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A method of testing the hypothesis that there is global symmetry of the pion-baryon interaction is
proposed: Upon analyzing low-energy K —p scattering data, one finds a variety of scattering length solu-
tions which are compatible with the elastic scattering, charge exchange scattering, and total charged hyperon
production. Our suggestion involves the use of the experimental Z+/Z ratios (o) to test the global sym-
metry hypothesis (or any other quantitative description of the pion-hyperon interaction), (b) to reduce
the ambiguity in the X—E scattering length solutions, (c) hence, to predict the Z' cross section. We need
to know the m —V phase shifts, in addition to the K—X scattering lengths in order to predict the Z+, Z
cross sections. If there is global symmetry of pion-baryon interactions, then we know the m. —Y phases in the
absence of a K—E reaction channel. We demonstrate how the actual m —I' phase shifts can be obtained, in
a rsonpertgrbabve manner, from idealized x—F phases (i.e., in the absence of E 1V rea—ctions) and the E—X
scattering lengths. Earlier proposals making use of the dependence of the hyperon production ratios on the
~—I' phase shifts are also examined in terms of this result. Certain 6ts to the present rough data with scat-
tering lengths of negative real part are shown to be incompatible with global symmetry. The proposed
analysis involves the assumption that the K is an isotopic doublet.

I. INTRODUCTION
' 'T is the purpose of this paper to suggest a quanti-
& - tative test for various theories of the pion-hyperon
interaction. Any theory that gives a definite prediction
for pion-hyperon scattering in the absence of a E—E
reaction channel may be tested by analyzing E p-
reactions. Our proposal is based on the results of a
paper' in which we considered the general problem of
several open coupled ttoo purtt'cle cha-nnels near the
threshold for one of them. In A, we derived relations
(e.g. , in the case of two open channels) which enable us
to determine the actual phase shift in the second
channel, from knowledge of the actual phase shift in
the first channel and the phase shift in the second
channel if it were decoupled from the first, in a nomper

tlrbative manner. These relations should be quantita-
tively useful for interactions of short, well-defined range.

YVe want to consider, in this paper, low-energy
(&100 Mev) E incident on protons; thus we need
only deal with incident s waves. We will assume that
E X form an —isotopic spin I=sr (equal parity)
doublet. There are five open two-body channels which
are coupled to the incident channel. We denote the six
cross sections by

o(E ): E +p —+E +p, (1)

o(E'): +E'+n, —(2)

o (Z+):

o(~ ):
~Z++z=,

—+Z +7r+

(3)

o.(Z') . ~Z'+z-', (5)

o.(A): —+ A+7r'. (6)

It has been pointed out by Jackson, Ravenhall, and

~ Work supported in part by the National Science Foundation.
' M. Ross and G. Shaw, Ann. Phys. (N. Y.) (to be published).

We shall refer to this paper as A.

Wyld' that it, may be useful to describe (1) and (2)
along with the sum of (3) and (4) in the scattering
length (and effective range) approximation. They have
given convenient expressions for this purpose. On the
other hand, Amati and Vitale' noted the possibility of
relating the scattering in the final pion-hyperon states
with the cross sections (3)-(6). We suggested' that it
seems feasible to combine these ideas and study the
m. —Y interaction from an empirical analysis of the
IC preactions- .

The point is that the problem becomes even more
ambiguous if one just introduces the +—Y phase shifts
as free parameters to be fitted to the data (i.e., the
Z+/Z ratios). A whole variety of scattering length
solutions, a, for the X—E system already exist which
fit (1), (2), and (3)+(4). What we do is to assume a
model for the interaction. This model (e.g. , global sym-

metry) would give us a definite prediction for the
"separated" z —Y phase shifts, bs(z. Y), i.e., the phase
shifts in the absence of a X—S reaction channel. ' It is
the purpose of this paper to discuss the 2 methods'4
which have been proposed for determining the actual
z-—Y phase shifts, 8(z Y), in the presence of a E—Ill

reaction channel from hs(z Y) (and the scattering
lengths, a), and suggest a much better approximation':
The first suggestion' was to approximate the phase of
the reaction channel by 8p(z-Y). In 8, we approximated
the pion-hyperon Ematrix element, 'c, by tan8s(vr Y).
In A, we derived an expression for c which involves

' Jackson, Ravenhall, and Wyld, Nuovo cimento 9, 834 (1958).
3 D. Amati and K. Vitale, Nuovo cimento 9, 895 (1958).
4M. Ross and 6. Shaw, Midwest Theoretical Physics Con-

ference at Northwestern University, March, 1959 (unpublished).
We shall refer to this paper as B.

~The "separated" phase is obtained by calculating the scat-
tering omitting all processes where the EE system appears as an
intermediate state. Thus in the Chew-Low one-meson approxi-
mation (for both E and m), we would calculate the "separated"
phase omitting all reference to X interactions except that the
constants include certain renormalization eRects due to E's.
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3s(s.F') and a. We will refer to these approximations as
I, II, and III, respectively.

An analysis of the data would amount to fitting (1),
(2), (3), and (4) as a function of energy (over the s-wave
region) simply by finding the appropriate a's and using
the bs(m I') from the model.

In Sec. II we present the necessary relations, between
the scattering lengths for the E—S system and c,
which one would use for an analysis of the data. In
order to discuss the approximations I, II, III in Sec.
III, it is useful to present, here, a brief description of
the experimental situation.

At present cross sections for processes (1)—(4) have
been experimentally determined' at low energy (&100
Mev). The cross sections (5) and (6) for production of
the neutral hyperons have not, as yet, been measured.
However, it is important to note that the at rest
capture of E by protons~ produces very few A' s. The
at rest data, which probably include some p state
capture in addition to s state capture, give the branching
ratios

Z /Z+/Z'/A =4/2/2/ &—,'. (7)

There are several interesting features of the in-Qight
data: There is a E.'—E mass difference' which leads
to a threshold laboratory energy of 8 Mev for charge
exchange scattering. Since the cusp effect on the Z+/Z
ratio, ' above the threshold for (2), will not change any
general arguments which we shall make, we shall ignore
the E —X' mass difference in this paper. We refer the
reader to Jackson and Wyld' for a (straightforward)
method for including this mass difI'erence, as well as
Coulomb effects.

In addition, the charge exchange cross section is
small over the entire energy range. A qualitative aspect
is the rapid variation of the Z+/Z ratio. However, the
data are too preliminary to consider this large energy
dependence as established.

II. RELATIONS BETWEEN THE CROSS SECTIONS
AND m —Y SCATTERING

The scattering operator T and the reaction operatorI are given by the usual relations:

p, =k,'dk, /dE„

where k~ is the momentum in the center-of-mass
system. (We use units k= c= 1.) If we make the trans-
formation

Tap 2pu Trxppp (12)

along with a similar one for E p', we get the matrix
equation

T=(1—iK) 'K, (13)

where there is a submatrix along the diagonal for each
set of quantum numbers /, J, I, etc. The diagonal
element of this T matrix has the usual form

2' (fJ)= {expf2i5 (fJ)j—1)/2i, (14)

where 8 is the phase shift. The total cross section from
n to p, for the case where n consists of one particle with
spin ~ and one with spin zero, is, for a particular isotopic
spin state,

n.s=4~k. 'Ziz(J+s, ) I
&-p(fJ) I' (15)

We shall be dealing, in this paper, only with an
initial K pstate 1=0—. The following modification
must be made if the intrinsic parity of p, P(p), is not
equal to that of n: If P(K 1V) is the sam—e as P (x I'), —
the relevant vr —I' phase shifts are the s; ones. If
P(K—X) is minus P(rr Y), then the —3(s-—V) that
enter, enter are the p; ones.

In order to describe the E—S processes, we need the
T matrix in both isotopic spin zero and one states. For
example, we write, "for I=O,

where E is the total energy in the center-of-mass
system. In a given isotopic spin state I, we expand T'
and E' in terms of eigenvalues of orbital angular mo-
mentum l and total angular momentum J to obtain

T p'(fJ) Kp'—(fJ)= 2i Q ~ K r'(fJ)p~ T~s'(1J), (10)

where the Greek subscripts refer to channels. When y
is a two-particle channel (which is the case we will be
interested in), then

S—=1+T=—(1—-', iK) (1+-',iK) '.

The Hermiticity of K insures the unitarity of S. Also,
the matrix elements of T and K are defined as

2'(K)

(
f
T (Z) [ exp(iqP)

~

T'(Z)
~

exp(igP) ~
(16)

T'(rr)

T,,= —2~is(E,—E,)r, ,',

Ks =27' (E;—E;)K, ,

~Nordin, Rosenfeld, Solmitz, Tripp, and Watson, Bull. Am.
Phys. Soc. 4, 24 (1959); A. H. Rosenfeld, Bull. Am. Phys. Soc.
3, Ser. II, 363 (1958); Ascoli, Hill, and Yoon, Nuovo cimento 9,
813 (1958);R. S. White (private communication).

L. Alvarez et al. , University of California Radiation Labora-
tory Report UCRL-3775, 1957 (unpublished).

Rosenfeld, Solmitz, and Tripp, Phys. Rev. Letters 2, 110
(1959);F. Crawford et al. , Phys. Rev. Letters 2, 112 (1959).' J. D. Jackson and H. W. Wyld, Phys. Rev. Letters 2, 355
(1959); Nuovo cimento (to be published).

where the 6rst row refers to E—S and the second to
w —Z. Thus, " T'(~) is the amplitude for a+2 ~ ir+Z
in the I=O state. Note that p is a real number. We then

' The T matrix for a given J and J, is symmetric if time reversal
holds."All numerical superscripts (with the exception of those on the
hyperons or mesons which refer to charge) denote the isotopic
spin state I. The subscript 0 Lwith the exception of that on the
effective range (31)) refers to the "separated" quantity, i.e., the
quantity which would exist if the coupling between channels
vanished.
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have

(E
g

~
(=4rrk 'y—,'~ T'(E)&T'(E) ~',

EEo i
(17)

where ro is the effective range. For the E p—reactions
it is very likely that we may ignore rQ for k(0.6f '
(1 f=—1 fermi=—10 " cm); we sha, ll discuss this in Sec.
III. In general, we also have

0 (Z ~) =4nk 'X io ) (1/v2)
~

T'(&) I

)&exp(zp') a(1/~3 I
To(&)

I
exp(ig') f',

( ')=

(A) =4 k 'X-,'
i
T'(A) i',

(18)

(19)

(2o)

where k is the momentum of the incident K in the
center-of-mass system.

Let us consider how many independent quantities
we need to describe the E—E processes. For I=O, we
have

(do eo )
Eo

L. eo co)
(21)

where

(
T (E)= k] +ik —[,

(a'(k) )
T'(2) = exp(ig') (kB') i

~

1+ika'
~

(24)

(I=tan ' c'—
kAoDy (co)o]

(Bo+coA o)
(25)

where
T'(vr) = Lcot5'(mZ) —i] ',

ikBoL1+ (c')']
tanP(m. Z) =c'+

1+ik(A —c B')

d'=k(B'co Ao)

e'= (kB'I:1+(c')']) '.

(26)

(27)

(28)

(29)

For energies below the X—lV threshold, we continue
(23)—(27) according to the relation

(30)

We may exhibit the energy dependence of a(k) in the
effective-range approximation; i.e., to order k' we have

1/a(k) = (1/a) ——,'rok',

where d', e', and c' are real, since E is symmetric as well
as Hermitian. Thus three real parameters determine
the T matrix (16). Let us introduce the complex scat-
tering length a~ for the incident channel in the isotopic
spin state I:
k cot8 (EIV) —= —1/ar(k) = —LAr(k) —iBI(k)] ', (22)

where 8(E'Ar) is the complex phase shift in the E E—
channel and A and B are real (note that B is a positive
quantity). We choose to express all the scattering
amplitudes in terms of A, B, and c. Then, from (13)
using (14), (16), (21), and (22), we obtain (after some
algebra) for the two-channel problem:

c(k) =c+cik'+

However, for the energy region in which we are inter-
ested, it is a good approximation to neglect the energy
dependence of c. Thus for small k, we consider 3', 13'
and c' in (23)—(29) to be constants. (Therefore d'~k
and eo ~ k'*.)

Now, as noted previously, the erst approximation, I,
for qP is given by

tangP = tan 8o'(mZ) —=co', (32)

where 8oo(~Z) is the "separated" pion-sigma I=O
phase shift, i.e., that calculated when there is no
coupling to the E—Ã channel. ' The second approxi-
mation, II, is

tanqp = coo—
kA'f1+ (coo)

1+k(B'+c 'A')
(33)

In A, we derived the following expression for c':

Bo+co (R—A )Q-
(R A) co'B— —

~—=
I
T'(A)

I

'/
I
T'(~) I', (35)

which is a constant for small momentum k. We then
could find relations, similar to (34), from which we could
calculate the actual E' matrix elements c', h', and j',
and hence determine T'.

where E. is a constant approximately equal to the range
of the diagonal interaction in the E—1V channel. (See
A for an exact definition of the constant E.—it is
referred to as L, in A.) The relation (34) for c' should
be accurate for interactions of short, well-de6ned range.
This is the basis for approximation III; knowing cQ', A',
B' (and R), we determine cgo from (34) and use this c'
in (25) to calculate Po. Thus to completely determine
the T matrix in the I=O state, we need to know the
two observable quantities A' and 8' and the theoretical
phase shift boo(mZ).

The I=1 case is more complicated. The real E
matrix can be represented as

~dl el gl
E'= e' c' h'

gl hl jl
The first row corresponds to the X—iV channel, the
second to x —Z, and the third to x —A. Here, we need
to know six parameters to determine T', e.g. , cQ', hQ'

and Jo' (the pion E' matrix elements in the absence
of any coupling to the E Echannel), the compl—ex
scattering length a' (=A' —iB'), and the ratio
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If we consider the situation where cp', hp', and jp' are
negligible as essentially they would be with global sym-
metry (both the s; and p; pion-nucleon phases shifts are
small), then we obtain' the simple results:

where

(kB') **

T'(Z) = exp(iP'), (36)
~1+ iko'

~

(1+~):

kA'(1+ [c'(1+n)j'}
tanqP =c'(1+n)— (37)

1+k[B'+c'(1+n)A'j

and our approximation c~' to c' is given by

I

(1+n) (E—A')
(38)

Thus for the I=1 system, we need to know the three
observables A', 8', and 0,. It might be implied from the
at-rest data, (7), that n((1.

We find a variety of solutions which work: The A' s
must both be the same sign [to keep o.(Ep) smallj,
either positive or negative. The absorption can be
divided in any way between the I=0 and 1 states. We
illustrate the families of solutions to in-Right data with
a few cases. We can have all I=1 absorption"':

a'= &1.20—0.87i, a'= &0.58; (39)

roughly equal I=O and I=1 absorption, as discussed

by Dalitz and Tuan, "for example,

a'= ~0.40—0.41i, a'= &1.88—0.82i,

and
a'= &1.62—0.39i, a'= +0.20—0.78i ' (41)

or all I=0 absorption4:

0.88 i' = &0.53—1.19i. (42)

"All lengths will be measured in fermis (f), and all momenta
in f ' 1 fermi=—10 "cm.

"R. H. Dalitz and S. F. Tuan, Phys, Rev. Letters 2, 425
(1959); Ann. Phys. (to be published).

III. ANALYSIS OF DATA AND DISCUSSION

In this section, we will present a rough analysis of
the E pdata, to ill—ustrate our proposal, and discuss

some of the approximations made.
Our first step is to analyze the data o(E ), o.(E'-),

and o.(Z+)+o(Z ). We shall assume that the A pro-
duction is negligible, or more specifically that a=0.
Then, the two phase shifts 8i(E1V) are sufFicient to
portray this data. In fact, within the fairly large errors
of the experimental points, we find that a scattering
length approximation [ai(k) = aug is sufFicient to deter-
mine the energy dependence of the E—iV s-state scat-
treing phase shifts:

k cotter(EE) = —1/a'= —(A' iB') ' I=0 1. —

hp' ———s'v2[Kl —Kl),
jp'=-', [2Kl+ K&]

(43)

where Ki are the pion-nucleon E-matrix elements. Our
results turn out to be essentially independent of the
parity I'(E Ã) since both —the sl and p, pion-nucleon
phase shifts are small. Thus for illustrative purposes,
let the K particles be pseudoscalar so that

KI= tanP'(m-lV),

where 8(mE) are the s-state pr —X phase shifts. Evalu-
ated at the appropriate pion momentum, which is
essentially a constant over the range in E energy we
are working with, we get

K*'= —0.14, K'*=0.22,

with which we obtain

cp =0.22, cp =0.10,

h '= —0.17, j '= —002

As we note in Sec. II, for the I=O system, we need the
three quantities A', B', and cp' (and E) to determine
the T' matrix, whereas for I= 1, we need six quantities:

8, cp hp jp', and n. Since cp', hp', and jp' are so
small, we may use Eqs. (36)—(38). Actually, we will

assume that jp' and hp' are negligible and cp' is small but
not negligible. Then with 0.=0, the 3/3 T' matrix has
been effectively reduced to a system of two coupled
channels. In the following discussion we shall assume
that the I=O and 1 systems are described by similar
two-channel T matrices, i.e., we ignore the A channel.

'4Horwitz, Miller, Murray, Schwartz, and Taft, Bull, Am.
Phys. Soc. Ser. II, 3, 363 (1958).

"M. Ross, Phys. Rev, 112, 986 (1958).

On the basis of the E —p capture at rest and E —d
capture at rest, '4 regardless of the complexity of the
analysis of this data, we can exclude the extreme solu-
tion (39). We must consider, however, all cases with
+p+gl

Now we come to the problem of fitting theo(Z+)/o (2 )
ratio. This ratio appears to change from =4 at k=0.3
to =2 at k=0.4 to =1 at k=0.6 and then stays =1.
Since the data are preliminary, let us content ourselves
with exploring the implications of o.(&+)/o. (& ) being
approximately equal to one at k=0.6. Whether a
solution leads to a rapidly changing ratio as a function
of energy will also be discussed.

To separate the charged hyperons, we need to know
something about pion-hyperon scattering. Due to our
knowledge of the pion-nucleon system, the most con-
venient assumption to make is that there is global
symmetry in the pion-baryon interactions. Then we
have the pion E-matrix elements, in the absence of the
X—3T reaction channels given by"

cp' ——s [Kl+2Klj,
cp'= Kl,
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Let us consider the various methods for determining
the Z+/Z ratio. We can discuss the extreme type of
solution (42) before going further. The ratio is equal
to one, independent of the phases; it can show no
variation with energy. Now, we consider the more
complex cases (40) and (41) at the various levels of
approximation discussed in Sec. II:

I: tan&i=co', i.e., the phase of the production T
matrix element is taken as the "separated" x—Z scat-
tering phase. Referring to (25) we see that I embodies
two approximations:

(i) kA (1+c')/(1+kB+kAc)«1,
(ii) C= Cs.

The 6rst approximation, (i), is good at zero energy. It
becomes very poor for the observed scattering lengths
at about k &0.3 (i.e. , for lab lenergies of 10 Mev and
above). Approximation (ii) can be studied using (34).
We see that c=cp if

R—A»B (and csB). (45)

In certain cases this relation is roughly satis6ed. If the
range E. is about the pion Compton wavelength, 1,4,
it will be satisfactory for small or negative A. If A (0,
it will usually be satis6ed. However, we probably
should consider 8=0.5, near the X Compton wave-
length. ' It is clear that (45) will not be satisfied for
many solutions we want to consider,

II:c =cp, i.e., the diagonal E'matrix element in the
channel is taken from the "separated" z —Z

scattering. This approximation, which involves only
approximation (ii) of I (it is equivalent to I at zero

energy), formed the basis of the analysis B. Both
procedures I and II lead to a Z /Z+ ratio about 10 or
greater unless we adopt the extreme type solution (42).

III: cr is given by czr, Eq. (34). Let us consider the
four solutions (40) and (41), and assume that the
K—E interaction is characterized by a range equal to
the X Compton wavelength. Using (34) and. the "sepa-
rated" m —Z phases, csr, from (44), we calculated the
Z /Z+ ratio. The results are given in Table I for an
energy corresponding to k=0.6. We see that: (1) The
negative 2 solutions are not compatible with weak
"separated" m —V scattering, as predicted by global
symmetry; (2) The positive A solutions may be com-

patible with the present data and small Ss(n.V). The
great role of the energy-dependent second term on the
right-hand side of (25) is evidenced by the difference
between tan@ and c. Add to this the sensitivity of the
Z+/Z ratio to the phases, P, and we see that there will

be very rapid variation of Z+/Z as a function of energy.
It should be hard to fit a particular energy dependence
and we may hope that only few satisfactory solutions
could be found. Such 6tting must await more de-

tailed data.
An important feature of any detailed analysis is the

effective range, rs, in the expansion (31) for u(k). We

TABLE I. The ratio Z /Z+ calculated at 0 =0.6 (using approxi-
rnation III) with R=0.5, c0' ——0.22 and c0'=0.10 for the scattering
length solutions (40) and (41).

cos (P' —gP) z —/z+

1.88
0.40

0 —1.88
1 —0.40

0.82
0.41

0.82
0.41

—0.33
7.1

0.61
0.59

2.17
1.24

1.19
0.17

0.60

0.90

3.9

0.20 0.78
1.62 0.39

6.5 1.33—0.24 2.24 0.61 40

0 —0.20
1 —1.62

0.78
0.39

1.73
0.29

1.13
0.93 0.98

have shown, in A, that a necessary condition for
~rsr~&&R is that Im (1/ur) (measured in f '), times
some kinematical factors which are = 1 for this problem,
is much greater than 1. The data indicate that the
Im (1/ar) &1. Thus we feel that rsr should prove to
be small.

We can summarize our proposal by stating that a
given theory of x—V interactions may be tested by
evaluating the m —V scattering omitting X—E reaction
channels, and then combining the results of this
"separated" scattering theory with empirical observa-
tion of K—E processes via (34) in order to predict the
hyperon production ratio Z+/Z . In the example shown
above, the global symmetry model was considered. We
concluded only that the scattering length solutions with
negative A of Dalitz and Tuan" are not compatible"
with present data. Data on the energy dependence of
Z+/Z and an understanding of the capture at rest
data should allow us to draw some strong conclusions
with this type of analysis. It is important to note that
we need not be restricted to an analysis which neglects
h. production: (35)—(38) indicated how the generaliza-
tion is made to a three channel T' matrix when the
"separated" m

—F' phase shifts, 8s'(s. F'), are small. To
embody a theory in which the bs'(s. Y) are large, similar
(but more involved) relations may be derived (see A).

In conclusion, we want to emphasize the importance
of relation (34): Dalitz and Tuan" have noted that a
perturbation treatment of the effect of the E-baryon
coupling on z —V scattering is a very poor approxima-
tion. We agree with this statement, and point out that
(34) enables us to calculate ~—I' scattering from the
"separated" s.—V phase shifts, ls(wV), in a nonper-
turbative manner. Thus one can theoretically investi-
gate m

—V scattering in the absence of a E—E reaction
channel without assuming that the coupling to this
reaction channel is small.
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