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Phase-Shift Analysis of Proton Scattering by Nitrogen
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A phase-shift analysis has been made of a set of angular distributions for the elastic scattering of protons
by nitrogen in the energy range 1.0 Mev to 3.0 Mev. Two independent S-wave phase shifts and one P-wave
phase shift of hard-sphere type have been assumed. Moderately good agreement with the nonresonant
scattering below 2.3 Mev and with the scattering at the —,'+ resonance at 1.557 Mev has been obtained,
indicating that the gross features of the scattering can be represented in this way. Between 2.3 Mev and
3.0 Mev the fits are poor. The results indicate a broad ~+ resonance at 2.32 Mev with a width of 0.55 Mev.

INTRODUCTION

A PHASE-SHIFT analysis of the low-energy elastic
scattering of protons by nitrogen is of interest in

two ways. In the first place it appears to be necessary
for the establishment of spin and parity assignments for
some of the observed resonances. ' In the second place
it will provide some information about the average
interaction between a nucleon and the X" nucleus
through the behavior of the nonresonant scattering. An
early report' stated that contributions from P waves
were small below 2.0 Mev. However, subsequent work
showed that the experimental cross sections used there
were low by about 10% and with the revised nortnah-
zation good fits using S waves only could not be
obtained. The next logical step in studying the problem
is to introduce P waves. However, due to the spin of
nitrogen, the introduction of P waves with full general-
ity involves a large number of arbitrary parameters,
substantially more, in fact, than can be obtained from
an analysis of angular distributions. It is thus necessary
to introduce some simplifying assumption. The present
work has been carried out using the assumption that
all of the phase shifts describing the P waves are equal.
Equality between the two S-wave and between the
various P-wave phase shifts will result if the scattering
is described by a potential well without spin-orbit
coupling. The assumption thus has some resemblance
to the "cloudy crystal ball" modep ' although it does
not include the complex part. Since this part serves
to transfer some of the particles from the pure "shape
elastic" process to "compound elastic" and reaction
processes, its neglect will be justified if the latter are
small or absent. For the present case particle reactions
are energetically impossible. Compound elastic processes
will be represented by transitions between different
channel spins which result from off-diagonal elements
of the E matrix. It is argued by Teichmann and Wigner'

'Hagedorn, Mozer, Webb, Fowler, and Lauritsen, Phys. Rev.
105, 219 (1957).' Gove, Ferguson, and Sample, Phys. Rev. 93, 928(A) (1954).

'Melkano6, Nodvik, Saxon, and Woods, Phys. Rev. 106, 793
(1957).An extensive bibliography is given here.' J. Bowcock, Proc. Phys. Soc. (London) A70, 515 (1957).

~G. K. Brown and C. T. de Dominicis, Proc. Phys. Soc.
(London) A70, 668 (1957).

e T. Teichmann and E. P. Wigner, Phys. Rev. 87, 123 (1952).

that such terms will be small in the nonresonant regions.
Independent phase shifts for the two states formed

by S-waves have been used. Although this departs from
the requirements of a simple well, any differences found
between the phases can be attributed to compound
elastic effects and the procedure has consequently
somewhat greater generality. An S-wave resonance will
be fitted with these parameters, and if the fits are good,
they will identify the spin of the state.

The experimental data used are those described in
the preceding paper. v Fitting of the angular distribu-
tions has been done by the least-squares method, the
required computations being carried out on the
Datatron computer at Chalk River. While the em-
phasis of the analysis is on the nonresonant scattering,
the fits have been carried through most of the resonances.
The immediate neighborhood of the resonances at
1.746 Mev and 1.803 Mev have been omitted as these
are unquestionably not S-wave ones. Below 2.3 Mev
the results are reasonably good, although with some
qualifications discussed later in detail. Above this they
are poor and suggest that a simple potential well is an
inadequate description of the situation.

THEORY

A discussion of charged-particle scattering analysis,
together with remarks on the number of parameters
involved, has been given by Christy. ' For the case of
nitrogen in the energy range considered, reactions do
not occur, and it is found that nine parameters are
required to include S and P waves with full generality.
Of these, seven are involved with the P waves. If
these are known to be absent, the formulation in terms
of S waves is simple, and fitting by hand calculation
relatively easy. That this simplification is inadequate
has been noted so that a single phase shift has been
introduced to represent the P waves. Three adjustable
parameters are thus used, two S-wave phase shifts for
the 1/2+ and 3/2+ states and the single phase shift
for the P waves.

It is of interest to consider the information content
of charged particle scattering. When S and P waves are

r Ferguson, Clarke, and Gove, preceding paper (Phys. Rev.
115, 1655 (1959)j.

s R. F. Christy, Physics 22, 1009 (1956).
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included in the most general way, the ratio of the dif-
ferential cross section to the Rutherford cross section
is found to be a linear combination of the seven linearly
independent functions of angle (1—ts)2Ps, (1—tt)'PI,
(1—tt)2P2, Ms, Xs, MI, and ZI which are defined below
An identity between the coeKcients reduces the number
of e6'ectively independent functions to six. Clearly no
more than six parameters describing the scattering can
be determined from an angular distribution. However,
it has been found that the situation is not as favorable
as this. Although the six functions are theoretically
linearly independent, when the angular range is
restricted approximate linear dependencies may arise.
Such a situation has been found near 2.3 Mev where it
was found that two of the functions could be repre-
sented to an accuracy of about 1/o by linear combina-
tions of the other four in the range 50' to 150'. Here
it is effectively impossible to determine more than four
parameters. This degeneracy may be removed by
extending the angular range and may disappear at
other energies. Its occurrence emphasizes the desir-
ability of measurements over as wide a range of angle
as possible.

The theory used is based on the work of Blatt and
Biedenharn' " in which the summations over magnetic
substates required when polarization is not observed is
effected with the aid of Racah coefficients. Under the
assumptions described above, the scattering cross
section is given by

do. (tt)/do It (ts) = 1+2Mo(sin'5'"++2 sin'est'+)

—21Vo (Sinb't2+ COSA'"++ 2 Sinb'"+ COSP2+)

+18MI sin'gr —18XI sin&I cos&I

+ (1 2)g 2P (p) (I sln251 2++ 2 sln252 2+

+3 sinspI)+2(1 —tt2)rt 2PI(tt) sin/I[sinbIt2+

&&cos(pt+2lbr —5'12+)+2 sinbst+ cos(/I+2/I —bst2+))

+6(1—tt')rt
—'P2(tt) sin'4 I. (1)

Here do (tt)/Ifott(tt) is the ratio of the observed differ-
ential cross section to the Rutherford cross section,
evaluated in the center-of-mass system, p is the cosine
of the angle of scattering 6'~'+ and 6'~'+ are the phase
shifts for the states of spin and parity 1/2+ and 3/2+,
respectively, and &I is the phase shift. for the P waves.
rt=Ze2/hv, Z being the atomic number of the target,
e the electronic charge, A Planck's constant, and v the
relative velocity of proton and target. lbr= tan Irt.

Po(tt), PI(ts), and P2(ts) are the Legendre polynomials
of degree 0, 1, and 2, and Mo, Eo, My, and X~ are

' J. M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952).

' A. J. Ferguson, Atomic Energy of Canada Limited Report
No. 157 (unpublished). This extends the charged-particle scat-
tering formulas of Blatt and Biedenharn to the case where a
general phase-shift representation is used for the nuclear wave
functions. Complicated cases such as those where resonances
overlap may be treated in this formulation. The formulas contain
some small errors.

functions" of angle and energy given by

(1—t)Po(t) . (1—t)~0= sin gin
3n 2

(1—tt) Po(tt) (1—tt)
&o= cos gin

2

(1—t)PI(t) .
sin gin

(1-t )
+2/I,

2

(1—tt) PI (tt)
Ag ——

(1-t )
cos I) ln +2lbr .

2

"These differ slightly from the similar functions given in
reference 10.

' See, for example, E. T. Khittaker and G. Robinson, Calculus
of Observations (Blackie and Sons, Ltd. , London, 1932), Chap IX, .
Sec. 109.

The fitted parameters are 5'I'+ b'"+ and pr. The
fitting has been done by the least-squares procedure.
Since the phase shifts occur nonlinearly, an iterative
procedure is required. The standard linearizing method"
was set up initially, but this procedure was found not
to converge on most of the distributions. Convergence
was secured by computing a correction to the normal
matrix involving the second derivatives of the theo-
retical cross sections with respect to the unknown
phases. It was found that for those cases that required
the correction term, the convergence was to a point
representing a singularity of the uncorrected matrix.
This clearly is the reason for the failure of convergence
in these cases, and it is believed that it arises from the
fact that an adequate fit is not available. This point
will be discussed subsequently.

The signi6cant correlations which exist between the
errors in the points of any one distribution due to the
uncertainty of normalization have been ignored. To
accommodate these would be a substantial complication
in the routine and the results would probably not be
significantly altered. Two solutions for the phase shifts
are ordinarily expected; in the cases of the singular
normal matrix noted above, the two solutions de-
generate into one with 6'"+=6'~'+

5'"+ Pt'+, and &I are given as functions of P. in Figs.
1, 2, and 3. When the two solutions for b'"+ and 8'~'+

are distinct, the preferred one is shown as a dot and
the second as a cross. The remaining points where the
solutions are coincident are shown as dots. 'Typical
angular distributions calculated from these phase shifts
are indicated by the solid lines in Figs. 6 and 7 of the
preceding paper. ' No points are shown at the sharp
resonances at 1.067 Mev, 1.746 Mev, 1.803 Mev,
2.343 Mev, and 2.458 Mev. At the S-wave resonance at
1.067 Mev the measurements have been distorted by
inadequate energy resolution and the phases were not
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Fxe. 1, Energy dependence of 6'I'+. The crosses are alternative
solutions, The series of solid and dashed lines labelled r= 0, —0.6
and —1.0 represent lines of constant logarithmic derivatives. The
solid line extending from 1.8 Mev to 2.9 Mev is the phase shift
used to fit the broad resonance at 2.3 Mev.

meaningful. The four higher ones are believed not to
be S-wave resonances.

The connection between the causality principle and
the resonance formulas is discussed by signer. "This
imposes a lower limit on the energy derivative of the
phase shift which is governed by the size of the scat-
tering system. Wigner gives for the derivative of this
phase shift relative to the wave number, k,

1 i—i' i*—IIX
8=— — +

2i I—I'E. I —I' E. [I—I'z[s

= &o+
f
I—I'R f'

Here I is the radial factor of the wave function for an
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I zG. 2. Energy dependence of 63f'+. The solid and dashed curves
indicate lines of constant logarithmic derivatives as in Fig. 1.
The solid line running from 1.8 Mev to 2.9 Mev shows the S-wave
hard-sphere phase shifts used in 6tting the 2.32-Mev resonance.

"E.P. Wigner, Phys. Rev. 98, 145 (1955l.

incoming particle and jV is the reciprocal of the loga-
rithmic derivative. The dot signi6es differentiation with
respect to k, and the prime signifies differentiation with
respect to the radial coordinate. The asterisk indicates
the complex conjugate. 80 is the k derivative of 8 for
R independent of k, i.e., independent of energy. The
essence of the development is that B&0, which im-

mediately gives b&bo. The limitation imposed by
causality can thus be conveniently displayed by
plotting families of curves representing A= const on a
graph of 8 versus energy. The slope of the curve of 8

cannot be less than that of any member of the family
which it intersects. The application of this principle to
charged particle scattering demands only that we use
charged particle wave functions' ' for computing the
family of curves.

These curves are indicated in Figs. 1, 2, and 3. In
Figs. 1 and 2 for the two S-wave phase shifts are given
the curves for r=0, —0.6 and —1. In Fig. 3 for the
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FIG. 3. Energy dependence of @&. The solid and dashed curves
indicate lines of constant logarithmic derivatives as in Fig. 1. The
solid line running from 1.8 Mev to 2.9 Mev is the P-wave phase
shift used in 6tting the 2.32-Mev resonance.

P-wave phase shift, the curves are for r=0, —0.25 and
—0.4. Here r=E/a where a is the nuclear radius and
has been taken as a=1.5A'~'X10 " em=3. 615)&10 "
cm. The curves given are adequate to display departures
from the condition b&bo. r=0 corresponds to the
vanishing of the wave function at the nuclear surface
and this curve is the ordinary hard sphere phase shift.
In the Wigner-Eisenbud theory E is given by

so that if R= ~, then clearly E=Ez, the energy of one
of the eigenstates of the nucleus. Thus at each resonance
the graph of the phase shift crosses that for E= ~,
which is not shown, but which lies somewhat above

'4Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.
Modern Phys. 23, 147 (1951)."Sharp, Gove, and Paul, Atomic Energy of Canada Limited,
Report TPI-70 (unpublished).



ANALYSIS OF PROTON SCAYTERI NG 8 Y N

the one for r =0. Cross sections are periodic in the
phase shift with a period x and the families A= const.
in the phase shift graphs repeat with this period.

DISCUSSION OF THE PHASE SHIFTS

Below 2.3 Mev the fits to the angular distributions
are moderately good, with the reservations discussed
below in more detail. Above this they are consistently
poor. It may thus be assumed that the phase shifts
represent the gross aspects of the lower energy scat-
tering. Inasmuch as they are not materially different
from the background phases used in earlier attempts to
fit the 1.746-Mev resonance, the difficulty that this
resonance has presented is somewhat surprising. Re-
garding the region from 2.3 Mev to 3.0 Mev, the
D-wave hard-sphere phases are rather small, and it
seems likely that the observed discrepancies result from
more complicated behavior of the P-waves.

An unexpected result is that for all but one of the
fits in the regions of energy away from resonances, 8'"+
and 6'l'+ are identical, or equivalently differ by integral
multiples of m-. This would arise from hard-sphere scat-
tering, or from scattering by a simple potential well.
However two aspects of these results indicate that in
general they are not physically significant. These are
the only solutions obtained in regions where the fit is
conspicuously bad, e.g. , above 2.5 Mev, and where the
formula is clearly inadequate to represent the scat-
tering. Secondly, the two parameters are statistically
completely correlated. This would ordinarily imply that
the normal matrix was singular and would prevent any
solution being found. In the present case the second
derivative corrections mentioned above have made this
solution possible. It is easily shown that it is always
present as a formal solution to the equations, although
in many cases it represents a saddle point and not a
true minimum of the fit. In this regard it is interesting
to note that without the second derivative corrections,
the normal matrix is positive definite and does not
admit saddle points.

The nature of these results can be illuminated by
introducing the transformation

A = sin'8"'++ 2 sin'8'i'+

8= sinb'~'+ cosbU'++2 sinb'~'+ cos6'"+.

6U'+ and P"+ are readily eliminated from Eq. (1) by
this transformation. In terms of A and 8, the cross
section is much less restricted than in terms of the 6's
if only real values are allowed. Real 6'~'+ and 6'~'+

limits A and 8 to an annular region in the A,B plane,
the outer edge of which is the locus for 6'"+=5'"+.
Equation (1) is not valid for complex phase shifts, so
that values of 3 and 8 outside this region are not ad-
missible. A least-squares fit with the parameters A, 8,
and gi converges without the introduction of second
derivative corrections. A number of such fits to typical
distributions have shown that where a nondegenerate

solution was previously obtained, the identical result was
found, while when only the degenerate solution was
obtained, a better fit was found which lay outside the
region of real 8's. In the latter cases the degenerate solu-
tion corresponded to a nearby point on the edge of the
real region. It is thus to be concluded that essentially
all of the nonresonant distributions correspond to points
outside the region of real phase shifts. This implies a
deficiency in the assumptions underlying Eq. (1).How-
ever, the fact that many of the degenerate fits obtained
are quite good ones shows that in these cases the defic-
iency is a small one.

Between 1.2 Mev and 1.4 Mev systematic differences
between the experimental points and the best theo-
retical curve are apparent. Degenerate phase shifts are
also obtained in this region. At this low energy the
presence of D-waves or higher ones is extremely unlikely
so that these anomalies must reAect more complicated
behavior of the P-waves. The most probable interpre-
tation is that channel spin mixing, i.e., transitions from
one channel spin to the other due to off-diagonal ele-
ments of the S-matrix, is occurring in the 1/2- and
3/2-states. While this has not been studied specifically
for the nonresonant case, studies of P-wave resonances
with a strong channel spin mixing have produced angu-
lar distributions with shapes characteristic of those
obtained in this region. Coupling of the spin of the
incident proton to its orbital motion or to the angular
momenta of the target nucleus will produce such
effects.

Nondegenerate solutions for the 5-wave phases have
appeared at the 1/2+ resonance at 1.557 Mev and in
the region from 1.9 Mev to 2.4 Mev. At 1.557 Mev, 8'~'+

follows the course expected for this resonance. However,
the energy dependences of both b'"+ and 6'"+ are
distorted here. For Pl"+ a dispersion-like anomaly is
present where a smooth variation is expected. The
energy dependence of 8'~'+ implies a width of 13 kev
whereas a fit made directly to the cross sections using
the one-level formula gives 34 kev. ' It may be remarked
that a phase-shift analysis like the present one will not
give good values for widths unless all of the parameters
show reasonable behavior. These anomalies are attrib-
utable to inadequacies of the formula such as appear in
the nonresonant regions. From 2.0 Mev to 2.4 Mev the
phases give a strong indication of a broad 1/2+ reso-
nance which will be discussed fully in the following
section.

BROAD RESONANCE AT 2.3 MEV

Between 1.9 Mev and 2.4 Mev the two solutions for
5'"+ and 8'"+ are distinct. The phase shifts from one
solution follows a course which would be expected for
a 1/2+ resonance, while those from the other give an
energy dependence for 8'~'+ that is incompatible with
the causality condition so that it can be discarded. For
the acceptable solution O'I'+ and @& show a reasonably
smooth behavior except at points where they are
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FIG. 4. Experimental and calculated yield curves at the 2.32-Mev
resonance at six different angles.

perturbed by the narrow resonances at 2.344 Mev and
2.468 Mev.

In order to interpret the scattering near 2.3 Mev as
a 1/2+ resonance, it is necessary to show that the
scattering cross sections are reasonably well approxi-
mated by smoothly varying potential phase shifts plus
a resonance phase shift for the 1/2+ state. In smoothing
the background phases we must expect the fits to be
impaired since this operation demands departure from
the best least-squares values. The result will be satis-
factory if the impairment is slight. If the smoothed
phases represent the average in a small energy interval,
then the resulting cross sections will be the average
cross sections over that interval.

b'~'+ is given by the formula'

-'F
2

tanpts+= +Re (4)
gp

where the 6rst term on the right-hand side gives the
resonance contributions and Rp gives the nonresonant
background. Ke assume that Rp is obtained from 6'"+,
i.e.,

tanb3~'+= Rp.

' This equation applies properly to the nuclear phase shift,—@0, in our notation, where @0 is the hard-sphere phase shift.
The correction of this inaccuracy will change the curves only
slightly, and as a formal 6t is not being attempted it has been
omitted.

where I' is the penetrability and p the reduced width
of the level.

8'~'+ has been calculated from Eqs. (4) and (5),
using for Ã'+ and pr the solid lines in Figs. 2 and 3
which run from 1.8 Mev to 2.9 Mev. The resonant
energy and width are Ep= 2.32 Mev and F=0.55 Mev.
The energy dependence of F through the penetrability
has been included, and the above value is the width at
Ep. This choice of resonant energy and width has been
made to force a fairly good 6t to angular distributions
at 1.99 Mev and 2.44 Mev. The solid line of Fig. 1
running from 1.8 Mev to 2.8 Mev shows 6'~'+ as cal-
culated in this way.

do/da. ~ computed from these phase shifts for six
diGerent angles are shown in Fig. 4, for the energy
range 1.8 Mev to 2.9 Mev. The solid lines represent the
computed results and the various circles, triangles, etc. ,
the experimental values. The cross section is fairly well
represented for the largest angles up to 2.4 Mev. For
angles less than 120', the fit becomes poor at about
2.2 Mev. Above 2.4 Mev neither the resonance 6t nor
the unrestricted one is adequate. Better agreement at
the smaller angles can be obtained by increasing Ep and
F, but this makes the 6t at higher energies even worse.

The N" (p,y)0" reaction shows a resonance-like
behavior in this region that has been interpreted by
Duncan and Perry" in terms of 5-wave resonance at
2.6 Mev with a width of 1.25 Mev. The resonant energy
is somewhat higher and the width substantially greater
than found from the scattering experiments. This dis-
parity may be due to the presence of an appreciable
nonresonant contribution to the (p,y) cross section
whose efI'ect would be to increase the apparent width
of the resonance if not explicitly included.
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