing
unified field theories have dealt with second-order
theories; this was because the basic field equations of
mathematical physics apparently did not surpass the
order two. This constraint should not, apparently, be
taken so seriously as it has been in the past. A com-
paratively simple Lagrangian might be found, from
which a variational principle will lead to a fourth-order
theory very close to the uni6ed theory here presented.

In addition to the major unsolved problem of quan-
tization some other issues remain in the already unified
theory. One is the question of null fields. It may be
that the existence of physically interesting null fields
is altogether denied by the Einstein-Maxwell theory.
If so one should like to see this remark precisely stated
and proved. It may be however that the possibility of
having null fields, which are regions in space-time where
the already uni6ed theory breaks down, is trying to tell
us something very important. The unified theory breaks
down at particle-like singularities and also at null

' C. Lanczos, Revs. Modern Phys. 24, 337 (1957).

fields; can there be some still mysterious connections
between these two regions of breakdown?

It is also unexplained why no magnetic charges are
seen in nature. If one charge is arbitrarily called
"electric, " do the purely geometrical equations of
already unified theory automatically guarantee that all
charges are electric? Or is this a separate postulate to
be added to the theory?

It is probably true that in no four-dimensional region
of space-time is the electromagnetic energy density
identically zero. It is therefore conceivable that in
principle one should always deal with the equations of
the unified field and not with the case of pure gravita-
tion. Should not one allow only those solutions of
Einstein s equations which are limiting cases of solu-
tions of the full set of the unified Einstein-Maxwell
equations? Does this requirement limit in any way the
solutions of Einstein's equations of pure gravitation
which are physically meaningful? Or might it not
assist in reaching an understanding of gravitational
radiation?


