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tentatively ascribe this observation 1;o a 24-hour
variation in o,-particle intensity, but further experiments
are necessary to substantiate this e8ect.

Both the observation of an independent hourly
O.-particle intensity variation as well as the change in
the ratio of n particle to proton Qux between the balloon
Rights in 1957 and 1958 cannot be explained by the
action of a modulation mechanism only, which operates
on both primary components. One is led to suspect the
possibility of occasional production of primary n par-
ticles by the sun. The experimental evidence is scarce
and it cannot be justified to draw a more detailed
conclusion at the present time, but further experiments
should be directed towards answering this question.
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The analytic properties of two-particle transition amplitudes as functions of both energy and momentum
transfer are examined in perturbation theory. The modified Nambu representation previously proposed by
the author for expressing these properties is discussed in a little more detail. It is shown that, as long as the
masses do not satisfy certain inequalities connected with the existence of anomalous thresholds, the fourth-
order terms, calculated in the usual manner, satisfy the representation. The spectral functions are calculated
explicitly for spinless particles. The proof can be extended to the sixth order, but is not worked out here.
The modifications necessary when there exist anomalous thresholds are mentioned.

1. INTRODUCTION

'N a previous paper, ' a representation was proposed
~ - for two-particle transition amplitudes when both
the energy and the momentum transfer become complex.
This representation exhibits analytic properties of the
transition amplitude which are generalizations of the
analytic properties expressed by the usual dispersion
relations, in which one of the variables is kept fixed.
The representation is similar in appearance to one
proposed earlier by Nambu' for Green's functions;
however, it differs in detail and its validity is postulated
in a much more restrictive form.

*This research was supported by the U. S. Air Force under a
contract monitored by the Air Force Office of Scientific Research
of the Air Research and Development Command. The initial
stages were supported by the Atomic Energy Commission contract
of Columbia University.

' S. Mandelstam, Phys. Rev. 112, 1344 (1958).' Y. Nambu, Phys. Rev. 100, 394 (1955).

Double dispersion representations of this type have
not thus far been proved from the general principles of
quantum field theory. The usual dispersion relations
can be proved by examining the restrictions imposed by
causality on the four-point Green's function, provided
that the momentum transfer is sufficiently small. ' ' It is
unlikely that a corresponding proof can be carried out
in our case, or indeed that the representation follows
from these requirements alone. The general principles
of field theory contain much more information, since
the causality condition enables one to deduce analytic
properties of all the Green's functions, which are related
to one another by the unitarity conditions. It is there-
fore very possible that the representation is a conse-
quence of the general principles of field theory, but it

' Bogoliubov, Medvedev, and Polivanov (unpublished).
4 Bremermann, Oehme, and Taylor, Phys. Rev. 109, 2178

(&958).
s H. Lehmann, Nuovo cimento 10, 5/9 (1958).
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seems at present a matter of considerable difficulty to
carry out such a proof.

In the absence of a rigorous treatment making use ol
all the information available froin the general principles
of field theory, therefore, it should be useful to examine
the analytic structure of transition amplitudes in
perturbation theory. It is the aim of the present paper
to carry out such an investigation and, in particular, to
verify that the representation mentioned above is valid
in the lower orders. In Sec. 2 the representation is
discussed for the general reaction A+8 ~ C+D, and
certain features, such as the form of the representation
when subtractions are necessary, are discussed in more
detail than in reference 1. In Sec. 3 it is shown that the
fourth-order perturbation theory terms satisfy this
representation, and an explicit form for these terms is
given if the particles are scalar. The masses are re-
stricted to have values for which there are no anomalous
thresholds. It is pointed out that the sixth-order terms
can also be shown to satisfy the representation, but the
method used does not permit extension to general order.

In the final section the analytic form of the fourth-
order transition amplitude is examined when the masses
are allowed to take on values corresponding to the
existence of the anomalous thresholds of Karplus,
Sommerfield, and Wichmann. ' These authors dis-
tinguish two types of anomalous thresholds, those that
depend on one of the variables only and correspond to
similar thresholds in the vertex problem, and those that
depend on both the variables and have no analog in
the vertex problem. If only the first type of anomalous
threshold occurs, it will be shown that the double
dispersion representation still holds. The form of the
regions in which the spectral functions are nonzero is
slightly altered. If, however, the second type occurs,
the double dispersion representation breaks down, and
there will be singularities in the complex plane.

2. ANALYTIC REPRESENTATION OF
TRANSITION AMPLITUDES

Kinematics

We take the general case of the interaction of four
particles, A, 8, C and D, whose masses are M~, M~, M~,
and M4, though we shall frequently simplify the treat-
ment by assuming that some of the masses are equal to
one another. A single Green's function will describe
three possible reactions

A+8 —+ C+D, (I)
A+D —+ 8+C, (II)
A+C 4 8+D. (III)

I.et the four-momenta of the four particles be denoted
by p& p4, they will be taken as positive for incoming
particles, negative for outgoing particles. The squares

Karplus, Somerfield, and WichInann, Phys. Rev. 114, 376
(195').

of the energies for the three reactions will be given hy

s= (pi+ pz)', (reaction I) (2.1a)

t =(p. i+p,)', (reaction 111) (2.1b)

zz= (pi+ p4)', (reaction II) (2.1c)

(time-like vectors are taken as positive). They are
connected by the relation

s+ t+1=MP+Mzz+Mzz+M4' (2.2)

Owing to this relation, the scattering is characterized
by only two independent invariants. However, it will

prove most convenient to use all three quantities s, t,
and 0, and to take different pairs of these as independent
variables at different times. When an expression such
as A(s, t,zzi) is written down, it is implied that s and t

are the independent variables, and N~ is to be defined as
a function of s and t by (2.2). Similarly, in expressions
such as A (s,tz, zz) or A (sz, t,zz), tz and sz are to be defined
as a function of the other variables by (2.2).

It should be pointed out that the variable t, besides
being the square of the energy for the reaction III, is
also the square of the momentum transfer between A
and C in the reactions I and II (space-like if negative)
and u is similarly the square of the momentum transfer
between A and D in the reactions I and III.

Ordinary Dispersion Relations

The usual dispersion relation, in which t is kept
constant, has the form (for scalar particles)

1 t' A i(s &t, zzi)
A (s, t,zz, ) = —, ds' ————

x~ ~ct& s —s

Az(S )t,Z44)
ds'—,(2..3)

s s

where, as usual, the denominators are given small
negative imaginary parts. A & and A2 are the "absorptive
parts" associated with the reactions I and II, respec-
tively. M and Mb are the lowest masses which can
occur in the continuum of intermediate states in the
two reactions. If, as is often the case, the lowest inter-
mediate states are discrete, the absorptive parts will
have 8-functions at the corresponding values of s; for
simplicity, we shall not write them explicitly. The
dispersion relations will have this simple form only
if 2 tends to zero as s becomes infinite; otherwise they
will have to be modified by subtractions in the usual way.

Except for the case of forward elastic scattering, the
absorptive parts in (2.3) always contain contributions
from the unphysical region. This unphysical region may
be divided into two parts. If s approaches sufficiently
near the threshold and t is kept fixed, the angle of
scattering will become complex. If t is not too large, the
value of the absorptive part can be found in this
unphysical region from the angular-momentum expan-
sion. In addition, the lowest masses of the intermediate
states may be below the sum of the masses of the
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particles participating in the reaction. Between these
two mass values we shall always be in the unphysical
region. Such as unphysical region occurs, for instance,
in nucleon-antinucleon scattering or nucleon-anti-
nucleon annihilation into two pions, when it extends
from the square of the mass of the lowest intermediate
state (4p'), to 4M'.

If t is positive (time-like momentum transfer), the
greater part of, if not the entire, region of integration
in (2.3) lies in the unphysical region, and dispersion
relations have not been considered for this case. We
shall see, however, that they follow from the general
analytic representation for the transition amplitude.

As an absorptive part A~ in (2.3) is associated with
the reaction II, it is more appropriate to use the variable
u instead of s; the equation then becomes

1 (' Ag(s', t,u, ) 1 t" Ag(sg, t,u')
A =— ds'- +— ' du' ———.(2.4)

$ —$ ~~ iV b'-' Q —A

By interchanging the roles of -the particles in the
reactions, dispersion relations can also be obtained when
I or s is kept constant; they take the form

1 t" A~(s', t~,u) 1 I" A3(s&, t', u)
A =—

~ ds'— +— dt' , (—2.5)
aJ iv~2 s —s a~ iv;t

1 t." A2(s, t„~i') 1 r" A (3, s', t~u)
du' — —+— dt . (2.—6)I —u Z~ ~Vc~ t —t

Aa is the absorptive part associated with the reaction
III.

In the case of elastic scattering, two of the reactions,
I, II, and III will be identical. If, for instance, A and C
are nucleons, 8 and D pions, then the reactions I and
II will be identical. In the dispersion relation (2.4),
where the momentum transfer between the two pions
(or the two-nucleons) is kept consta, nt, the absorptive
part associated with reaction III, the pair-annihilation
reaction, will not occur at all. In the dispersion relation
(2.5), however, in which the momentum transfer
between the incoming pion and the outgoing nucleon is
kept constant, the integrand in the "crossing" term
will involve A3, the absorptive part associated with
reaction III. Owing to the contribution from the large
unphysical region, this dispersion relation has not. thus
far proved useful in phenomenological analyses.

Double Dispersion Representation.
The proposed representation of the transition

amplitude, as an analytic function of two complex
variables, is obtained by generalizing the analytic
properties given by the ordinary dispersion relations
in the simplest possible manner. It is assumed that the
transition amplitude is analytic in the entire space
of the two variables except for cuts along certain planes,
the location of the cuts being determined so as to lead
to the dispersion relations (2.4)—(2.6). Cauchy's
theorem then leads to the following analytic represen-

FiG. 1. Region in
which the spectral func-
tion AI3 is nonzero.

1 r Ag3(s, t') 1 t Ag2(s, u')
A~ ——— dt' —+— ' du'-

7r & t' t m" u' —u—
(2.8)

1 t' Ap3(t, u) 1
I

Ago( &us)

A2 ——— ' dt' —+— du' ——
,

—(2.9)

1 t Agg(s', t) 1 t Aga(t, u')
ds' +— du' —. (2.10)

7r& s' —s ~~ u' —u

This may be verified by a direct substitution of Eqs.
(2.8)—(2.10) in any one of the dispersion relations, when
(2.7) results. From (2.8)—(2.10) we see that the absorp-
tive parts satisfy dispersion relations in the momentum
transfer for their reaction when the energy is kept fixed.
The weight functions are A ~3, A ~3, and A «2 which, as
we have pointed out, are in the unphysical region. The
cuts therefore begin at points on the curve C in Fig. 1
and corresponding curves for 3~3 and A~~, i.e., a finite
distance above the thresholds M, , Mb, and 3f, . On
the other hand, as long as C approaches asymptotically

tation of the transition amplitude:

A „(s', t')
A =— ds'dt' — -+—' dt'du'

(s' —s) (t' t) m-'" — (t' —t) (u' —u)

1 r A i2(s', u')
+—i' ds'du' — ——. (2.7)

(s' —s) (u' —u)

As in the ordinary dispersion relations, there will in
practice be subtraction terms and the representation
will be rather more complicated than (2.7). The
spectral function 3~3 will be nonzero in a region of the
form shown in Fig. 1 (to the right of the curve C). The
equation of C has to be determined from the unitarity
condition; all that we can say now is that the curve
approaches asymptotically the lines s= M ' and /= M„'.
AI2 and 223 will be nonzero in corresponding regions.
It should be noted that the spectral functions are zero
in the physical region for any of the reactions, where
one of the invariants —the square of the energy —is
positive, while the other two- —the squares of the
momentum transfers —are negative.

The dispersion relations (2.4)—(2.6) follow from (2.7)
if we define the absorptive parts by the equations
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the lines S=M ' and t=M.', the absorptive parts A~,
Az, and Ap, as given by (2.8)—(2.10), will begin at the
expected thresholds.

Representation with Subtractions

I.et us return to consider the form the representation
(2.7) takes when —as is always the case in practice—
there are subtractions. Proceeding as we do for ordinary
dispersion relations, we may write the first term of (2.7)
in the form

(s—so)(t —tp) t A„(s',t')
~

ds'dt'-
(s' —so) (s' —s) (t' —tp) (t' —t)

s—so I" fi(s')

M ps $ Sp S $

fp(t')+- ' dt' +c, (2.11)
(t' to) (t' ——t)

1 r Aip(s, t')
f, (s) =— dt'

tp

1
I

Azo(s', t)
fo(t) =— ds'

zl~ s sp
(2.12)

1
I

A ip(s', t')
c=—,ds'dt. '——

(s' —so) (t' —to)

If, now, the scattering amplitude remains finite at
infinity, the first term of (2.7) can still be replaced by
(2.11) but fi, fz, and c will no longer be given by the
integrals (2.12), which may not even converge. On
treating the other terms of (2.7) in the same way, we
6nd that A is given by the representation

(s—sp)(t —to) t

A= ds'dt'
(t—to)(u —uo) t Azp(t', u')

+- dt'du'
(s' —so) (s' —s) (t' —to) (t' —t) zr' & (t' —tp) (t' —t) (u' —uo) (u' —u)

(s—so)(u —uo) I. A iz(s', u')
+ ds dQ—

zr' ~ (s' —so) (s' —s) (u' —up) (u' —u)

s sp I' fi(s )
ds

(s' —so) (s' —s)

fz(u')Q—Np t—to r" f,(t')
du' — + dt' +X. (2.13)

~ Mom (u up) (u u) zr ~ M~' (t tp) (t —t)

The first three terms will be referred to as "double
dispersion integrals, " the fourth, fifth, and sixth as
"single dispersion integrals. "If any of the reactions can
occur through a discrete intermediate state, so that
there are poles in the transition amplitude, they will be
represented by 5-functions in fi, fz, or fo, below the
thresholds M ', M&', and M,2. In perturbation theory,

it is found that the amplitude for scattering of scalar
particles (coupled with fermions) does remain finite at
large values of the variables, so that the representation
has the form (2.13).

For future reference we note that the dispersion
relations (2.8)—(2.10) must now be written

t—tp r

A, =fi(s)+ dt'
Aip(s, t') u —up ~ Aiz(s, u')

+ du
(t' —tp) (t' —t) zr " (u' —up) (u' —u)

(2.8a)

tp p Azo(t &u) s sp p Aiz(s ~u)
Az fz(u)+ Id—t—' -+

~

ds'
(t' tp) (t' t) —zr & —(s' —so) (s' —s)

s—so t. A„(s',zz) u —uo I' Azo(t, u')
A;= fp(t)+ ds' -+ du'

(s' —so) (s' —s) m " (zz' —up) (u' —u)

(2.9a)

(2.10a)

As the fourth term in (2.13) does not. depend on t, it
sects only the S waves in the reaction I. The succeed-
ing terms are purely real in the physical region, so that
the single dispersion integrals affect the absorptive
part of only the S wave. The absorptive part of all the
other waves is determined completely by the double
dispersion integrals.

The functions fi, fz, and fo will of course depend
on the values of sp and tp chosen. The subtractions can
be performed in such a way that these functions are
just the 5-wave absorptive for the three reactions. To
do this, we note from (3.8) that the 5-wave absorptive

part for the first reaction is given by
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1 I'
A i("(s) =- d(cos0) A i(s,t,ui}

1 ~«z( )e( A (s t') 1 r~ "b'('
( A (s,u)

dt dt' + dN. ~
du'

Zrr tbx ($) tax ($)j &ux(~) 4 t " ZrLubz($) uaI($) j~ uax(s) ~ u u

pr[tbx(s) —t,z (s)]&

t» (s) 1 u ubz ($)
dt'Aip(s, t') ln + du'Azz(s, u') ln-

t z($) zr[ubx($) u z($) j~ u u z($)
(2.14)

t x(s) and tbz(s) are the minimum and maximum values of t for the reaction I, and similarly for u,x(s) and
ubx(s). As t or u depends linearly on cos8 when s is fixed, the integrations over cos8 has been replaced by
integrations over these variables. We now see that we can rewrite (2.7) in the form

A =— ds'dt'Aip(s', t') )(
—/zzz(t', s')

~ (

—/i(s', t') ~+— dt'du'A33(t', u')(1)t'1/11(1
X (

—/zx (u', t')
l l

—
/xzx (t',u') (+—' ds'du'A zz (s',u')

(

—/zz (u', s')

1 ) s—sp
t

Ai, '(s') u up t Ap (u') t tp

X i
—/z(s', u') I+ ds' + du'

ku —u ) zr ~ 3f~' ($ sp) ($ $) pl ') Mb~ (u up) (u u)

(
" A, (') (t')

X, dt' +tz, (2.15)
(t' —t,) (t' —t)

where we have written /z(s', t') for

t' —t.,(s')
ln

t.i (s') —t» (s') t' —t bi (s')

The absorptive parts for the 5 waves then depend only
on the single dispersion integrals and those for the
higher angular-momentum waves only on the double
dispersion integral.

A+ —iy 2(pz p4)B, — (2.16)

we 6nd that the perturbation terms have the following

asymptotic behavior:

I.et us now consider the number of subtractions
required when the particles A and C are fermions of
spin —,. If we write the invariant scattering amplitude
in the form

t, ~ const, s —+ ~ A ~ const, B—+ const/s.

s, t, andu~ ~,

s —+ const, t or u —& p(), Re (A) and Re (B)~ const,
Irn (A) and Im (B)~ const/t (const/u).

A and B~ const/s.

s can be replaced by I in these limits since interchange of these variables simply interchanges the two spin-zero
particles. It is then easy to see that the representation must have the form

$—Sp
A = ds'dt'

A ip(s', t') Q—Qp f+ ' dt, 'du'
(s' —sp) (s' —s) (t' —t)

A 33(t',u')

(u' —up) (u' —u) (t' —t)

1 Aiz(s', u') 1 ~" (xz(s') 1 ( (xz(u') 1
(

" (33(t')

(s' s)(u' u) —zr~ x(r, 2 —s' —s pr" ibm u' u—
1 ( Bip(s', t') 1

I
B33(t',u') 1 ( Bzz(s', u') 1 (." /)z(s'} 1 (" /)3(u')

(s —s) (t t) zrp~ (t —t) (u —u) przl (s —s) (u u) zr ~ xx, s s ir & )(xb~ u —u
(2.17)
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We observe in particular that, in this case, there is no
over-all subtraction constant independent of both
variables. It is in fact true independently of pertur-
bation theory that the number of over-all subtraction
terms in a double dispersion representation is limited
(one for the case where all the particles are scalar, none
for all other cases). The presence of one over-all
subtraction term implies that the 5-wave amplitudes for
the three reactions behave like a constant at infinity,
whereas more than one over-all subtraction term
(involving polynomials in the variables) would require
at least one angular-momentum state for one of the
reactions to increase at infinity. However, the form
—2m(4:" sin5)w/q~ico~ of the scattering amplitude for
an individual partial wave (Im5&~0) indicates that it is
bounded at infinity. On inserting the kinematical
factors relating it to the invariant scattering amplitude,
we find that the latter must tend to zero at infinity,
except for scattering of scalar particles when it may
remain finite. We thus arrive at the result just stated.

3. EXPRESSION OF FOURTH-ORDER FEYNMAN
GRAPHS AS DOUBLE DISPERSION

INTEGRALS

Outline of the Method

We now wish to evaluate the fourth-order Feynman
diagrams and to show that they can be expressed in the
form of the representation we have been describing. In

order to simplify the discussion, all particles will be
taken to be scalar and the X&4 interaction term will be
omitted. Though greatly reducing the amount of algebra
to be performed, this assumption does not change any
of the essential features of the result.

The reducible graphs do not present any difhculty.
They are all functions of one of the variables only, and
may be represented by modifying a vertex part or an
internal line in a second-order diagram. The modified
vertex part or internal line can then be expressed as a
dispersion integral in the mass of the internal line. That
it is possible to do so is now a well-known fact for the
internal line, and has been proved in perturbation
theory for the vertex part, ' ' though in certain cases
there may be anomalous thresholds. On inserting these
dispersion integrals into the formulas for the scattering
diagrams in question, it follows at once that the scatter-
ing amplitude satisfies a dispersion relation in the
variable on which it depends, again with the possible
occurrence of anomalous thresholds.

The reducible graphs thus contribute only to the
single dispersion integrals in (2.13). In this case they
tend to zero at infinity, so that they can be written
without subtractions.

We are left with the irreducible diagrams, which are
all topologically identical with Fig. 2. For simplicity we
shall suppose all masses to be equal. The amplitude
corresponding to this diagram is then given by the
formula

a(4 '~=
(2~)'" E(Pi —v)' —~'jL(Pi+P2 —9)'—~'3L(P3+v)' —~'j(v' —~') (3.1)

imp-q
I

E. M(

H

M6 pj+P2-q

p+q „
3

Ms F

M5 q.

G

FIG. 2. Fourth-order per-
turbation graph for the re-
action 3+8 —+ C+D.

The 4 in the superscript is the order of the perturbation
theory, and the superscript (i) is to indicate that we are
not dealing with the entire fourth-order amplitude.

The integral (3.1) is a function of the two invariants
s and t. The method of procedure will be to show that,
if t is fixed, real and negative, this integral is an analytic
function of s with no singularities in the complex plane.
A dispersion relation can therefore be written for A &4 ".
The imaginary part which appears in the integrand is
next calculated explicitly by examining (3.1). It will
then be seen that A" " can be brought into the form
of the first term of (2.7).

The easiest way of showing that A'4 ') is an analytic

function of s for fixed negative t is to parametrize it in
the usual way [see, for instance, Karplus, Sommerfield,
and Wichmann, ' Kq. (9)j. If s is complex, it is not
difficult to see that the denominator of the integrand
never vanishes over the range of integration of the
parameters. This is true whatever the values of the
eight masses in Fig. 2, as long as each particle is
energetically stable, i.e., its mass must not be greater
than the sum of the masses of the other two particles
meeting it in one of the vertices. If in addition the
condition for the existence of anomalous singularities is
not met, the denominator also never vanishes if s is
real and below the expected threshold. It then follows
immediately that the integral is an analytic function of
s with no singularities in the complex plane or below
the expected threshold. A'4" can thus be written in
the form

1 t." ImA &4 "(s',t,444)
A'4 '&(s, t,li) =— ' ds'

7I ~ (2.ili' s —s

(t real and (0). (3.2)
7 Karplus, Sommerfield, and Wichmann, Phys. Rev. 111, 1187

(1958).
Y. Nambu, Nuovo cimento 9, 610 (1958).' R. Oehme, Phys. Rev. 111,1430 (1958).
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It should bc noted that not all dispersion relations
can be proved in fourth order with such ease. The
dispersion relation for 3&"' with I instead of t fixed, for
iristance, does not follow from this type of reasoning.
Grisaru" has examined a comparable case for nucleon-
nucleon scattering. We shall not look at such cases
directly, as all the ordinary dispersion relations follow
from the double dispersion representation.

Calculation of Im(A)

Returning to consider the imaginary part of (3.1)
which must be inserted into (3.2), we proceed along the
lines of reference 10. We take (3.1) in the center-of-mass
system of the particles, with the momentum transfer
in the y direction and the s direction perpendicular to
the scattering plane. As we have pointed out, part of the
range of integration in (3.2) is in the unphysical region
and represents scattering through an angle whose
cosine is less than —1. In this region, the x-components
of p, and po, which occur in the first and third factors of
(3.1), will be purely imaginary. However, the imaginary
components occur only in the form (p» —q,)' and
(p„—q,)', and the remainder of the integrand is an
even function of q, . On integrating over q from —~ to

therefore, the imaginary terms arising from this
source cancel out.

Each of the four factors of (3.1) really consists of the
sum of a principal part and an imaginary 6 function. It
might therefore naively be supposed that, if these two
parts were separated and the resulting expression
multiplied out, those terms containing an even number
of 6 functions would give the imaginary part. The
integral over the product of the four principal parts can
easily be shown to vanish. The product of the four
6 functions also vanishes in our case, as it will be seen
below that their arguments can never be zero simul-
taneously. We are left with all possible terms which are
products of two principal parts and two 5 functions. By
looking more carefully at the integral, we 6nd that this
procedure is not correct and must be modified as
follows: write each factor in (3.1) in the form

(qo
—Po)' —(q —p)' —Moio (qo

—Po)2 —(q —p)' —M'

Z7r

'{qo—Po+[(q—p)' —M' —203'')
2qo

Z7r

&{qo-po —L(q- p)'-M' —2 3') (3 3)
2qo

Expand out the product. , and examine the terms
containing two principal parts and two 6 functions. If,
in a particular term, the arguments of the two 8 func-
tions have inhnitesimal imaginary parts of opposite

"M. T. Grisaru, Phys. Rev, 111, 1719 (1958),

sign, multiply the term by two. If they have imaginary
parts of the same sign, do not include the term.

We have therefore to investigate what products of 6

functions from two diferent factors of (3.1) can be
nonzero, i.e., can have arguments which are simul-
taneously zero. The argument of the 6 function is zero
when the four-momentum of the corresponding internal
line in Fig. 2 is on the mass shell. Two adjacent internal
lines cannot be on the mass shell simultaneously, as
this would imply that one of the vertices had three real
lines, which is impossible, even if the p s can have their
first component purely imaginary. Further, the two
opposite lines E and P cannot be simultaneously on the
mass shell and have 5 functions which contribute to
ImA &4 ", as, assuming this to be the case, we can easily
derive a contradiction. The arguments of the 5 functions
are

and

—pio+qo+[(p, +q)'+M' —20jl,

poo+qo+[(po+q)'+M' 20j'*—

If they are to be zero and have imaginary parts of
opposite sign, the two fourth components pio —

qo and

Poo+qo must have the same sign. As the two lines are
both on the mass shell and therefore timelike, and the
fourth components of their momenta have the same
sign, the sum of their momenta must be time-like.
However, the sum of their momenta is equal to t and
is therefore, by assumption, space-like. It is therefore
impossible for them to be simultaneously on the mass
shell and to have 5 functions which contribute to
Imp~4 ).

We are left with the case where 6 and H are simul-
taneously on the mass shell. The arguments of the two 6

functions are then

qo (pl+P2)0~(q'+M- '—20)'*, (»ncepi+p2 0)

qoa(q'+M' —20)2.

If their imaginary parts are to have opposite sign, the
energieS Of the lineS G and H, equal tO (pi+p2)o —

qo

and qo, must have the same sign, and must therefore be
positive, as the incoming pion-nucleon state has
positive energy. On combining the 8 functions with the
principal part of the other two factors, and multiplying

by&functions to restrict the signs of qo and (pi+ p2)0 qo

to be positive, we obtain for ImA &4 ')

The arguments of the 8 functions vanish when the
internal particles 6 and H are on the mass shell, and we

4 1
Imx (' ') = d'q

{(Pi —q)' —M') {(Po+q)' —M')

Xe(qo)~{(pi+P2) o
—qo) ~(q' —M')

yg{(p,+p, —q)' —M') [s) (2M)'$. (3.4)



STANLEY MA i% D ELSTAM

have seen that they must have positive energies. We
may therefore consider G and II to form a real inter-
mediate state. As four-momentum is conserved at the
vertices of a Feynman diagram, and the initial and
final states are taken to be in their center-of-mass
systems, this intermediate state is also in its center-of-
mass system. The two integrations in (3.4) remaining
after the 8 functions have been taken into account
reduce to integrations over the direction of the particles
in the intermediate state, which we shall denote by
n;. There will be a factor from the 8 functions equal to
1/(4qw), where q is the center-of-mass momentum and
w the center-of-mass energy (equal to s&). The term

(p&
—q)' in the denominator of (3.4) is now just t,„the

square of the momentum transfer between the incoming

particle A and the intermediate particle G. (p4+q)' is

similarly t;„ the square of the momentum transfer
between the intermediate particle G and the final

particle C. Thus (3.4) takes the form

g'q
I

1
Imd {' ') =—— d'~,

(t,.—M') (t;.—M')

[s) (2M)']. (3.5)

In order to perform the integrations, t;, and t;, must
be expressed in terms of the cosines s;, and s,, of the
corresponding angles by the relations:

t e(34 )02q (&(e(4oi 1)~ (3.6)

s;. is given in terms of s;. and s, the cosine of the angle
of scattering from the initial to the final state, by the
relation

s,.=ss;,+ (1—s') '*(1—s;,2)
*

cosy, (3.7)

p being the azimuthal angle between the plane of
scattering and the direction n;, with the direction of the
incoming particles taken as the pole. On substituting
the expressions for t,„ t,„and s,, into (3.5), and
rewriting the integral over n; as an integral over its
co-ordinates s;, and (t, we obtain

g4q ~1
ImA" '=—

~ ds, ,
32K' 18 i o

d$
[2q'(s.;,, —1)—M'](2q'[ss;, + (1—s') (1—s;P) cosp —1j—M"-}

(3.8)

we find that

q'= (s—4M')/4, (3.9)

The integral can be evaluated and, after transferring
from s to t by (3.6) and expressing q in terms of s by the
formula

form of the dispersion relation (2.8), into (3.2), to give

A i 4
"&(s', t')

A" "(s,t,444) =—
~ ds'Ct' . -(3.15)

(s' —s) (t' —t)

ImA" "= 1 44(S,t)+ (q/Sl) [K(S t)]i—ln
164r(K(s, t) }' n(s, t) —(q/~') [K(~,t)]'

We have thus verified that A" " can be written in the
form of the representation (2.7), with only the first
term contributing. The boundary of the region in which
3~3(" is nonzero is given by

=0, [s( (2M)']
[s) (2M)'] (3.10)

st 4M'(s+t)+12M—4= 0. (3.16)

where
«(s, t) =4st[st 4M'(s+t)+1—2M4]) (3.11)

n(s, t) =st 2M's 4M't+—6M'. — (3.12)

where

1 ( A„(4~(s,t')
ImA" "(s,t,444) =— ' dt' (3.13)

A „('~(s,t) = —1/(8[ (s,t)]l},
K)0, t)0, s) (2M)' (3.14)

=0 otherwise.

Our final step is to substitute (3.13), which has the

Expression of A as a Doub1e Disyersion Integra1

It now follows at once that ImA&4' satisfies a
dispersion relation of the form (2.8). The right-hand
side of (3.10) is an analytic function of t in the complex
t-plane, except for a cut along that portion of the real
axis where ~ and t are both positive. The discontinuity
across the cut is —1/{4[K(s,t) 1'}.Hence we may write

Equation (3.16) has the form of the curve C of Fig. 1,
and approaches asymptotically the lines s=4M' and
t =4M'.

Equation (3.13) has only been established for t real
and negative. We can however define an analytic
continuation of 2 for all values of t by this equation.
It is then necessary to verify that 3 is given correctly in
the physical region for reaction III, where t is positive,
by (3.13). We could do this directly by repeating the
same procedure with Fig. 2 turned through 90', it is
then found that A(' " is given by (3.15) as long as s
is real and negative. This, however, is not really
necessary, as the Feynman integral (3.1) and the
expression (3.15) are both analytic functions of s and
t,, so that, if they are equal in a region, they are equal
everywhere as long as we are on the same branch. Now,
on passing from the region in which t is real and negative
to the physical region for the reaction III, the only
branch point of (3.15) which has to be crossed is at
t=4M', the threshold for this reaction. The sign of the
small imaginary part to be included in the second
denominator of (3.15) will depend on the manner in
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which we go round this point, and it is not diS.cult
to verify that, corresponding to the small negative
imaginary parts in the denominators of the Feynman-
Dyson integral, we must maintain our convention and
insert a small negative imaginary part here. The
scattering amplitude is therefore given correctly by
(3.13), with the usual convention concerning the
imaginary part, in the physical region for the reaction
III.

The other fourth-order diagrams are obtained by
interchanging some of the external lines in Fig. 2.
This has the eGect of interchanging a pair of the
variables s, t, and N, and these diagrams will therefore
correspond to the second or third terms of (2.7). The
spectral functions will again be given by (3.14), with
the appropriate change of variables. The property
of fourth-order perturbation theory that one Feynman
diagram corresponds to a single term of (2.7) is not
maintained in higher orders.

The Genera1 Mass Case

We shall conclude this section by generalizing the
procedure to the case where all eight masses are
different. Instead of (3.5), we now have

s,.'= {q.'+qP+Ms'
—L(M3'+q') **—(Ms'+q")'j'}/(2q'q. ), (3 2ob)

and there will be a corresponding equation connecting
s with t:
s= {q,'+q.'+t

—[(MB+q 2) *' —(M/+ q,') *'$'}/(2q,q.). (3.20c)

The formula connecting q with s is

q'= [s'—2s(M '+Mb')+ (M '—M&')']/(4s), (3.20d)

where M and 3fy are the masses of the particles in the
state in question (Mi and M2 for the initial state, M5
and M6 for the intermediate state, and M3 and M4 for
the final state).

On expressing z,, by (3.7) and performing the
integration over s,, and @, we obtain the formula

Ima (' ') =
16'q,q.q~W {.k(s, s;,',s;,') }l

s—s,,'s,;.'+ [k(s,s,,',s,.') ll
Xln, (3.21)

s —s,,'s;.' —[k (s,s;,',s,,') ]-'*

g qi 1
ImA &4 '& = — d'n,

32'-'w~ (t'.—Mv') (t'0 —Ms')

where

k (z,s;.',s;.') =s'+ s;,"+s;."—1—2sz, ,'s,,'. (3.22)

q; denoting the center-of-mass momentum of the
intermediate state. The equation connecting the
momentum transfer. and the cosine of the angle is, in the
general case,

$ p=2q qpso, p
—

q~
—

qp

+[(M '+q ')'*—(-%'+qs')'*3'

where q and qp are the center-of-mass momenta, and
M and Mp the masses, of the particles between which
the momentum transfer is to be found. It is more
convenient to work in terms of cosines of angles than
of momentum. As t;. and t;. are linearly related to s,,
and s,„with constants of proportionality q,q; and q,q;
(q, and q. being the center-of-mass momenta of the
initial and final states), Eq. (3.17) may be written

32K' qcqoqsM

'X d'n; ——,(3.19)

The right-hand side of (3.21) is an analytic function of
s, except for a cut running from the value si, where

si =s;,'s;,'+ (s;,"—1)l(s;.'2 —1)'*, (3.23)

to infinity. The discontinuity across the cut is
—1/{4[k(s,s,,',s,.')]l}, so that (3.21) may be written

gImd(4"=—
8x'q cqoq tm

(s) si)
Sq,q.q,W{k(s,s,.',s;,') }'

X «'-, (3.24)"zi {k (s',s,,',s,.') }
* s' —s

where the lower limit si is given by (3.23).
Since t is linearly related to s by (3.20c), Eq. (3.24)

may be rewritten as a dispersion integral in t instead of s.
As in the simple case, we can then substitute this
dispersion relation into (3.2) and obtain (3.15), with
A»&') now given by the equation

=0. (s(si). (3.25)
where s,,' and s, ,' are the cosines of the (complex)
angles corresponding to momentum transfers t;,=My'
and t,.= M&'. According to (3.8), they will be given by

s,,'= {qP+q 2+M/
—[(M '+ q.') ' —(M '+q ') '3'}/(2q'q )

si is again the value of s in (3.23). The curve C of Fig. 1,
which bounds the region in which 2~3&4' is nonzero, is
thus given by (3.23). On inserting the values of s,,',
s;,' and s from (3.20) into (3.25) and (3.23), and
expressing q„q„q; and W in terms of s and the masses,
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Fn. 3. Definition of the mo-
menta used in Eq. (3.26).

Pis= Pi2+P23,

P24 P23+P34 ~

We further de6ne the variables"

(3.26)

xmas iy

x,,= (p,,'—m, —m,')/(2223, n3,),
(3.27)

(3,j= 1" 4).

Apart from proportionality factors and constant terms,
the variables x~~, x2~, x~4, and x~4 correspond to the
external masses, x24 corresponds to s and x~~ to t.
Equation (3.25) then reduces to the formula"

8nzim22233m4(Detx) i
or 0, (3.28)

we can obtain Ai3'4', and the curve C which bounds the
region in which it is nonzero, in terms of s and t.

For most cases of practical interest, in which not all
the masses are diGerent, it is probably more convenient
to work out (3.20) with the masses involved, and then
to substitute into (3.25) and (3.23), rather than to use
these formulas expressed in terms of s and 3 and general
masses M~ Ms. However, for the general case, the
result of the substitution assumes a neat form in the
notation of reference 6, so we give it here. The masses
and mornenta are now re-de6ned according to Fig. 3,
together with the equations

Vertical tangents

where

Ei=0, or E3——0, (4.1b)

E,=Detx;, ; 3j =1. 4; sj 82 . (4.2)

(4.1a) is the equation for the possible anomalous
thresholds which Karplus et at. find for the reaction
III, (4.1b) the equation for the possible anomalous
thresholds in the reaction I. We note that E,=O is the
equation for the anomalous threshold of the vertex
part obtained by contracting the line m, (Fig. 3) out of
the diagram.

If (4.1a) is solved for xi3, it is found that the solutions,
which we shall denote by L2 and L4, are always between
i and —i. If one or more of the masses is varied so that
the condition for an anomalous threshold of the reaction
III is approached, the solution of one of Eqs. (4.1a)
approaches i; let us suppose it is L~. It reaches i when

the type discussed by Earplus, Sommer6eld, and
Wichmann' occur. In that case the curve C of Fig. i is
always bounded by its asymptotes as shown, and the
representation (2.7) has its simple form. We now wish
to discuss what happens when there are anomalous
thresholds. Xo detailed discussion will be given, but
we shall merely indicate in what way the representation
must be modified.

We again use the variables (3.27). x(2 x23 x24 and
x~4 correspond to the four external masses, x24 to s, and
xi3 to t. The normal thresholds for the reactions I and
III are x24

——i, xg3= i.
If the region in which A ~3 is nonzero is to extend out

of the region bounded by its asymptotes, there must be
some point of horizontal or vertical tangency on the
curve bounding it. The equation of this curve is given
by (3.29), and it is shown in reference 6 that the
equations for the horizontal or vertical tangents are
(if x24 is plotted horizontally, x» vertically):

Horizontal tangents E2=0, or E4 0, (4'.1——a)

and the region in which it is nonzero is that portion of
the x~3—x~4 plane which 1.ies to the right and above the
curve:

Det x=0, xi3) 1, x24) 1. (3.29)

If the condition for anomalous singularities is fulfilled,
the inequalities in (3.29) have to be modified. As long
as this is not the case, the equation, when expressed
in terms of s and t, has the form of the curve C in Fig. i.

4. FOURTH-ORDER TERM WITH
ANOMALOUS THRESHOLDS

We have assumed thus far that the masses of the
particles were such that no anomalous thresholds of

» In order to have no reversal in sign between our new variables
and s and t, we have defined the x's to be opposite in sign to the
y's of reference 8.

"This can most easily be shown by a method due to T. W. B.
Kibble (to be published. ).

ei4+834 =2r,

I

(a)

I

y,

L4 Ls l

(cj

(bj ] y&&

L=L—3

&pp Lz=L~ "

(d)

FIG. 4. Behavior of the spectral function when
there are anomalous thresholds.

(4.3)



TRANSITION AMPLITUDES I N PERTURBATION TH EORY

where
H,,=cos '(—xg). (4 4)

It then decreases again from 1, and now represents an
anomalous threshold. Meanwhile, L4 increases towards
1, and the two solutions will cross at the point where

ei2+023+A4+~i4= 2~

If (4.1b) is solved for x~4, the solutions will behave in
the same manner. As (4.5) is symmetric in the indices,
the solutions of the two equations (4.1a), and those of
the two equations (4.1b), will cross simultaneously.
Beyond this point, we have the threshold behavior of
case (iii) of reference 6.

I.et us now study how the spectral functions behave
in these cases. We have seen that, in the normal case,
the curve bounding the region in which A» is nonzero
has the form of Fig. 4(a). As long as a horizontal or
vertical tangent does not meet one of the asymptotes,
it must continue to have this form.

Figure 4(b) indicates the behavior when I ~ has
reached, and moved away from, the line x» ——1. The
region in which A» is nonzero is now not bounded by
the asymptotes, but the scattering amplitude can still be
written in the form (3.15). This may be verified by
analytic continuation in the masses from the normal
case. A3, given by (2.10), is now nonzero if x» is
between L2 and 1. In other words, we have a typical
anomalous threshold.

When L2 and L-I are both anomalous thresholds, the
situation is as indicated in Fig. 4(c). We have shown
in addition the lines x»=L4, x24=L3. The curve drawn
below and to the left of these lines is also given by
(3.29), but it does not yet play a part in the analytical
structure of the scattering amplitude.

At the point given by (4.5), we have the situat:ion
indicated in Fig. 4(d). All the points of tangency now
coincide —if this were not the case, the equation (3.29),
if solved for x~4 when x» ——L~, would have two double
roots, which is impossible as it only involves x24 quad-

ratically. The scattering amplitude is still given by
(3.15), and the curves below and to the left of the lines
x» ——L4, x24=L3 play no part.

When the sum of the angles in (4.5) becomes greater
than 2n, we again have the situation in Fig. 4(c),
except that L2 and L4, and Lj and L~, are interchanged.
However, if we assume that (3.15) is true before we
reach this condition, and continue it analytically past
the point where the situation indicated in Fig. 4(d)
holds, the analytic continuation will no longer be of
this form (3.15). The scattering amplitude now has a
nonzero imaginary part in the area to the right and
above A13CD. That part. of the curve given by (3.29)
between 8 and C plays the role, therefore, of an
anomalous threshold which depends on all the variables
and has no counterpart in the vertex function. This has
previously been shown by Karplus, Sommer6eld, and
Wichmann' by examining the parametrized Feynman
integral. For values of x~4 between L~ and L~, the
absorptive part A& will have a similar analytic form,
as a function of xi~, to the normal case, [Eq. (3.10),
modified for nonequality of the masses] and its singu-
larities will again be given by (3.29). Now, however, the
solution of this equation will yield complex values of
xi3 (for real x24), so that Ai cannot be written as a
dispersion integral in x».

It is thus evident that, once the sum of the angles
8~~, 023, 0~4 and 8~4 is greater than 2m. , the representation
(2.7) will no longer hold. One can still construct, the
fourth-order term by analytic continuation in the
external masses from the normal case.
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