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Proposal for Determining the Electromagnetic Form Factor of the Pion*
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The possibility of measuring the electromagnetic form factor of the pion by extrapolation of the cross
section for e +p ~ n+7f++e has been investigated. The method is based on the existence of a pole in the
pion-electroproduction scattering amplitude as a function of the invariant momentum-transfer of the
nucleon. The residue of this pole is the pion form factor multiplied by a known coefficient. Since the pole
lies slightly outside the physical region of the invariant momentum transfer, an extrapolation of the experi-
mental data is required. An approximate calculation of the pion electroproduction cross section has been
made in order to estimate the experimental accuracy necessary for a significant extrapolation. Accuracy is
required which is an order of magnitude better than that achieved at present in similar experiments.

I. INTRODUCTION
' 'N recent years much attention has been devoted to
& ~ the problem of the electromagnetic structure of the
nucleon. Considerable experimental information on this
subject has been provided by the experiments carried
out by Hofstadter and his collaborators on the scatter-
ing of electrons by protons and deuterons. ' Additional
information was derived from the measurement of the
cross section for electroproduction of pions (e +p ~ e
+e+ir+) by Panofsky and Allton. '

Among the many theoretical attempts which have
been made to treat the nucleon-structure problem, the
most successful have been based on the method of
spectral representations. ' ' In this method, however,
one encounters the difficulty of requiring knowledge of
the electromagnetic structure of the pion. It is qualita-
tively evident that the structure of the pion must
contribute to the structure of the nucleon. If the spatial
extension of the nucleon's charge and magnetic moment
are visualized as due to the pion cloud of the nucleon,
then the spatial extension of the pion will contribute to
that of the nucleon. It has recently been shown' that
if the pion structure is assumed to be sufficiently ex-
tended, the disagreement' between the spectral-repre-
sentation theory and the nucleon structure may be
removed.

Unfortunately, no experiments have been performed
which probe the pion structure. The scattering of pions
on electrons yields no information at available energies,
because the relatively massive incident pion cannot
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transfer sufficient momentum to make anything but
the outermost parts of the pion electromagnetic field
effective. On the other hand, scattering of electrons on
pions is not feasible because, of course, no way has
been found for making targets from pions. The purpose
of this paper is to describe a method of using the pion
cloud of the proton as a "pion target. "

The procedure to be described is an application of a
general method suggested recently by Chew and I.ow. ~

In this case, their method enables one to measure the
electromagnetic form factor of the pion by extrapolation
of the cross section for e +p ~ m+7r++e . The basic
principle involved is the possibility of analytic con-
tinuation of the electroproduction scattering amplitude
as a function of the square of the four-momentum trans-
fer of the nucleon, 5'. If the initial nucleon has four-
momentum p, and the final nucleon, p', then we have
6s= —(P—P')'. It is conjectured that at 6'= —

p, ',
where p is the mass of the pion, the scattering
amplitude has an isolated pole whose residue is
just the electromagnetic form factor of the pion
multiplied by a known coefficient. It can easily be
shown that negative values of 6' are not physically
attainable, so that an extrapolation of the measured
cross section is necessary in order to reach the pole at
5'= —p'. The distance of extrapolation is, however,
small compared to the physical range of 6'. The pro-
cedure for determining the electromagnetic form factor
of the pion is, then, to extrapolate the cross section,
with its singularities suitably removed, to the point
6'= —p'. This procedure will be described in detail in
Sec. II.

Experimentally, it. will be necessary to measure the
electroproduction cross section as a function of at least
two variables, 5' and A, . If s is the incident electron
four-momentum, and s' is the final, then we have
X= —(s—s') s. One must know X because the pion form
factor is a function of this variable. In practice, one
could determine these variables by measuring the
energy and direction of the final electron, plus the
direction of the final meson. No such measurements
have yet been made. In their recent experiment,
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FIG. 1. Poles and branch points in the cosa plane. The scale of
the figure is appropriate to the values E=9.66, X=10.The right-
hand pole is the one at 6'= —p'.

Panofsky and Allton' measured the electron variables
but did not detect the meson directly.

The analytic properties of the electroproduction
scattering amplitude, which are the basis of the method
outlined above, have not been proved rigorously. They
are, however, a very reasonable extension of properties
which have been proved for other scattering problems.
A plausibility argument will be given in Sec. II A. Such
analytic properties of scattering amplitudes have been
the object of much study. Their application in the form
of spectral representations has been successful in corre-
lating many experimental data in pion physics. Appli-
cations very similar to that proposed herein have
already been made for the purpose of measuring the
pion-nucleon coupling constant. Extrapolations of both
the nucleon-nucleon' ' and pion-photoproduction" cross
sections as functions of invariant momentum transfer
yielded values of the coupling constant in reasonable
agreement with values obtained by other means.

In principle, then, the analytic properties of the
electroproduction scattering amplitude described above
tell us that one can determine the pion form factor by
an extrapolation procedure. In order to assess the
practical difhculty involved in performing an extrapola-
tion of a given set of experimental data, one must
estimate the behavior of the electroproduction cross
section as a function of 6'. If the electromagnetic
interaction is treated in lowest order of perturbation
theory, it is apparent that the electroproduction and
photoproduction matrix elements are closely related.
The dispersion-theoretical analysis of photoproduction
by Chew, Goldberger, Low, and Nambu" (hereafter
called CGLN) has been extended to electroproduction
by Fubini, Nambu, and Wataghin" (hereafter FNW).
The calculation in Sec. III is performed by the use of a
modification of their theory: The Born terms in the
matrix element are written in relativistic form and,
correspondingly, certain recoil-correction terms are
dropped.

In Sec. IV the results of this calculation are inter-
preted as implying that for a significant extrapolation
experiments of great accuracy will be necessary„accu-
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racy an order of magnitude better than that achieved in
the electroproduction experiment of Panofsky and
Allton. '

II. EXTRAPOLATION PROCEDURE

A. Location of Singularities of
Scattering Amylitude

I.et us consider in detail the analytic properties of
the pion-electroproduction scattering amplitude on
which the proposed extrapolation depends. As remarked
in the introduction, no rigorous proof of these properties
has been given. However, such properties have often
been conjectured; for instance, in the two-dimensional
spectral representation proposed by Mandelstam" and
verified to fourth order in perturbation theory. Motiva-
tion for conjecturing them comes from two sources:
analogy with proved properties of simpler scattering
amplitudes and analysis of perturbation theory. Argu-
ments of both types have been given by Chew for
nucleon-nucleon scattering, and by Taylor, Moravcsik,
and Uretskyio (hereafter TMU) for photoproduction.
The latter case can be extended very easily to electro-
production. To lowest order in the fine-structure con-
stant, electroproduction is just photoproduction by a
virtual photon. The only diGerences are that the
"photon" has a nonzero, imaginary mass (O'= —X) in
electroproduction, and that the matrix element contains
longitudinal as well as transverse terms (i.e. , lr TWO).
The existence of transverse terms will not affect the
analytic properties, and the "photon" mass will only
cause a shift in the position of the singularities.

The recipe used in the papers referred to above is the
following: to get one part of the spectrum consider
the intermediate states which could be reached if p
and p' were incoming particles, with q and k outgoing
(k=s —s'). The lowest of these is the discrete single
pion state, which gives a pole at 6'= —p' (on which the
proposed extrapolation is based). The next state is that
of two pions, which gives rise to a branch point at
6'= —4p, '.

The other half of the spectrum, the crossed spectrum,
is found in a similar way by considering the states
which can be reached if p and g are incident. This leads
to a pole at (p —g)'=3II', where M is the nucleon mass,
and a branch point at (p —g)'= (M+@)'. Now since
p+k= p'+q, we find that

(p —q)'= 6'—E'+2M'+ii' —X (2 1)

Here E'= (p'+q)'; i.e. , E is the—total energy of the
final nucleon and pion in their barycentric system (the
system in which p'+q=O). Using (2.1), one finds that
the, crossed spectrum gives rise to a pole at

g2 —E2 M2 ~2+ l

and a branch point at;

6'= E' M'+2Mp+X. —
"S. Mandelstam, Phys. Rev. 112, 1344 (1959}.
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FIG. 2. The class of diagrams giv-
ing rise to the pole at 62= —p~.

B.The Extrapolation Formula

If one accepts the viewpoint that perturbation theory
can yield information on analytic behavior, then the
existence of the pole at 6'= —p' can be demonstrated
and its residue computed. It is evident that the class
of diagrams shown in Fig. 2 gives rise to the pole. It is
easy to show that no other type of diagram can contain
this pole. The contribution of this diagram'4 to the
cross section gives, in covariant form,

do. 4g'n'6'P '(X)
I:4(q s)(q s') —

I '~3
dP 'A'rr'I (6'+Ii') '

+other terms, (2.3)

where I=[(P s)' M—'III']'= M—sr, , and where dP is the
phase space factor:

d pd sd gdp= P(p+s —p' —s' —q).
Sco2E2e2

(2.4)

The symbols e&, e2 are defined as the initial and final
electron energies. One finds that

The spectrum of singularities in the 6' plane can be
re-expressed in terms of cos8, where 8 is the angle
between q and k in the p'+«=0 system. With all
symbols referring to this system, we have

ps=a —Iis+ 2' PQ —2
I ql lkl cos8 (2 2)

where

~s= (I ql'+I ')'.

Then in the cos8 plane the analyticity region is the cut
plane, with poles and branch points as shown in Fig. 1.
The quantity E~ is the energy of the final nucleon.
Actually, the existence of such a large region of ana-
lyticity is not necessary for the proposed extrapolation.
The method requires only that we have analyticity in
some region containing the physical region lcos8I &1
and including the pole at cos8= (X+2~ks)/2

I q I I
k

I
as

an isolated singularity.

(0 (cos8)),=r(8)+O( 8).— (2.7)

In Eq. (3.19) an equivalent definition. of this sym-
metrization will be given. The quantity (o.(cos8))„will,
of course, be free from the branch point at cos8= 1, and
we can at last write the extrapolation formula:

4gsn'p, 'F '(X)
(~'+I ')'(~).

I
a*=-"=—

a'MsL, X'

X(4(q s)(q s') —Ii X), ls „.(2.8)

lab system, we have
m

I q I

'dade'du
d'pI =———— (2.6)

16''si, L I «I (~+&o)—rds
I
k

I

cos8j'

In Kq. (2.3) two quantities in the numerator, g and
P (X), are not the most general expressions corre-
sponding to the diagram of Fig. 2. They have been
given the value appropriate to 5'= —y' in anticipation
of the extrapolation to that point. The pion form factor,
F (X), is defined by considering the pion-photon vertex
with both pions on the mass shell. If we write the con-
tribution of this vertex as j„(gi,qs)e&, the most general
form of j consistent with Lorentz invariance is

j(gi,qs) = —eF (X)gi—eG (&)qs,

where X= —(qs —gi)'. The continuity equation imposes
the further requirement (qs —qi) j=O, giving P P,)
=G.(X), or

j(Vr,Vs) = —(&i+Vs) eP-(~).

This definition of the pion form factor is normalized so
that F.(O) =1.

Equation (2.3) reveals an additional singularity
which must be removed before an extrapolation can be
performed. The factor in brackets, which results from
taking the trace of matrix factors, has the form, as
a function of cos8: Pi(cos8)+sin8Ps(cos8), where Pi
and P& are polynomials. Now since sin8= (1—cos'8)l,
sin8 has a branch point at cos8= 1, preventing extrapola-
tion. We cannot get rid of this singularity by division

by the factor in brackets, since it can vanish in the
region of extrapolation and does vanish in the case to
be discussed in Sec, III. We can, however, eliminate
this undesirable sin8 by defining a "symmetrized" cross
section. Define a(8) =do/dP The quanti. ty o(8) does,
of course, depend upon variables other than 8. Then
define the symmetrized quantity

The above discussion has shown that if one knew the
value of the differential cross section da/dP over some

portion of the physical region, one could obtain the
value of F (X) by analytic continuation of the function
(4'+Ii')(o. (cos8)),. The relation between the value of
this function at 2'= —p, ', and the pion form factor is
given by Eq. (2.8). This is an idealization, of course,
since in practice one can know the function only to
within a certain error and at a finite number of points.

~l «I 'dhdE'dn,
dP=

16~»~sl(dldl «l)v (p+s s')I—(2.5)

where dQ, refers to the outgoing meson. Since dp as
defined by Eq. (2.4) is a Lorentz invariant, this ex-
pression must be valid in any coordinate system. In the

"The coupling constants used are g'=g, '/4s. , f=gy/2M, and
f'=0.08.
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One practical procedure that can be employed is to
plot the experimental value of (6'+p')-"(o.), and fit. a
polynomial in coso to these points by the method of
least squares. ' "The residue is then given by the value
of this polynomial at the pole. Some consideration will
be given in the next section to the error involved in
this method of extrapolation.

C. Kinematical Considerations

In order to perform the proposed extrapolation, it is
necessary to know the cross section as a function of
both the extrapolation variable 62 and the variable A. on
which the form factor F (X) depends. Since an iV-par-
ticle (incoming plus outgoing) scattering problem is a
function of 3iV 10 var—iables (neglecting spins), electro-
production is a function of five variables. A convenient
choice for the other three variables is E, the total energy
of the pion and nucleon in the p'+ q= 0 system; TL, the
laboratory kinetic energy of the incident electron;
and p, defined in the p'+q=O system by

cosg=(kXs) (kXq)/fkXsf fkXqf. (2.9)

In principle these three variables could be integrated
out and the cross section measured as a function of 52
and X only. In practice, it may be most convenient to
determine all five variables; for instance, by knowing
the incident electron energy and measuring the distri-
bution of mesons as a function of direction, in coinci-
dence with final electrons of given direction and energy.
Then in performing the extrapolation all variables
except 62 must be held fixed. The question then arises:
what values of E, Tr, , and p are most favorable to the
extrapolation procedure?

To answer this question we must be able to estimate
the error associated with extrapolation. I.et us assume
that the extrapolation will be done by fitting a poly-

In the p'+q=O system, we find

5'+p'= 2
f q f f

k
f
x.

We wish to extrapolate the function

y(x) =—(2 f q f f
k

f ) 'x'(0) (2.10)

to the point. x=0, the position of the pole of (o),. The
error in the least-squares polynomial at the point x=0
is given by

where
AQo=pL(k )Opj' (2.11)

k„=P
i=i .2

)

2

(2.11')

and where p, which depends upon the goodness of fit,
is =1." The summation in Eq. (2.11') extends over
the points at which f(x) is known, and I, is the experi-
mentally determined standard deviation of f(x) at x, .
In order to use Eq. (2.11) to determine the dependence
of Dup on the experimental parameters, we must make
some assumption about the behavior of the f s Let us.
assume that there is a constant standard deviation $ in
the cross section (0.), for all values of x. This seems to
be the most reasonable assumption to make in the
absence of detailed knowledge of the behavior of (0.), .
This assumption implies that the standard deviation I,
of f(x) is

Then if p=1, Eq. (2.11) becomes

nomial in cos8 to the function (d'+p, ')'(a), l&y the
method of least squares. Then wc can use a well-kiiown
formula to calculate the error. "

I.et xp be the position of the pole as a function of
cos8. Then define s:—xp —cosO.
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(2.12)

N
x,m+ n—4 (2.12')

Note that the error hap is proportional to the absolute
error in the measured cross section, and to the factor
[(H ')oof' which depends only upon the distance of
extrapolation and the distribution of points in the
physical region.

It is qualitatively evident that the error will rise
with the distance of extrapolation. I.et us calculate the
distance of extrapolation as a function of E and X.
Equation (2.2) shows that the pole occurs at

FIG. 3. The distance of extrapolation as a function of E for two
values of X. Also shown is kph, the equivalent laboratory energy in
PhotoProduction (E2=M'+23' kpl, ) .

cose= P.+2C02ko)/2
f q f f

k
f

=—xo. (2.13)

'SP. CziRra and M. J. Moravcsik, University of California
Radiation Laboratory Report UCRL-8523, October 17, 1958
(unpublished) .

Holding A, fixed, one finds that all quantities on the
right-hand side are known functions of E. One can easily
show that in the p'+q=0 system the following rela-
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FIG. 4. The dependence of the extrapolation error duo/$ on L'.

tions hold:
2oi2= E—(M' —p')/E,
2kp =E—(M2+X)/E,

E,=E—,=(iqi yM')-:,

Ei——E—kp ——( i
k

i
'+M') **.

The distance of extrapolation as a function of E, for
two values of X is shown in Fig. 3. Unless otherwise
specified, pion mass units are used throughout this
paper.

In order to evaluate the dependence of Quo on the
distance of extrapolation, we must calculate (H ')eo.
If we assume that we can fit f(x) with a polynomial of
the fourth order (5 and F' waves only), then FF

„
is a

five-by-five matrix. The inversion of this matrix was
performed by a machine calculation for various dis-
tances of extrapolation for the arbitrary case of eleven
points x; spread evenly over the physical region. The
results are summarized in Fig. 4, where d, ae/$ is shown
as a function of E for X= 10. If $ does not vary much
with E, higher values of E are clearly favored by this
consideration.

A second consideration is the size of the residue at
the pole. For a given Dao, the size of the residue deter-
mines the percent error. From Eq. (2.8) one sees that
for a given value of X and Tl. the residue is propor-
tional to

(4(g s) (g s') —p9.),.

k ph
——(E'—M2)/2M. (2.14)

The quantity k» is the energy a photon must have in
the laboratory in order to produce a pion-nucleon final
state having total energy E in the barycentric system.
On the basis of the considerations discussed in this
section, a reasonable guess for the most promising value
of kph is =500 Mev. The corresponding value of
E=9.66 will be used in the calculation in Sec. III D.

As a final kinematical consideration let us determine
the possible range of 'A for a given E and Tl,. In order
to derive this range, note the relationship of A. , E, and 6'

Fig. 4 for the point E=-9.66 for fifth- and sixth-order
polynomials. For the fourth-order polynomial, Fig. 4
shows Dao/)= 134. For the fifth-order, we found D&o/$
=345, and for the sixth-order, Dao/)=952.

By machine calculation of the error for several specific
distributions of points x;, some qualitative conclusions
were drawn concerning the most favorable distribution.
First, it seems desirable to have measurements spread
over as wide a region as possible, preferably the entire
range of cos8. Second, it seems desirable to concentrate
most of the points close to cos8=1. For example, at
E=9.66 we saw that for eleven evenly spaced points
Aap/$= 134. For nine points at cos9= 1, 0.98, 0.94, 0.87,
0.71, 0.26, 0, —0.71, and —1, we found Dao//=95.
Third, it is of course desirable to have as many points
as possible. For 6, 11, 14, and 21 evenly spaced points
(E=9.66, fourth-order polynomial); Dao/)=423, 134,
100, and 75, respectively.

It is beyond the scope of this work to provide a
definitive answer to the experimental question of the
optimum values of the parameters for the purpose of
the extrapolation. An attempt has been made in this
section to discuss the most important factors. In
Sec. III D a calculation will be made of the electro-
production cross section in order to translate Eq. (2.12)
into an estimate of the maximum percent error corn-
patible with a significant extrapolation. It is desirable,
of course, to carry out this calculation at the most
favorable value of the parameters. In order to consider
a more familiar parameter, let us introduce the equiva-
lent photoproduction energy k», defined by

In Fig. 5 this factor is plotted against E for two extreme
values of p. If one chooses &=0 or tr, the size of the
residue decreases with E. This decrease is, however,
greatly outweighed by the more rapid decrease of dao/$
with E shown in Fig. 4. The conclusion indicated is that
unless experimental conditions create very strong vari-
ations with E in the absolute accuracy attainable, high
values of E are desirable.

On the other hand, if E is too high, one will be forced
to use a polynomial of higher than fourth order to
fit f(x); i.e. , D waves will become important. The
machine calculation of (FF ')Oe showed that the error
increases markedly with the order of the polynomial.
The error was calculated in the same manner as for

Fro. 5. The variation of
the symmetrized residue at
the pole as a function of E
for various p at Tl,——700
Mev and P =10.
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to final pion-nucleon state:

T= $eg,/(22r) '"Jj .e. (3.2)

eq = eQ(s )razz(s)/X. (3.3)

'l'his form applies to both electroproduction and photo-
production. In the latter case, ~ is proportional to the
polarization vector; in the former, e has to lowest
order in e the value

0
60 70 80 90 I 00 I I 0

E in units of p.

to laboratory quantities, denoted by the subscript. I.:

As pointed out in DY, the time components of j and e

can be expressed in terms of their space components by
means of the continuity equation. This is useful in
adapting photoproduction results to electroproduction.

The cross section can be written
X= 2Tz&2z (1—cost/),

E'= M' X+2M(—Tz ezz,), —
62= 2M (E21,—M).

(2.15)

(2.16)

(2.17)

do. u2g2 (E ~
'

dI' zrzMszX E Mi
(3 4)

Here P is the laboratory angle between the initial and
final electron directions. In Eq. (2.15) the mass of the
electron has been neglected compared to its momentum.
From Eqs. (2.15) and (2.16) we find

E2 =M2+ 2M T-z, X1+— (2.18)
T1,(1—cosP) .

For a given X, the maximum value of E' is obtained for
backward scattering, tp=zr. Conversely, tp=zr also gives
the maximum value of X permitted for a given E and T~
(see Fig. 6). By increasing Tz, one can obtain higher
values of X.

III. ESTIMATE OF ELECTROPRODUCTION
CROSS SECTION

A. General

In order to assess the difficulty of carrying out the
proposed extrapolation, one must estimate the electro-
production cross section as a function of cosg, with the
parameters X, 8, Tl, , and @ held fixed. A general treat-
ment of the electroproduction problem has been given
by Dalitz and Yennie (hereafter DY)." The most
recent calculation, based on the photoproduction theory
of Chew, Goldberger, Low, and Nambu, "was made by
FNW. In this section a treatment will be given which
relies heavily on the aforementioned papers, but which
treats somewhat differently the corrections due to the
finite mass of the nucleon.

Define the T matrix
m'M'

$2;=bz; —zb'(P'+q+s' —P—s) i i Ti;. (3.1)
EM2E1E2ele2 i

The T matrix element can be expressed in terms of
the current j associated with the transition from nucleon

'6 R. H. Dalitz and D. R. Yennie, Phys. Rev. 105, 1598 (1957)&

quoted in the following as DY.

where the dimensionless quantity 4 has the value

(2M)'(M~ '
~

—
~ p g„zy,(2s~s" s'k" s"k—4 'X—g&") (—3 5-)

EEi

We must now develop an expression for the current j.
B. Dispersion Theory of Photoproduction

and Electroyroduction

The most successful calculation of photoproduction,
given in CGLN, is based on the method of spectral
representations. This calculation was extended to elec-
troproduction by FXW. At the values of the experi-
mental parameters suggested in Sec. II C, namely
Tl.——700 3Iev and k»=500 Mev, the approximate
solutions of the dispersion equations given in CGLN
cannot be expected to be very accurate. The solutions
are based on neglecting terms of higher than first order
in p/M, co/M, and

~
k~/M. When k~h ——500 Mev and

X= 10,
~

k t/M=0. 56. An indication of the accuracy of
the CGLX formulas can be obtained by comparison
with photoproduction data. Although photoproduction
of neutral pions from protons is in excellent agreement
with the CGLN theory up to 450-3Iev lab energy, '"
positive-pion production shows poor agreement above
300 Mev. A summary of the comparison of theory and
experiment in positive-pion production is given in Fig. 8
of the paper by Lazarus, Panofsky, and Tangherlini. "
The lack of quantitative success of the photoproduction
theory at high energies need not discourage us much
here. The theory gives a semiquantitative fit, which
should be quite adequate for the purpose of estimating
the difficulty of the proposed extrapolation.

Let us now consider those aspects of the dispersion
theory of electroproduction which are most important
for our calculation, referring the reader to FNW for a

"McDonald, Peterson, and Corson, Phys. Rev. 107, 577 (1957).' Lazarus, Panofsky, and Tangherlini, Phys. Rev. 113, 1330
(1959).
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more detailed account. The dominant terms in the
amplitude for the production of positive mesons are the
renormalized electron-charge Born approximation j&
and the resonant magnetic-dipole amplitude j~. The j&
term is

F.P ) (2it —k)"
jn"——u(P') 2y,

+2+)i2

~ (p+~)+M
y"Fi"() )

y (p —II)+M—y"Fi"P.) F2 . (3.6)
(p —q)

2—M'

The first term, arising from the diagram of Fig. 2,
contains the pole on which the extrapolation is based.
Note the presence of the pion form factor, which was
set equal to unity in FNW. The proton form factor
Fii'(l() is quite well known from the electron-proton
scattering experiments by Hofstadter and collaborators.
For Fp(l(), the assumption Fi"(X)=0 will be made.
At present experimental results indicate that no large
error is made by this assumption at the value A = 10@'.I9

The resonant magnetic dipole term is

2M(E —M)g2I ql'~22
f ))(6) —~

3E(2E2o)2
—1)'

(3 9)

corrections to some extent when one uses experimental
values from pion-nucleon scattering for the phase shift.
In fact, the CGLN formula for photoproduction of
neutral pions, which is dominated by j~, has been
shown to agree well with the experimental data'~ up to
450-Mev photon laboratory energy.

In order to gain further conMence in the use of the
amplitude j,~ at energies well above resonance and at
values of X up to 10, which is to be used here, let us
examine how the speci6c form of j~ arises in the CGLN
theory. In their notation M&+ is essentially our j~.
They found [CGLN Zq. (13.1)$ a simple proportion-
ality accurate to order f2/M, of Mi+ and the corre-
sponding pion-nucleon scattering amplitude f,+. If we
wish to use this result at energies well above the (3, 3)
resonance energy, the important question is: How
large a deviation from Fq. (13.1) of CGLN occurs when
higher-order terms in p/M become appreciable? A par-
tial answer to this question can be obtained by con-
sidering the Born-term contributions to Mi+ and fi~.
By a straightforward but lengthy projection, one ob-
tains, neglecting D waves and higher waves and setting
p= 1)

I" D where V),2= [(M+Ei 2)/2M/i. For electroproduction,
ji)r= —— (fl[2qX~ —2q((r &)+2(r(q k)]l2), (3.7) which reduces easily to photoproduction when X=O,

3f 2M the nucleon-current part of the electric Born terms gives

fj,v(l()
D= e"» sinb33.

6f'l ql2
(3.7') evf

~&+r
3

(3.10)

where

M'U&U2

E (2E2o)2 1)

(3 1o')
(E,+M) (2E,o)2 —1)

The anomalous-moment Born term gives

p, '~gM UgU2

(3.8)JB+I3I.

Additional resonant terms arising from the meson
current will be neglected here, along with corrections to
the Born-approximation values of the 5-wave and small
I'-wave amplitudes. In this approximation the complete
expression found by FNW for the current j consists
of j~, of the static limit of j&, and of recoil corrections
of order f2/M.

An alternative procedure, which will be employed
here for including recoil corrections, is to use the com-
plete covariant expression j& instead of its static l'

i.e., set

Except for the small part of p~ that arises from the
anomalous moment, this expression includes all the
p/M terms in FNW. In addition, by avoiding the
expansion of j2) in powers of 1/M, it includes some of
the higher-order corrections which have been dropped
in FNW. One might hope that these corrections which
have been included are the more important ones. The
magnetic dipole amplitude j~~ already includes recoil

"Wolfgang K. H. Panofsky, 105$ Annz&al International Confer-
ence on High-Energy Physics at CERN, edited by H. Ferretti
(CERN Scientific Information Service, Geneva, 1958). See
especially p. 18.

kp
X 1+—— + (3.11)

2(Ei+M) 2(2Eio)2 —1).

Recalling that pv(Ii) =p'v()()+ev(X)/2M, we find that
the simple proportionality,

1
(Mi ))(+)+Mt &(+))— Mi ))(+)

p (~i)= r- fr+"(~), (3.12)—
2fl ql'
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is exact to order p/M with r = 1. Calculating the exact r
from Eqs. (3.9), (3.10), (3.11), and (3.12), one finds for
photoproduction at 260- and 400-Mev laboratory
energies that r=0.990 and 1.007, respectively, whereas
for electroproduction at k, h=500 Mev and X=10,
r=0.932. Thus in photoproduction the simple propor-
tionality of the Born terms is retained well above the
(3, 3) resonance energy; even for electroproduction, up
to at least the stated values of k, h and ), the value of r
can be set equal to unity with sufficient accuracy for
our PurPoses. The exPression (3.7) for jar will therefore
be used as it stands.

One further comment should be made about Eq. (3.8)
which will be used for j, namely, that the inclusion of
both jg and j~ results in counting one term twice. We
have seen above in Eq. (3.10) tha. t js contributes to
the amplitude iV~+, (+). This contribution is included
in j,~ and should therefore be subtracted out of jg.
Equation (3.10) shows that the quantity that should be
subtracted from j is

e~E
F,+(f L2q)&k —i(e k)q+i(i1 k)e7Ii).

6M2

D. Calculation of the Electroproduction
Cross Section

Having developed and investigated a formula for j,
we are ready to proceed to a calculation of the electro-
production cross section. Since the machinery for the
calculation has been set up in Sec. III A, we need only
insert Formula (3.8) for j into Eq. (3.5). Separating C

into the part coming from j~, from j~, and from the
cross term, we write

@=-C's++v+@'c (3.13)

For the magnetic-dipole term C~, one finds

laboratory energy of 400 Mev to see if Formula (3.8)
leads to better agreement. Unfortunately this does not
seem to be the case. As shown in Fig. 7, the calculation
led to an angular distribution almost identical to that
predicted by the CGLN formula. Nevertheless the
formula developed in this paper may be significantly
more accurate in the electroproduction case, where
recoil corrections can be more important.

where D is defined by Eq. (3.7').
The Born-term part of C can be evaluated covariantly

by substituting Eq. (3.6) into (3.5). The result is:C. Calculation of the Photoproduction
Cross Section

The formula (3.8) for j developed in the previous (] Eg2 g2 F 2

section avoids expanding the electric Born terms in
4'ii= — 4 g s g s'

powers of 1/M and may therefore include nucleon-
recoil effects more accurately than the CGLN formula. P 2

Since definite disagreement has been observed" in +
positive-pion production between the CGLN formula (&' M')'
and experiment, " a calculation has been made at a

—M'(X+ 6') + (p. h) (6'+2M')

Q2
2M'(P' &)+4—(P s)(P s')+—2(P s)(P' s)

numerically this term proves to be no more important
in the case to be considered than many terms already +(4/~)I (q'k&& )'+

I
&I'(s&&k)'7) (3 14)

neglected and will therefore be neglected also.

o 14

l2c

lo

+2(P.s')(P' s')+-I 2(p' h)(P. s)(P.s')
X

—(P &) (P s) (P' s') —(P &) (P s') (P'. s)7

8—
Cy

b 6-

4 t 1 t

IO 2050 45 l35 l80

Scattering angle in c.m. system ( deg )

FIG. 7. Photoproduction at 400 Mev. Solid line: prediction of
modified CGLN formula, Eq. (3.8). Dashed line: prediction of
COLS formula. Experimental points are those of Walker eI, al.~

—(p h) h(p') 7. (3.15)

In this formula the assumption has been made that
Fp(X) =0, and Fi"(X) =F2i'(X)=F2"(X)=—F~(X), and

the abbreviat, ion

h (p)
—= (2(g —h) „p„(2s&s"—s&h' —s"h"——,'Xg"") (3.15')

~Walker, Teasdale, Peterson, and Vette, Phys. Rev. 99, 210
{1955). has been introd. uced.
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Finally, the cross term is

2MVgV2 ReD

2F~ ( 2 2s k —X

I q k+-c,+ c, I

)tko' )
2.0—

l.5— ~c

X 2(2q —k) s—
(2s k —)t)(2q —k) k

kp2

2C2
+ 2

I ql
'

I
k

I

' sin'8+
Vt2 (6'+ 1) FIG. 9. The func-

tions A (8), 8(8), and
C{6) for @=0'.

I.O—

0.5—

-0.5—

- 1.0-

I ql
'

I
k

I
'(3—cos'8)

2M')*V&2 V2'

- I.5

-2.0—

+—I2(q kXs)'+Ctq k+C2q s] 45
I

90
8 (deg)

135 180

2(2s k—Ikl') C2.
(F. P~) —(3.16)

V 2

The following symbols were introduced:

co =E M)

Ct=(sXq) (sXk),
C = (k X q) (kX s).

(3.16')

2.0—

l.5-

The last term in Eq. (3.16) is the contribution of a term
that, following FNW, was added to j~ to restore gauge
invariance.

A numerical calculation of these formulas as a func-
tion of 8 has been made for the case discussed in
Sec. II C, namely

k ph 500 Mev, or E=9.657,

TI„——5.039=700 Mev.

Two values of the angle P I
defined in Eq. (2.9)j were

used: &=0' and &= 180'. From electron-nucleon scat-
tering experiments the value of F~ was chosen to be
F~(10)=0.62.'

In order to carry out the calculation it was necessary
to estimate the value of the phase shift 533 at E=9.66,
which corresponds to pion-nucleon scattering at 350
Mev. One cannot use the Chew-Low effective-range
formula at such a high energy. At 3 7 Mev, Chiu and
Lomon" find a significant deviation. In order to esti-
mate the phase shift at 350 Mev, the points of Chiu
and Lomon and one point by Willis" have been joined
by a smooth curve and the value b»=145' read oG at
350 Mev. This crude estimate should be quite adequate
for our purposes.

To make the dependence on the unknown form factor
F explicit, let us write

O'=A (8,&)P '+J3(8,&)F.F~+C(8&)F~'. (3.17)

The calculated dependence of A, 8, and C on 8 is
shown in Fig. 8 for &= 180' and in Fig. 9 for &=0'.
The physical meaning of the two values of g is illus-
trated in Fig. 10. Comparison of the two cases reveals
the fact that A depends very strongly on p. The origin
of this strong dependence is the term in brackets in the

l.O

FrG. 8. The dimen-
sionless functions
A (8), 8 (8), and C (8),
defined by C =AF ~

+J3F F~+CFpP, for
@=180'.

0,5

0 IE I I I

-05- ~

1.0-
8 /

-.5

FxG. 10. Illustration of the two
cases &=180' and /=0' in terms of
momenta in the system in which
p'+q=0.

00

-2.0—

0 45

e (deg)

135

S

2' H. Y. Chiu and E. I.. I.omon, Ann. Phys. 6, 50 (1959).
"Reported by Qreste Piccioni, in 1958 Ann@a/ International

Conference on High-Energy Physics at CERN, edited by B.Ferretti
(CERN Scientific Information Service, Geneva, 1958), p. 67.
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FIG. 11.A plot of the dimensionless function C, proportional to
the electroproduction cross section, for E=9.66, ) =10, TI,=700
Mev, p=m, and various values of the pion form factor.

following expression for A:
2 g2

L4(q s)(q s') —Xj. (3.18)
LF.) X(A'+1)'

The term A is of course the pole term which has been
discussed, but the extreme p dependence noted above
will be smoothed by the extrapolation procedure sug-
gested in Sec. II B. Recall that it is necessary to sym-
metrize the cross section as prescribed by Eq. (2.7) in
order to eliminate a branch point. The symmetrized 4
can equivalently be dehned as

This symmetrized C, is then the average of the P=m
case of Fi'g. 8 and the &=0 case of Fig. 9.

Before going onto the consideration of C, and its
extrapolation, let us note the dependence of the electro-
production cross section on the parameter F (10), with
F~(10)=0.62. Several cases are plotted in Fig. 11. One
interesting feature of this graph is that for any curve
F (10)=P, where /&0. 85, there is another very similar
curve corresponding to a different value of F (10).
This is illustrated in Fig. 11 by the curves for F (10)
=F~(10)=0.62 and for F =0.20.

Finally, Fig. 12 shows the calculated behavior of the
extrapolation function (5'+1)'C, at the end of the
physical region.

Cos 8

FIG. 12. The calculated behavior of the extrapolation func-
tion (6'+1)%, at the end of the physical region for the case
discussed.

IV. CONCLUSIONS

We are now able to apply the error estimates de-
veloped in Sec. II C. For example, recall that for one
case in which the cross section was measured at nine
specific points, the error was found to be Dao 100$.
If Dao is the error in (5'+1)'C, at the point 5'= —1,
then $ is the error (assumed constant) in C, at each
measured point. From Fig. 12 we see that if Dao&2 the
extrapolation yields no useful information. This requires
a constant absolute error in 4, less than 0.02. Figure 11
shows that if J =0.62, this means a percent error
ranging from 2% at 0=0 to 6% at 8=90' and 20% at
8= 180'. Even this estimated upper limit of accuracy is
considerably better than that achieved by Panofsky and
Allton' in an electroproduction experiment in which
only F. and X (not 6') were determined. Thus it appears
that the proposed extrapolation, although possible in
principle, will require experiments of great accuracy.
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