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Vibration Frequency Spectra of Disordered Lattices. I. Moments of the
Spectra for Disordered Linear Chains*
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By using the theory of random walks on lattices, a combinatorial expression has been obtained for the even
moments of the vibrational frequency spectrum of a randomly disordered, two-component, isotopic linear
chain as functions of the concentrations of the two kinds of particles and of their mass ratio. Expressions for
the even moments up to II~0 are presented.

1. INTRODUCTION

~CONSIDERABLE progress has been made in the~ theory of the vibration spectra of regular crystal-
line solids in recent years. Exact information is available
regarding the nature of the singularities, ' exact calcula-
tions have been carried out for simple models' which
illustrate how these singularities arise in one, two, and
three dimensions, and high-powered computational
methods have been developed when exact solutions are
not available, ' However, the methods used for deriving
those results are intimately connected with the perio-
dicity of the crystalline solids, and cannot be applied to
solids containing impurities, or to mixed crystals. For
this latter class of problems much less exact information
is available, and no practical computational methods
have been developed to enable spectra to be calculated.

For lattices containing isolated impurities Montroll
and Potts4 developed methods for determining the fre-
quencies of the localized modes. They applied these
methods to one-, two-, and three-dimensional models,
but did not deal with finite concentrations of impurities.

The problem of calculating the frequency spectrum
of a lattice containing isotopes of diferent masses in a
finite ratio of concentrations is quite formidable mathe-
matically, even in one dimension, and has excited some
theoretical attention.

In 1953 Dyson' considered the problem of a linear
chain of atoms of arbitrary masses connected by arbi-
trary spring constants. Making certain assumptions
about the probability distributions of masses and spring
constants, he obtained a formal solution for the fre-
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quency distribution function as a solution of an integral
equation; in the case of practical interest of a random
mixture of two isotopes of diGerent masses, this reduces
to a functional equation. Although Dyson states that a
moderate amount of numerical work should provide an
estimate of the spectrum for any ratio of masses and any
concentration, it seems to us that he has underestimated
the computational difhculties. We were unable to make
use of his results for practical calculations. Similarly, the
subsequent papers of I.ifshitz and Stepanova, ' Schmidt,
and Hori and Asahi, ' although they contain features of
considerable mathematical elegance, do not seem to
provide a basis for practical calculation of spectra. A
more detailed account of these approaches has been
given in a recent review article. '

The methods of Montroll and Potts' depended on the
expression of additive functions of the frequencies as
contour integrals. Recently some of us attempted to
apply this approach to random mixtures of isotopes, and
the results of this investigation have been described
elsewhere. "We developed the properties of the random
mixture as a perturbation expansion in powers of the
deviation from a "mean" mass, and we were able to
derive several results of physical interest. The perturba-
tion approach is useful in the long-wave region of the
spectrum, but cannot be applied to short waves, and the
method thus cannot be used for the complete determi-
nation of spectra.

In the present paper we have used the method of
moments to provide an approximation to the vibrational

frequency spectrum. This method was first used by
Montroll" in connection with vibrations of homogeneous

6 I. M. Lifshitz and G. I. Stepanova, J. Exptl. Theoret. Phys.
U.S.S.R. 30, 938 (1956) Ltranslation: Soviet Phys. JETP 3, 656
(1956)g.' H. Schmidt, Phys. Rev. 105, 4025 (1957).' J. Hori and T. Asahi, Progr. Theoret. Phys. (Kyoto) 17, 523
(1957).' A. A. Maradudin and G. H. Weiss, J. Soc. Indust. Appl. Math.
6, 302 (1958}."G. H. Weiss and A. A. Maradudin, J. Phys. Chem. Solids 7,
327 (1958).

» E. W. Montroll, J. Chem. Phys. 10, 218 (1942); 11, 481
(1943).
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lattices, and a preliminary account of its application to
the random chain was discussed in a recent paper. "We
have now developed a more powerful technique for
evaluating the moments and have consequently been
able to calculate all even moments p2„up to n=10 for
a linear chain. Certain asymptotic properties of these
moments have enabled us to discuss the behavior of the
spectrum at its upper end.

In this paper we describe the method used for the
evaluation of the even moments of the vibrational fre-
quency spectra of a disordered linear chain.

The techniques which we have developed should also
be applicable to two- and three-dimensional models, and
we hope to deal with these applications subsequently.

In- a recent paper Pirenne" has described a general
theoretical approach to this problem using the method
of moments. His method seems to be a perturbation
expansion in terms of deviations from a mean mass.
Since he has not yet applied his theory to detailed
calculations, we have been unable to compare his results
with ours.

2. MOMENTS OF THE SPECTRUM. USE OF THE
RANDOM WALK PROBLEM

The equation of motion of the pth atom, in a linear
chain of X atoms, is given by

fB&lL&= ap y—(N& Q& y—)—a&(Q&—B~y)
=a& yQ& y

—(a& y+a&) Q&+a&s~y (.1)

Here m~ is the mass of the pth atom, u„ its displacement
from equilibrium, and n„ is the spring constant between
the pth and (p+1)st atoms of the chain. We assume
that the atoms are joined in a ring, so that the Sth atom
is connected with the first. The secular equation which
determines the normal mode frequencies of the chain
can thus be written in the form

~A —a)'I~ =0,
where A is a Jacobi matrix whose elements a„, are all
zero unless p equal q, q

—1 or q+1. Montroll's method of
calculation" consisted in determining P ru', P co4, P co',

, the sums being taken over all normal modes, from
the relations

Trace A=+ &u'

Trace A'=P co4

Trace A'=P co'.

There was little point in using this method for a one-
dimensional homogeneous chain, for which an exact
solution is readily obtained, but in two and three
dimensions it rapidly and easily provided useful infor-
mation on the form of the spectrum. Montroll did not
use the original secular matrix of order X (=number of
normal modes); taking account of the cyclic boundary

'2 Maradudin, Mazur, Montroll, and Weiss, Revs. Modern
Phys. BO, 175 (f958)."J.Pirenne, Physica 24, 73 (1958).
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FIG. 1. Typical graphs for one-dimensional random walks of six
steps which return to the starting point.

(o)

FIG. 2. Condensed graphs for the same six-step random walks
shown in Fig. 1. Each line in these graphs now corresponds to a
doubled step.

'4 M. Born and K. Huang, Dylamical Theory of Crysta/ Lattices
I'Oxford University Press, New York, 1954), Chap. II.

condition, he decomposed this matrix into submatrices
corresponding to diferent directions of propagation in
the crystal, following the standard treatment of Born."
This decomposition is no longer possible for a disordered
lattice, and we must revert to the original secular matrix.

If we now consider the trace of A", it consists of the
sum of all e-cycles a»»a&2&3 a»p&, where P&, P2,
p„ take on all 1V possible values. However, since a~, = 0
unless q

—p=0, +1, only a small fraction of the X"
terms will be nonzero, and any nonzero term can be
represented by a graph on the linear chain: a»+j is
represented by ~, a~ ~& by ~, and a» by ~. Typical
graphs for 6 cycles are shown in Fig. 1.It will be readily
seen that each nonzero graph corresponds to a random
walk on the chain, in which each step consists of 0 or+1
units, and in which the walker must return to his
starting position after m steps. For each graph it is easy
to write down the corresponding term in trace A";
thus in Fig. 1 for (a) it. is a„„'u~~ ~Pa~ ~~a~~ „,
for (b), ay cy+j p+]py p+], Gp+], and for (c),
a~, ~,a~2 ~,a»a~2 ~,a„~,u~». For any particu-
lar set of masses and spring constants we must sum over
all types of graphs corresponding to n steps, and over all
points p of the chain.

When the atomic masses and spring constants are
independent random variables, a considerable simpli-
fication arises. All points of the chain are equivalent,
and the terms corresponding to each graph are replaced
by stochastic mean values, each o.„,no~ ' being an inde-
pendent random variable. These mean values can
readily be determined for any graph in terms of the
moments of the m ' and n distributions. From Kq.
(1) +nn (ay-&+ay)l™ oy y-& a9 &Iris and o17 @+1-
=a„/m„. We shall denote the sth moments of the m '
and 0. distributions by v, and p„respectively.

The graphs can be considerably simplified by drawing
a single line to correspond to a forward and backward
step, since any such step must be traversed in both
directions for the random walker to return to his
starting point. The resulting graphs then appear as in
Flg. 2.
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A simple recipe can now be given for writing down
mean values. For the terms in m ' each dot, and each
end of a line, should be replaced by m„' at the appro-
priate position;

(a)
1 1

mp Sly+]3 8
(b)

1 1
7

mp my+]3 3

(4)

(c)
1 1 1

mp 8$p+] my+22 2 2

For terms in n a dot at point p should be replaced by
(n~1+u~) and a line connecting points p and p+1
should be replaced by o,„2.

(a) ~'(~ 1+~x)'(~.+~~1)'
(b) n„'(n2 1+42,) (42„+42~1);

() ( +.).' '( + )

The mean values for each graph can be written down
relatively easily according to the following rule: a term
5$2j &'m't2 &' . en~ 'en2 ' . with i~gi2g and n~gn2

gives a contribution of v j&vj2 ' 'pp]f/2' ' to the
moments. Thus, for example, the mean values corre-
sponding to the graphs in Fig. 1 are given by

(a) r3 (T6+4vov1+2v4y2++4+1+473+2Y1+'Y2 );
(b) r3'(go+ 2y~y, +yPy4); (6)

(c)»'(V3'+2V3V2V 1+F2'V1').

The main problem is the determination of the number
of possible paths in a random walk which corresponds to
any graph. We shall consider this problem in detail in
the next section, and shall derive an exact combinatorial
expression for this number.

We shall conhne our attention to the simplified
problem of a random mixture of isotopes in which the
spring constants are all equal, and only the masses are
independent random variables. In this case y, and v„
the moments of the 0.~ and m„' distributions, become

y, =n', 3,= r/rn'+ (1—r)/M',

where v is the probability that an atom with mass m
occupies a given lattice point and 1—r is the corre-
sponding probability for a particle with mass M. It will
be convenient to adopt a system of units in which a= 1.

4

I
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Fro. 3. The general graph for an e-step walk. The dashed letters
correspond to pauses and the undashed letters to doubled steps, so
that (r1'+r2'+ )+2(rI+r2+ .)=rl.

More general cases of both masses and spring constants
randomly distributed, or of any particular type of
correlation between them, can be treated by the same
methods.

When the spring constants are random and the masses
equal, it is found that the moments are identical with
those of a random isotopic mixture with equal spring
constants and random masses. It is easy to show by an
elementary transformation (Appendix 8) that the
problems are electively equivalent.

Pi
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FrG. 4. Graphs which arise in determining the combinatorial
factor F(rI', r&,r2'), which depends on the auxiliary factor
J'0(rI'rI, r2'). In (a) and (b) two subgraphs of the total graph (c)
determining Fo(rI'rI, r2') are shown.

points of the graph. We shall start with the simplest
case of graphs corresponding to one link of the chain,
and bounded by two atoms; we shall then proceed to
graphs corresponding to two links and containing three
atomic positions, and so on; we shall thus be led to a
general formula the validity of which can be established

by induction.
Let us first consider the simple graph of Fig. 4(a). It

is clear that pauses can be fitted in at any r&' of the total
of (ri+ri') occasions when the walker is at his starting
point and about to take a step to the right. Thus
Fo(ri', r1) = (r1'+r1)!/r1'!ri!. However, for the graph in
Fig. 4(b) the walker must start by stepping to the right
at pi and must terminate by returning to his starting
place, and there remain r1+r2' —1 occasions when he is

at p2 of which any r2' can be selected for pauses; thus

Fo(0,r„r2') = (r1+r2' —1)!/(r,—1)!r2'!.
If we now proceed to determine Fo(r1',r1,r2') for the

graph in Fig. 4(c), we can start with any one of the
Fo(ri', r1,0) walks, and we have the freedom to fit in r2'

pauses at p2 on any of (ri+r2' —1) occasions. The factor
r&—1 appears because the random walker must finally

3. EVALUATION OF THE MON:ENTS

The general graph of the type described at the end of
Sec. 2 can be represented as in Fig. 3. Dashed letters
correspond to pauses and undashed letters to doubled
steps, so that for a walk of n steps (r, '+r2'+r3'+ . . )
+2(r1+r2+r3+ )=n. With each graph we will asso-
ciate two combinatorial factors, Fo(ri', ri, r2', r2, ) repre-
senting the number of possible walks corresponding to
the graph which start at the left hand end and end at the
initial point, and F(r1',r1,r2', r2, . ) representing the
total number of possible walks which start at any of the
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return to his starting point. Hence,

(ri+rs' —1)!
Fp(ri', ri,r2) Fp(ri'r10)

(ri—1)!r2'!

(ri'+ri)! (ri+r2' —1)!

ri'!ri! (ri—1)!rs'!

Clearly F(rl', rl, r2') will arise from summing possible
walks starting at the left or right hand of the graph, and
we have

r
Pq

~ .

~i

P,

since 2ri+ri'+r2' ——n by definition.
We next consider the graph in Fig. 5(a), and to deter-

mine Fp(ri', ri, r2', rp, rs'), we decompose the graph into the
two graphsshownin Figs. 5(b) and (c).Fp(ri', rl, r2', rs, rs')
can be made up of combinations of Fp(ri', r1,0) and
Fp(rp', rs, rs'), but these can be 6tted together at the

(ri 1r2—r2'~
point of decomposition p2 in

~ ~
ways.ri —1 j

Hence,

Fp(ri ri, r2 r2r3')
(rl+r2'+r2 —1)!

=Fp(rl', r1,0)F0(r2', rs, rp')
(ri —1)!(r2'+r2)!

(ri'+ri)! (ri+r2'+r2 —1)!(r2+rs' —1)!

yg (rl —1)!r2'!r2! (rs—1)!rp'!

It is clear that F(ri', r, ,r2', rp, r, ') is made up of walks
which start at the ends pl, p3, and walks which start at
the central point P2 and which can be decomposed as
above.

'

Hence

F(ri', ri, r2', rs, r3')

=Fp(ri', ri,r2', rs, rs')+Fp(rs', rp, rs', ri, ri')

r r'r&ri+r2+r2~F( I 0)F( r r)

F(rl rlr2) Fp(rl rlr2)+Fp(r2 rlrl)

(ri'+ri —1)!(ri+r2' —1).
(rl+rl+ri+r2)

ri!ri! (ri —1) J rs!

(rl'+rl —1)!(rl+rs' 1)!—
=S

ri'!ri! (ri—1)!rs'!

FIG. 5. Graphs which arise in determining the combinatorial
factor F(r~', r rrpr' rp)3. The graphin (a) determines the auxiliary
combinatorial factor P0(r1',r1,r2', r2,r3'). This factor is a combina-
tion of the factors Fp(rr', r&,0) and Fp(rp', rp, rp'), and the graphs
corresponding to these two factors are shown in (h) and (c).

represents all the contributions from a given m„. The
2eth moment ps" of the vibration spectrum of the chain
can be written in the form

, r1, r2 , ~ ~ ~

2"'F(ri', ri, rs', )

xvri'+rivri+r2'+rsur2+rp'+rp ''. (11)

The sum is to be taken over all distinct values of
ri, rs, , ri', r2', , such that 2(ri+r2+ )+r,'

+r2'+ . =e; r' is written for ri'+r2'+ and the
factor 2"' arises from the factor 2 along the main
diagonal of A corresponding to each pause in the
random walk. The factor F(ri') corresponds to all
pauses and no steps and is clearly unity. The problem of
evaluating the moment is thus reduced to enumerating
partitions of e given by the above condition, and for the
first few moments, this can be done simply and rapidly.
However, for higher moments the enumeration, al-
though straightforward, becomes rather tedious. It is
therefore useful to devise an alternative method of
evaluating the F(rl rlr2 r2''') ~

We consider the successive generating functions

1
Ci(X1') = P —(Xi')"",

r1 =i y, '

+12(X1 PlrX2)
1
F(ri rlr2)(Xl) i(X2) 2 (Xl)

r1', r2'=0 r1=1 ~ (12)
I I /X

4123(X1)X1)X2)X21)X3j
1
-F(ri', ri, rs', rs, rs')

(ri'+ri 1)!(rl+rs'+rs ——1)!(r2+r3' 1)!—=I . (10)
ri'!ri! (ri —1)!rs'!r2! (r2 —1)!rp'!

r1', r2', r3'=0 r1, ry=l g,

X(»')""(*2')'*'(X3')""(*)'"'(X2)'"'.

By comparing (10) and (8) it is easy to write
down the general form of the combinatorial factor
F(r,',ri, r2', r2, ), and the result can be established by
induction. The mean value corresponding to the general
graph ls vr 3'+rypry+r2'+r2&r2+r3'+r3, ' '. ' s&nce prj+rj+$ +rj+$

Thus 4 ~ corresponds to graphs using one atom of the
chain, 4~2 to graphs using two atoms, 4~23 to three
atoms, and so on. We proceed to evaluate the first few
generating functions, and we shall then establish a
general relation between successive generating functions
from which they can readily be determined.
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We have immediately that 4»= —ln(1 —x&'). For the
remaining functions we can easily sum over the r
variables„using the relation

Therefore

( u»
4 lss(u122uss) 4 ls(uls)++ss~ I (»)

(1—uss)
(s+r 1)—!

V= (r- 1)!(1-~)-".

Thus we obtain

(rs'+rt, —1)!
rl', r2'=O el=i

(rs+rs' —1)!
X- (x )rl'(x )r2'(x )srl

(rg —1)!rs'!

(13)
Similarly

4'lsss(uurussruss)
uss= —42»s(uu, uss)+4'sss I u» I (19)

1—uss)

and so on. We see that the successive generating func-
tions can readily be expressed in the form of continued
fractions

4 ss = —ln(1 —u22),

= P (r,—1)!(1—x,')- (r,—1)!
pl=i

(xg)'"l
X (1—xs )

rsvp

(r2 1) f

uu ussr
4», ———1nl 1 ~+»(1 u»)l

E 1—1)
( uu uss uss) ( u» uss'tt

4»24 ———lnl 1 I+in1- 1- 1 ) & 1- 1 )'

(20)

CO

= P —u»"———ln(1 —u„), and the sum of all the generating functions 42~2+4~2s
+4 gss4+ ' ' is the function

ul2=
(1—x,') (1—x,')

( u» uss us4

) (21)

Similarly

(r,+rs —1)!
4 us= 012"u23"'p

rl r2.

Q23=
(1—xs') (1—xs')

4'1234
r1, &2, r 3=1

(r,+rs —1)!(r,+rs —1)!
N12 1Q23 "2N34",

rs!rs! (rs —1)!rs!

g3'-

N34 =
(1—xs') (1—x4')

4 12s (u122uss)+4 12(uls)

(rs+rs —1)!
N12"'N23'

~l=l ~2=0 rl ~f21

(rs—1) t (uu"'(1 —uss) r'=@ss~ I (17)
(1—u„)

Hence all the generating functions other than the zeroth
are functions of u», u», , only. It should be noted
that the sums over rl, r2, r3, are to be taken from 1
to ~; however, if any particular value of r; could be
taken from 0 to ~, then relation (13) could be applied
and the sum carried out. Now if we put r2=0 in the
expression for 4 123 we obtain 412,' thus we have

The expression (10) for the combinatorial factor is
similar to one obtained by Dyson, ' and the last expres-
sion (21) for the sum of the generating functions as a
continued fraction is also reminiscent of his results.
However, since we have preferred to use the original
matrix of the vibrating frequencies rather than the
transformed matrix of Dyson, we have not tried to
establish a direct connection between his results and
ours. The methods which we have used can be gener-
alized to two- and three-dimensional models, although
the topological problems of enumerating possible graphs
are considerably more complicated. Some help can be
obtained from corresponding work on the Ising model in
two and three dimensions, and we hope to deal with this
generalization in a subsequent paper.

We have used the formulas (18) and (19) for the
generating functions as a means of writing down ex-
pressions for the moments. The generating functions are
expanded as power series in the u's and hence in the x's
and x"s. Corresponding to each term in the expansion
of a given order there will be a mean value and a term
in the expression for the moment. By this means the
values of the even moments from p2 to p, 2o have been
derived; some further details of the calculations, and the
resulting expressions, are reproduced in Appendix A.
Previously the moments up to @14have been obtained. by
an alternative method12; the present results check with
those obtained previously, but because of the greater
simplicity of the present method, the calculations can be
carried much further.
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When the lattice is homogeneous all the I's are equal,
and. it can be veri6ed that the in6nite continued. fraction
given above leads to the correct result.

(32vs+80V4V1+ 100vsvs+20vsvP+20vPv1),
1024

APPENDIX A. EVALUATION OF THE MOMENTS

We shall illustrate the method described in Sec. 3 by
deriving in detail the moments up to p, yp, and quoting
the results for p, ~2 to p2p.

We have from Eqs. (12), (18), and (19):

4'1(x1 ) ln(1 x1 ) x1 +sx1 + sx1 +
412(2412) ln(1 2412) 2412+2N12 +32412 + ' ' '

C'»8(N», I23)

= —~»(~»)+C»!

24122428+ (2412N23 +N12 N23)

+ (N122428 +22412 N28 +N12 2428)+ ' ' '
1

C 1284(2412)2428)2434)

N2S

!C'123(N12)N28)+C'128! Nls&
1—34,,&

2412N28N84+ (N1224282434

+N12 N28N34+2N122423 N34)+ ' ' '.

We must now expand. 112——x1'/(1 —x1') (1—xs'), , as
power series in x1', xs', , sum C1+412+C123+,and
collect together all terms of order r in all the x's and
x"s for the 2rth moment. We obtain for the first five
terms:

X1 + (2X1 +X1)+ (3X1 +X1X1 +X1X2 )

+Lsxl +x1 (x1 +xl x2 +x1 x2 +x2 )
+sx1 (2x1 +2x2 )+xl x2 (x1 +x3 +2x2 )j.

Each term in the polynomial must now be replaced by
its appropriate average as described in Sec. 3. The
resulting moments are

Pp= 1~

~2=4(2»),

a
@4= (4vs+2 VP), —

16

ps= —(8vs+12V1vs),
64

ps= (16V4+32vsv1+18V2 +4vsvP),
256

p»= (64vs+192vsv1+264vsvs+72V4VP+146V33
4096

+156v3v2v1+24v2 +6v2 VP) p

(128v7+448vsv1+6721 svs+812v4vs+224vsvp
16 384

+532v4vsv1+280vs'v1+252vss 2'+56vsvsvP+28vs'v1),

1
p13= (256vs+1024vsv1+1664vsvs+2176vsvs

65 536

+1186V42+640vsvP+1664vsvsvs+1872vsvsv1

+844vsvP+832vs vs+192v4vsv1+366vsvs V1

+144vs'vP+32vs'+8vs'v1') )

@13= (512vs+2304vsvs+4032vsvs+5664vsvs
262 144

+6660vsv4+ 1728v; vP+4896vsvsvs+5904vsvsv1

+2700vsvss+3132v42vs+5472V4vsvs+864vss

+576vsvsvP+1080V4vsv1+1116vsvs'v1+1368vs vsvs

+468vsv2'+ 108vsvs'vP+36vs'v1),

ass= (1024V13+5120vsvs+9600vsvs+14 400vsvs
j. 048 576

+18 120vsv4+9762vss+4480vsvP+13 760vsvsv1

+17 760vsvsv1+8280vsvss+20 020vsv4V1

+17 640vsvsvs+8920V42vs+ 8320v4vP+ 1600vsvsvP

+3520vsvsvP+3360vsvssvs+2190V4 VP+9520V4vsvsvs

+1520vsvs'+1760vPv1+2570vs vs'+360vsvPVP

+520vs'vsvP+580vsvs vs+40vs'1 10vs'VP).

It is worth pointing out that checks are available for
the coefficients in the expressions for the moments. For
example, the sum of all the coefficients in p2„must be
equal to the value for the homogeneous lattice, (2I)!/
L4"(23!)2j.Such checks are of great practical importance
for the higher moments since the calculations become
involved. A Anal source of error (not eliminated by such

checks) is writing down the wrong average for a given

coniguration; this is much less likely to occur than other
errors, and was eliminated by performing the calcula-
tions independently on diferent occasions.
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APPENDIX E. THE CASE OF EQUAL MASSES AND
RANDOM FORCE CONSTANTS

The equation of motion of the (p —1)th atom of a
chain of random masses and equal spring constants is,
from (1),

where

Similarly

3)y= Sy 1—Sy.

dS„n o,

2
y 70~1.

dt m„m„ (B.2)

Substracting we obtain

Lttp e
—Np ] j —(sty r

—lo]
my my

d'wo cr ( a a p n
rt'o —a

—
~

+ 11t'o+ 'teo+r, (B 3)
dt' tlat mo & tN„J m,

'K~1— 'N p)
my —1 my —1

(g 1) and this is of exactly the same form as (1) with constant
m and random o,.
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Vibration Frequency Spectra of Disordered Lattices. II. Spectra of
Disordered One-Dimensional Lattices*

C. DoMBt' AND A. A. MARADUDIN, Pkyst'cs Department, Vnioerssty of Maryland, College Park, Maryland

AND

E. W. MQNTRoLL AND G. H. Wzrss, Inststnte for Fined Dynamt'cs and A pptted Matkematscs,
University of Maryland, College Park, MaryLand

(Received January 19, 1959)

By using a combination of the moment-trace method and a new method, the "delta-function" method,
the vibrational frequency spectrum of a randomly disordered, two-component, isotopic, linear chain has
been computed for a wide range of the concentrations of the two kinds of particles and of their mass ratios.
In addition the particular case of a chain in which the mass of one of the isotopic constituents becomes
infinite can be treated exactly, and the results of this analysis shed light on the form of the spectra for
lattices with large but finite mass ratios for the two constituents. The spectra are characterized by the
disappearance of the square-root singularity at the maximum frequency which is found in ordered one-
dimensional lattices, and by the appearance of impurity bands, the nature of which is discussed. Finally,
the zero-point energy of a randomly disordered lattice is calculated and compared with the zero-point
energy of an ordered lattice and of the separated phases.

1. INTRODUCTION
' "N a previous paper' a method for obtaining the
~ - moments of the vibrational frequency spectrum of
a disordered two-component linear chain was described,
and explicit expressions for the even moments up to p2o

were given. In the present paper we apply these results
to the construction of frequency spectra of disordered
isotopic linear chains for a wide variety of concentra-
tions of the two kinds of particles and of the ratios of
their masses. In obtaining these spectra the moments
are used in two diRerent ways: In the first method,

*This research was supported by the U. S. Air Force through
the Air Force Ofhce of Scientific Research, Air Research and
Development Command.

)On leave from Physics Department, King's College, Uni-
versity of London, London, England.

'Domb, Maradudin, Montroll, and gneiss, preceding paper
LPhys. Rev. 115, 18 (1959)g.

the spectrum is expanded in an infinite series of Legendre
polynomials whose coefFicients are linear combinations
of the moments; in the second method, which is believed
to be new, polynomial approximations to a Dirac
delta-function are used to give the value of the spectrum
at any point as a linear combination of the moments.

We begin by considering a particular one-dimensional
disordered lattice problem which can be solved exactly,
namely the case in which the mass of one atomic species
becomes infinite, and obtain the distribution of normal
mode frequencies for this case. We then obtain spectra
for the finite-mass case by the two methods mentioned
above. The zero-point energy of a randomly disordered
linear chain is also calculated. In an Appendix the
relation between asymptotic properties of the moments
and the high- and low-frequency behavior of the
spectrum is discussed.


