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We treat the quantum-mechanical problem of three spinless particles, with the boundary condition that
the logarithmic derivative of the wave function be a prescribed constant at each of the three boundaries
~r&

—rr~ =o, ~rs —r2~ =a, ~r1 —
r&~ =a. This boundary condition is discussed; it is roughly equivalent to an

interparticle potential which consists of a hard core plus a strong short-range attractive part. The eigen-
functions and eigenvalues of the system are given by the solutions of an infinite set of coupled homogeneous
integral equations. The equations involve partial wave expansions in the interparticle distances and can often
be truncated with good approximation by taking only a finite number of partial waves. We discuss the
solution of these equations for the ground state of the system, taking relative S-waves only, for which case
the infinite set of equations reduces to a single integral equation in one variable.

I. INTRODUCTION matical arti6ce, a stepping stone which enables us to
take a fairly long step toward the solution of more
complicated, and more realistic' three-body problems.

If 0 is the total wave function of the system, the
boundary condition that we use is

' 'T goes without saying that we would like to solve the
~ - following problem. Three (or more) particles with
arbitrary spin, statistics, and interparticle forces inter-
act. What are the eigenfunctions and eigenvalues of the
possible bound states of the system? It also goes without
saying that the problem in this generality is very diS-
cult and that we must begin by simplifying it. In this
paper we present a method for treating a simpli6ed
version of this problem, but a version which retains
much of the essential difficulty inherent in the fact that
it is a three-body problem. The method seems gener-
alizable to more than three bodies.

We begin by making the simplifying assumptions that
all the particles are identical and spinless, and by
neglecting statistics, in the sense that we make no
special requirements on the symmetry or antisymmetry
of the wave function. The method appears applicable,
but is of course more complicated, if these assumptions
are not made. There is a more important simpli6cation
that we make. We would like at least to be able to solve
the problem for central forces, i.e., when the potential
energy, as a function of the position vectors r1, r2, r3 of
the particles, is of the form

at each of the boundaries in (2). Here y is some constant,
the same for all boundaries and t)/822 is just r)/r)r;; for
the boundary ij. Although this condition is mainly a
mathematical device it does correspond, in an imprecise
way, to the following interparticle potential: an in6nite
repulsive core of radius a, surrounded by a deep attrac-
tive well of very short range. We elaborate on this now.

Suppose we have a particle bound to a spherically
symmetric potential which is of arbitrary shape except
that it has a 6nite radius ro. V=O for r&ro. Let the
particle be in the ground state with binding energy E.
The logarithmic derivative of the internal (r(rs) and
external (r)rs) wave functions are then. equal to each
other at r=ro. Given the potential we could, at least in
principle, always calculate the value of this logarithmic
derivative. Conversely, if one were given oddly the
logarithmic derivative of the wave function at r = ro and
were completely ignorant of the form of the potential
for r &ro, one could reconstruct at least the external part
of the wave function since the general form of the ex-
ternal solution is known and only the constants in it
need be determined. But we would know nothing about
the wave function for r(ro, since we could not recon-
struct the interior solution from a knowledge only of the
logarithmic derivative at r= ro.

We can, however, imagine a kind of degenerate po-
tential for which the knowledge of the logarithmic
derivative at a certain radius de6nes the wave function
everywhere. Suppose the potential V is defined by
V=+~ for r&a, V= —Vs for a&r&a+d, V=O for

V12 (r12)+Vls (mls) + V22 (r22)

where the V;; are arbitrary functions and r;;=
~
r,—r;

~
.

The simpli6cation in the problem we discuss consists of
replacing these potentials by a bogmdary condition on the
wave function at each of the three boundaries

(2)f]g= 8, T23= 8 t'1g= C.

We use boundary conditions instead of potentials of the
form (1) mainly because the boundary conditions are
easier to handle mathematically. We do not pretend
that they correspond to any real physical problem,
although they have been extensively used in nuclear
physics. ' From our point of view they are a mathe

*The research in this document was supported jointly by the
Army, Navy, and Air Force under contract with the Massachusetts
Institute of Technology.

' H. Feshbach and E. Lomon, Phys. Rev. 102, 891 (1956) and
the reference cited therein.

~ For a solution of a three-body scattering problem involving
potentials of infinitely short range see G. V. Skorniakov and K. A.
TerMartirosian, J. Exptl. Theoret. Phys. U.S.S.R. 31, 775 (1956)
I translation: Soviet Phys. JETP 4, 648 (1957)g.
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r)a+d T. hen it is well known that there is a multi-
plicity of wells, i.e., diGerent values of Vo and d, that
will give a binding energy E for the ground state, only
the quantity Vod' being determined by the energy. For
r) a+d, all these wells have the same wave function;
they differ only in the region a(r(a+d; all the solu-
tions vanish of course for r(a. Now if we imagine d to
diminish and Vo to increase in such a way that Vod' is
constant, we get in the limit a degenerate well for which
there is no interior and for which the exterior solution
extends down to r=a. In this limit then, and for the
ground state, the degenerate potential is equivalent to a
boundary condition at r=a, for either the one or the
other uniquely defines the wave function over all space.

The discussion above deals with a particle in the
ground state. What makes boundary conditions never
exactly equivalent to potentials, even to degenerate
ones, is that the logarithmic derivative of the wave
function, evaluated at whatever radius, depends on just
which state we treat. Thus, even if we limit ourselves to
exterior solutions for nondegenerate potentials, we can-
not reproduce these solutions for all states of any true
potential by an energy independent b-oundary condition.
This kind of boundary condition must, as we have said
before, be considered mainly as a mathematical device
for uniquely defining a boundary value problem which
is, however, very suggestive for the three-body problem
involving true potentials.

For later comparison with the three-body problem we
write the relation between y and the energy for a bound
state of two particles whose center of mass is at rest, with
the boundary condition (3) at r=a, where r is the
interparticle distance. The solution for r&a of the
Schrodinger equation is e '/r, where E'=rn~E~/h',
E= —

~

8 ~, and rn is the mass of each particle. The above
boundary condition then gives Ea=pa —1. There is a
bound state only for ya) 1.

Perhaps we should make clear from the outset what is
the nature of the solution we shall develop. The wave
function 4 is a function of r1, r2, and r3. It is defined
either as a solution of a 9-dimensional Schrodinger
equation or of the corresponding integral equation. This
integral equation as it first appears is not in a form
which is practical for numerical computation. Our
treatment of the problem consists of deriving an equiva-
lent infinite set of coupled integral equations, which can
be truncated with good approximation and which are
practical for numerical computation. The "solution"
thus consists of replacing an intractable integral equa-
tion by a set of tractable ones.

II. THE BASIC IDEA

With the assumptions discussed above, we have a
nonseparable boundary value problem involving a par-
tial differential equation in 6 variables (after separating
off the center-of-mass motion). It is of a special kind in

that it is nonseparable, not because the individual

boundaries are nonseparable, but because there is more
than one such boundary. We have discussed elsewhere'

problems which are mathematically similar in three
dimensions, e.g., the scattering of a wave from a number
of scatterers or the problem of a particle bound to more
than one spherical potential well. We found that these
problems could be handled if one began by writing
general solutions to the wave equation in a special way.
This way was as follows: For each potentiaL or boundary,
one wrote a separate solution of the wave equation in
coordinates appropriate to that potentiaL or boundary, and
took the total wave function to be the sum of such
solutions. Then boundary or matching conditions at any
given potential, say the ith, were satisfied by the use of
formulas for expressing all the other solutions except
the ith in the ith coordinate system. This form of the
solution was motivated by looking at the integral
equation formulation of the problem; it is discussed in
reference (3).

We use the same point of view for the three-body
problem. Here the boundaries of Eq. (2) are of course
"surfaces" in the nine-dimensional space of ri, r2, r3, but
this is irrelevant for the application of the general idea.
We write the wave function as a sum of solutions of the
wave equation, each solution appropriate to one of the
boundaries. Then for satisfying boundary conditions at
a given one of the three boundaries we use transforma-
tion formulas which express the solutions appropriate to
the other boundaries in terms of the coordinates of that
boundary.

Natural sets of coordinates appropriate to the
boundaries (2) are [in addition to the center of mass
R= —', (r,+rg+ri)]

or

or

r» ——ri —ri and yi
——ri ——,

' (ri+ ri),

r» ——ri —ri and tip, ——ri——',(ri+ri),

r» ——ri —ri and p&
——r& ——', (ra+re).

(4a)

(4b)

(4c)

These sets of coordinates are of course not independent.
The linear relations among them are of the form

r18 + tel+ 2r28 r12 + tel 2r23

p2 M 4r23 g g1 p8 4r28 2 glI 3 1 3 1

and so on. The Schrodinger equation, with the center-of-
mass part split off has, of course, the same form in all
these three pairs of coordinates. For example, in coordi-
nates r23, pj it is, for particles of mass m,

(6)

where for a bound state we have set &=—~E~ and
E'= rn

~

E
~

/h'. Note that there is no factor of two in the
definition of E'.

Now we write a general solution to the wave Eq. (6).
This equation has elementary separable solutions which

3 L. Eyges, Ann. Phys. (X. Y.) 2, 101 (1957); Phys. Rev. 111,
683 (195g).
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are functions of r» times functions of g&. For satisfying
boundary conditions at r»=a, it is clearly appropriate
to imagine V'r232 expressed in spherical coordinates r23,

023, q23, and to work with solutions which are spherical
Hankel functions of r23 times spherical harmonics in
Q23 (where Q23 stands for 823 Ip23) ~ Since there is no
boundary condition on y& we simply try exponential
functions of yl for that part of Eq. (6) which involves
Vp&2. Thus we are led to try as an elementary solution4
of (6)

kl(ikr23) F l (Q23) exp(i&' gl)

which is a solution if

k'= E2+4&12.

(7)

4%e use ikr23 instead of kr23 as the variable of the Hankel
functions in anticipation of the fact that we shall be dealing with
wave functions involving decaying exponentials, since we have to
do with bound states, and the spherical Hankel functions of
imaginary argument are of just that kind.

The elementary solutions (7) are almost, but not
quite, of the correct form. To see what changes must be
made in them let us reconsider the two-body problem
for a moment. There we found that the radial wave
functions for relative motion were I31(ikr) for r) a and,
because of the hard core of the potential, were zero for
r &u. Formally, we can express this by saying that these
wave functions were h(ikr) where

&&11(ikr) =0, r(ll
=hl(ikr), r) a

The difference between the functions h& and h& really
becomes important only if we take the Fourier trans-
form of the wave functions. This was not necessary to
solve the two-body problem. But for the three-body
problem, as we shall see, it is essential to the analysis to
Fourier-analyze the wave function and it does make a
profound difference whether or not we use h~ or hE to
build up the elementary solutions. In fact, using the
former functions, one is led to inconsistent integral
equations. Using h~ on the other hand, one is led to a
consistent set of equations with reasonable solutions,
which is a pragmatic, if not mathematical proof for the
necessity of using them. To state it differently, we
assume that the boundary value problem we define has
a Nnigue solution and that sufhcient justi6cation for
using the h~ is that with them we shall be led to a
function that satisfies the wave equation and the
boundary conditions, namely to u solution.

To continue then, we use the functions h~ to form the
elementary solutions

Ill(ikr„) I'l„(Q„) exp(i33. ol). (10)

Then we build up a general solution to Eq. (6), for
r23) a, by multiplying (10) by arbitrary coefficients and
summing (and integrating) over the complete set of
functions of which (10) is a member. That is, we
multiply (10) by an arbitrary function gl &23&(33), sum

over l and m, and integrate over x. We call the resulting
function $23.

g 1„"'&(33)A 1(ikr23)
l, m J

&& F'1 (Q23) exp(i3l yl)d33, (11a)

$23 is a solution of the wave equation, provided Eq. (8)
is satisfied. In accordance with what we have said
before, we write similar solutions in r~2 and p~ coordi-
nates, which solution we call $12, and also in r13 and y2

coordinates, which solution we call $13.

In these last two expressions we have for later con-
venience called the integration variable 0 and the
summation variables i' and 2&3'. Of course, k2=Z2+4o'.
With these definitions the total wave function P is taken
to be

$12+ $13+&&l'23 (12)

and it is this 0' which we shall require to satisfy the
boundary condition Eq. (3), at each of the bound-
aries (2).

III. ANGULAR MOMENTUM CONSIDERATIONS

For the boundary conditions (3) the Schrodinger
equation has solutions which are not only eigenfunctions
of the energy but of the total angular momentum (and
its s component). It is then clear that the forms of the

gl "'&(3l) are not completely arbitrary but are limited
in some way special to each angular momentum state.
We discuss the form of this limitation in this section.

The usual operators for the components of angular
momentum in the coordinates r~, r2, r~ are, e.g. ,

with similar forms for the y and s components. We can
express this operator in any of the three sets of coordi-
nates (4a), (4b), and (4c). Let the components of r23 be
(x23,y23, s23) and of yl be ($1,2&l,i 1), with similar notation
for the other pairs r~2, p3 and r~~, p2. The operator for the
x component of angular momentum in r23, g~ coordinates
is then

L, 8 8 8 8 8
+3tl i 1 +y23—zI1 BZ 8F Bf 1 83&1 BS23

828
$23

with similar expressions for L„and L, used similar ex-
pressions in the other two sets of variables. Since none

gl „&"&(33)hl (ikr13)
l'm' ~

)& I'l.~ (Q13) exp(ilr y2)de, (11b)

f
412 2 gl (o)kl (ikr12)

&~m' J
&& Yl (Q12) exp(io p3)do'. (11c)
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of the wave functions (11a), (11b), and (11c) depends
on R, we see from the form of the commutation relations
that the angular momentum in r», Io~ coordinates can be
looked upon as being that due to the vector composition
of angular momentum carried by the "r» particle" and
that carried by'the "p& particle. " Now the angular
momentum properties of the "r23 particle" are given by
its spherical harmonic expansion, which is explicitly
exhibited in (11a). To investigate the angular mo-
mentum properties of the "p~ particle, " we expand
gl (28)(2l) in spherical harmonics of 0„, where Q„stands
for the angle variables in spherical coordinates in x
space.

This clearly exhibits 0» as an eigenfunction of L and M'
and it is plausible, though unproven that this is the
most general way we can solve the problem.

We write similar expressions for f/2 and f/3, using
arbitrary functions Fll/("'(K) and F///(/3'(K) and the
wave function 4 defined by Eq. (12) will then be an
eigenfunction of L and M.

I.et us consider the case L=O in a little more detail.
For this case the Clebsch-Gordan coefficients vanish
unless 3=ii, m= —mi, moreover, those that do not
vanish are independent of m and in fact are just equal
to unity except for a factor (—)".If we use these facts
we get for 4~3

g/m (2(') = p p Glmlimi (K) Y//m/(Q„). (13)
iI=0 mI= lI

If we put this into (11a) we exhibit the wave function
%~3 as a sum of products of spherical harmonics, one
with 023 as variable and the other with 0, as variable.
By taking the appropriate combinations of these
products, according to the vector coupling model, and
the known Clebsch-Gordan coefFicients, we can make
the wave function (11a) an eigenfunction of any L' and
L, we choose. Thus we have, using

exp(iil g/) =4/r g i"j/2(Kpl) Y/2m2(0) 1) Y/2m2 (0,)
l2m2

and

dil= K dQ+K)

i/23 —4)l p Glm//mi (K) Y/ (/0m/„)A (ik/r )23
lml1mI l2m2

X Yl (023)i"j/2(Kpl) Y/2m2(QP/) Y/2m2 (0„)K dQ dK.

We do the integrals over dO, to get

f28 ——4+ p Glmlimi""(K)k/(ikr28)
lml1m1 J

X Y /m (023)i "j//(Kp/) Y //m/(0~/)K'dK.

Now suppose we want f28 to be an eigenfunction of a
given L and 3f=L,. We can effect this by writing

G/m//mi (K) =Fl/1 (K)C//1(L, M) m, mi),

where the C///(L, M;m, m/) are the Clebsch-Gordan
coefficients, in the notation of Blatt and Weisskopf. '
For then we have

oo

$28 4/r Q Q Fl/1 (K)k/(2kr28)2 J/1(KP/)
l=o iI=0

X( Q Q C///(L)M; m, m/) Ylm(023) Y/imi(Qpi))K dK
m=—l m1= l1

~ J. Blatt and V. Weisskopf, Theoretical Nuclear Physics (John
Wiley R Sons, Inc., New York, 1952).

i ~ )) t(+" ')~l t" ( )/i( ui)
l=o 0

X ( P Yl„(023)Y/„*(QP/))K'dK
m=—l

i'h/(ikr23)F//("'(K) j/(Kp/)
l=o J

X (21+1)F l (cosp) K'dK,

(14)

where y is the angle between r» and loj. It is clear from
first principles that this form of the wave function is
correct. For L=0 the wave function can depend only on
the scalars formed from r» and y~, that is, it can depend
o»y on I(/)/I Ir/I and ri (/1/. The functio~ (13) is a
general function of just that form.

One can make a similar analysis for other L and M, of
course, using the appropriate Clebsch-Gordan coef6-
cients. We shall not do this here since this problem in
any case is rather academic. For practical problems, one
has to deal with the symmetry requirements involved in
taking spin and statistics into account. Rather, in this
paper we shall take the case L'=0 as leading to integral
equations which are more or less representative, and
discuss them in some detail. We turn to this now.

IV. THE COUPLED INTEGRAL EQUATIONS: L2=0

The discussion of the last section can be summarized

by saying that for I.'=0, the g/„"/) (il) that appear in
Eqs. (11) must be of the form

g/„('/) (x) =F//"&) (K) Yl *(0.),

where F«("'/) (K) is an arbitrary function of K. This result
came about because the summation in Eq. (13) reduced
in this case to a single term. We now wish to determine
the functions F/i"" (K) so that the wave function
satisfies the boundary condition Eq. (3), at each of the
three boundaries r~2 ——a, r» ——a, r~s ——a.

In general, one must expect that the forms of the
functions Fll""(K) are, as the notation indicates, actu-
ally different for different i and j. On the other hand,
there may well be states for which all the Fl/(") (K) are
of the same form, i.e., for which the total wave function
is completely symmetric among all the particles. It is
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clear that this will be true for the ground state, which is
a state of maximum symmetry. In this section we shall
write the integral equations for states of this symmetry.
The same techniques we use can be carried out for other
states with some additional complication.

For a symmetrical state of the kind we discuss, the
superscripts in the function Fn&'&&(~) are in fact super-
Quous. We then simplify the notation by writing for this
case

(16) k]'(ikry2) Y~ ~ (Qy&)F((&'&'(~) = f((~).

variables in this exponent, using the linear relations (5).
VVith this approach we get a set of coupled integral
equations relating the f~(~) to integrals over themselves.
These integral equations are homogeneous; hence they
have solutions only for special values of E, the eigen-
values, and have corresponding eigenfunctions.

We begin to express P&2+|i~3 in r23, y~ coordinates.
To do this we use the integral representation

Now it suffices to apply the boundary conditions at only
one boundary; it follows from the symmetry of the wave
function that the conditions will automatically be
satisfied at the other two boundaries as well. Consider
first the boundary r»=a. To satisfy boundary condi-
tions there, we must express the functions II» and f»
in the coordinates r» and p~. The general technique for
this is to express these functions as Fourier integrals.
Then all the space dependence, that is the dependence
on r~2, ya and r~~, f02 is in an exponent, and transforming
these functions to the coordinates r», f02, corresponding
to the boundary r»=a, simply means shuffling the

1
eg ~ (k,X) exp[i' r~2 jdg (.17)

(2~)l ~

On inverting this transform it is found that u~ (k,0)
can be written in the form

S( (k, rl) = (27r)'*5) (k,X) Y[ (0$).

Expressions for the functions v~ (k,X) are derived in the
Appendix. We put Eq. (17) and the similar equation
involving r» into Eqs. (11b, c) and use Eqs. (15) and
(16) to get

oo lI

$»+$13 Q fl'(&)&l'(k, I)(IQ I l' ' (0 ) I l' '(QX)) {exp[i(~'r12+&' g3)]+exp[i(+' r13+0 ' g2)]}d+dEF.
l'=o 4 m'= —l'

We use the transformation Eqs. (5) to rearrange the exponents

xp[i(X'r»+o"'p3) ]+exp[i(a rn+o" g&)]=exp[iy& (a—~e)]{exp[i 23 (~&+&a)]+exp[—ir23 (2~+4+)j}
and we go from the variables 2, cr to new variables x, x' by the transformation

Then we have
20'= 'K) O'= R .

l'=O 0

&& ( P V~ ~ *(0„)V~ (0„+,„))exp[i'~ x7{exp[ir23(x'+-', x)7+exp[—ir23(v. '+-', x) j}dh'dx.
m'=—l'

To exhibit the spherical harmonics of 023 we use
QO Z

exp[ir~3 (x'+-', x). ]+exp[—ir» (x'+-', x)j=4~ P Q i'[1+ (—) ']j&(r&3
f

x'+-', v f) V& (023) I'& *(0„+,.„),
l-O m=—l

where

m'=l'
V ( (0„)F i „(0;,~,) =

2l'+1
P~ (cosP),

Then we have

x' (v.+-', x')
cosP =

fx'f fr+-,'x'f

P&2+/F3= P
~

f& (~')~& ((E'+)~")j fr+-,'x'f)(2l'+1)P~ (coslI) exp[i'& xj.
z'=o 4

X{/ P '[1+(—)']j (r fx'+ —' f)F'$„(0, )V *(0„~,„)}de ', (1g)
l=O m=—

Z
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and the total Zf =P/2+//3+$23 is just

z=p m=z &
exp[i'/ h]F'/ (Q23) f/(K)I"/~ (Q.)I//(ikr23)+i'[1+( —)']

00

)& I [p f/(K')//((E'+4K")* ~h+2h'l)(2&'+1)P/(co»)]1'/ *(Q"+.)j/(r23jh'+~h()dh' dh. (19)z'=0

This is the desired result. 4 is explicitly expressed in terms only of r» and y&.
Now we apply the boundary condition Eq. (3) at r»= a (B/Be) is, of course, B/Br» which we form by differ-

entiating under the integral sign. We insert the expression (19) for 4 into this equation. Then we equate the
coeKcients of the F'/„(Q») on each side of the resulting equation; and, since this boundary condition holds for all
g& we equate the integrands of the dx integration. This gives the set of equations which holds for all $ and ~.

—y f/(K) V/„*(Q.)h/(ika)+i/[1+ (—) ']

y [p f/ (K')/// ((E'+ 4K")'*, ~h+-,'h'~)(2P/1)P (cosy)]I' *(Q.+,„)j (a(h'+-,'h()/Eh'
z=o

=ikf/(K) I"/~*(Q.)k/'(tk/t)+s'[1+( —)']

&) [2 f/. (K')///. ((E'+4'K"):,
l
h+kh'I )(2t'+1)P/ (cosP)]F / *(Q.+,,) (

h'+-', h( g//(~t h'+-', h()//th'.
v=o

The prime on the functions j z and hz denotes differentiation with respect to their argument, and we have replaced
Az by hz.

This set can be reduced somewhat further by noting that the integrals in them are functions only of
(
h t, (

h' t,
x x . Thus we can in the usual way imagine ~ is along the s axis. This simply amounts to a rotation of the vector x
and since eventually we integrate over the whole solid angle of ~' this makes no difference in the 6nal result. With
h along the z-axis, F/~*(Q„) becomes [(21+1)/4s]lP/(0) =[(2l+1)/4r]' for all /. Moreover, K,'=K' cost/// and
F'/ ~(Q„+,„) becomes just [(2t+1)/4/r]~P/(Q„+. ,„)= [(2l+1)/4/r]~P/(cosa) where n is the angle between h'+-', h
and the s-axis. That is

Similarly we have

coso.=
Ihl Ih+-. hl (lK2+K"+KK' cos&'):

K COSO +&K
cosP =

(4K +K +KK COsg ) '

(21)

(22)

With these definitions, and the further de6nitions

S= (4K +K +KK COSB)*/

t= (4K +K +KK cos8 )'/
the equations are

(23)

f/(K) k /(ika) +2/ri'[1+ (—) ']

X [Q f/ (K')/// ((E +~K')l/ t)(2t'+1)P/ (cosy)]P/(cosa) j/(gg) sing'K/2dB'/tK/t,
~o ~o (2S)

=ik f/(K) h/'(iku)+2/ri/[1+ (—) ']
7l

[2 f/ (K')/// ((E'+ 4K") '', t) (2l'+1)P/ (cosp)]P/(cosn)s j/'(as) sing'K"dg'dK'.
~p dp z =p
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Setting l=o, 1, 2. . successively gives the infinite set
of coupled integral equations in which each f&(~) is
related to integrals over all other fi (~). Since the set is
homogeneous, or if one likes, since it is equivalent to the
original Schrodinger equation, it can have solutions only
for certain eigenvalues and corresponding eigenfunctions.
That is, for each eigenvalue E, the form of all the func-
tions f&(z) is determinate from these equations.

Although this set of equations is an infinite one, it is
natural to try the approximation of truncating it and
keeping only a finite number of partial waves, i.e., of
functions fi(x). The dimensionless parameters that de-
termine the nature of the solutions of these equations
and the degree of approximation required are of course
Ea and pu since these are the only such parameters that
enter the equations. These are in fact not independent,
since the eigenvalue Ea is determined from yu. The
magnitude of Ea sects the nature of the solutions of
Eqs. (25) in that it sets the scale for some of the
functions that appear in the integral equations as for
example, the function hi(i (K +4~') ~a) whose behavior
is quite diGerent according as Ea is much greater or
much less than If:a.

Now we ask why, for given Ea, we can get away with
keeping only a finite number of partial waves. Speaking
generally, this comes about because of the asymptotic
properties of spherical Bessel functions, namely, that
those of high order are small when their arguments are
small: j&(x)=0 for x((/. This is, of course, the same
property that limits the number of partial waves in
ordinary scattering theory. Physically, we imagine that
any two particles have a relative wavelength and that if

this relative wavelength is of the same order as the
radius a, we need only a few relative partial waves. For
a small number of particles we expect this relative
wavelength to be roughly the deBroglie wavelength
corresponding to the total energy of the system. Mathe-
matically, we can see from Eq. (25), by a rather circular
argument, how a limited number of partial waves might
sufhce. In the integrands of these equations are the
functions f&(x). Now it seems likely that each of these
functions is of finite range, i.e., is essentially zero beyond
a certain K. If this is in fact the case this means that
there is, speaking roughly, a maximum value of the
argument (ox'+x'o+ax' cosg')' of the Bessel functions
which comes into play; for I~: greater than this argument,
the j& vanish, which is consistent with the fact that the
functions fi(a) have finite range. Even if one has an idea
of the number of partial waves required for a given Ea,
in applying these equations it must be remembered that
Eu is not given in advance, but comes out of the solu-
tion. In practice, then, one must guess at Ea, choose an
appropriate number of partial waves, and then having
folded Ka, verify that it was indeed permissible to
neglect higher order ones. These points are discussed in
somewhat more detail in Sec. Vc.

V. THE TRUNCATED EQUATIONS

a. The Equation for S-Waves Only
In this section we discuss in some detail the solution

of the infinite set Eq. (25), when we truncate them and
retain only fo(x) as being diferent from zero. The
equations then reduce to the single homogeneous inte-
gral equation

—V Ito(ia(K'+ fK')'*)fo(a)+«P«' )( fo(~') jo(a~)~o((K'+ &x")l, t) sing'dg'1
0 0

=i(K'+4~')Iho'(ia(K'+&~')')fo(&) «] &"«' — fo(&')&ji(as)&o((K'+4~") l t) sing'dg'. (26)
0 0

We have used jp'= —j~ here.
We reduce this equation in the following way. We

make the substitution y= sin8', introduce dimensionless
parameters Ep, yp

t =Ko(o P+P+ $$'y) '. (28)
We use the definitions of the Hankel functions, the
expression for vo(k, X) from the Appendix and introduce
a new function

Eg=Ep) Pg =Pp)

and the definitions.=Ko(:~'+V+8'y)', (27)

f.*(&)=fo(&) - L
—Ko(1+-.'8)-:3/(1+!e)'-. (»)

Then after some rearrangement the integral equation
for fo*($) is, written out in full,

+0
fo*(&) (1+-:e)'-

Ep J

K "p

""j.(K.(e+-:a+~ay)-:)-K.(e+-:e+u'y):j (K.(e+-:a+~ay)')f.*(n~"«
P+$' +$$'y+1

»n(Ko(P+-'5"+ Ky) ')
&«os(Ko(e+-.'~"+~Yy)-:)+(1+-:P)-: dy. (3o)

(8+4k"+hYy)'
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When an eigenvalue Ep and corresponding eigenfunction fo ($) of this integral equation is found then the (un-
normalized) wave function of the system corresponding to this Ep and fp*($) is

F(+12 po)+@(+13p2)++(+28 pl)
where

i
" exp[ —(r/a 1)Ep(1—+4/) l] sin(Eppes/a)

&(r,p) = fo*(t)
Jp fp

Before discussing the solution of Eq. (30) it is inter-
esting to note that it is the right-hand side of Eq. (30)
that reflects the fact that we have a three body problem.
This side comes from the transformation of pio+1t io to
23 coordinates. The left-hand side comes from Ppo itself.
If the right-hand side were zero, then the left-hand side
would describe the system of particles 2 and 3 and if the
center of mass of this system were at rest fp*($) would

simply be a delta function of g, i.e., the left-hand side

would be zero except for )=0. Thus, for Eq. (30) to be
satisfied for this case, for all $, including t=0, we would

have to have 1+Ep=po, which is of course just the
relation we found previously for the two-body problem.

b. Qualitative Discussion of the
8-Wave Equation

1n this section we shall present a qualitative discussion
of the integral Eq. (30). First, we shall try to show why
it can have solutions only for certain values of Ep, the
eigenvalues. The point is clear in principle, of course,
since the integral equation is equivalent to a Schrodinger
equation which we know has solutions only for certain
eigenvalues. Nonetheless, it is illuminating to see from

a direct analysis of the integral equation how this comes
about. We shall also try to find the qualitative form of
the eigenfunctions and make a rough estimate of the
eigenvalues, as a guide to the more refined treatment in

the next section.
Before we proceed, it is useful to have fixed in our

minds the range of values of the parameters that enter
the equation. First we consider Ep, the eigenvalue we

seek. As we have pointed out before, the magnitude of

Ep, among other things, determines the number of
partial waves one must retain in the analysis. Ep cannot
turn out to be too large if the truncated Eq. (30) is to
make sense, that is if it is really justifiable to go from the
coupled set of Eqs. (25) to the single Eq. (30).Just how

large is a moot question, but we are probably safe in
retaining only S waves when Ep is, say, smaller than
about ~. We shall think of Ep as being in this range.
This means that the values of pp we must consider are

necessarily close to unity. For we have found for the
two-body problem the relation Ep ——pp —1 showing Ep
increasing with yp. Now, for pp=1.5 we already have a
Ep of 0.5. And it must certainly be true that the ground-
state binding energy is greater for the three-body than
for the two-body problem; thus to avoid dealing with a
Ep greater than 0.5 in the three-body problem we must
take pp considerably less than 1.5. We shall in fact
discuss Eq. (30) for yp between 1 and 1.2, although it
should be noted that there are bound states of the three-
body problem for pp less than unity. These are qualita-
tively similar to those for pp greater than unity.

The technique of the present qualitative discussion is
to show that Eq. (30) is roughly equivalent to a degener-
ate equation with a separable kernel. That is to say, we
replace the integral equation with a crude approxima-
tion to itself which approximate equation is, however,
exactly soluble. In doing this we shall in general begin
by simply stating the approximations we use and will
discuss and, insofar as is possible, justify them only
later.

First consider the function

which appears in the integrand of Eq. (30). This can be
expanded by the addition formula

j.(E.(~"+-.'e+«'y)-:)=—~ ( )

= Q (2t+1) (—) 'jg(Ep$') j((Ep)/2)P((y). (31)
L=p

Now for Ep small and neither t nor $' too large we can
take only the first term in this formula, i.e., we use

j.( ) =j.(E.~')j.(E.~/2) (32)

In like manner we could expand the other similar func-
tions sj&(8), cost, sint/t. We shall, however, approxi-
mate these even more crudely, i.e., still assuming that
Epf aild Ep) never get very large we replace these
functions by their values at the origin, i.e. , for $= $'=0.
Thus we set sj&(8) equal to zero and set cost and sint/t
equal to unity. The integral equation then becomes

2v pi o(oEok)
*(5)=, , Pfo*(&')i o(Eof')[1+Eo(1+4')'3dÃ

pr((1+-,PP)i —(yo —1)/Eo) "o &, to+P+ «'y+1

Now we consider the y integral in this last equation,

~1 ~1

"-i&'+~"+«'y+1 -i (8+0+1)[1+&&'y/(&'+P+1)]

(33)

(34)
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We observe that Pg'y/(@+++1) is a,lways less than unity, and we can expand the denominator in powers of this
quantity. We can then conclude that the integral (34) is represented to sufficient accuracy (within 10%%uo) by the
function

2/(e+e'+1)
With this approximation we reduce the integral Eq. (33) to

(35)

47ojo(&oh/2)

$2+$12+1
(36)

Now the equation is almost separable. It can be made exactly so by one last and most drastic approximation. Ke
consider the possibility of replacing the kernel 1/(@+@+1)by the separable kernel 1/(1+P)(1+@).This
approximation is excellent when either P or g' or both are smalL It is worst when $= P' and both are large. Even so,
for g and $' not too large it is tolerable. For example, for $= $'= 1 the exact kernel has the value 3 and the approxi-
mate kernel ~~. On the other hand the approximation rapidly becomes poor for f and $' large. Thus for f= )'= 2
the exact kernel is —, and the approximate one 1/25. Nonetheless, if we make this approximation, crude as it may
be, we have the great advantage of being led to an equation whose solution is transparent.

4~ojo(R'o5)

~{(1+-',P)'*—(vo —1)/&o) (1+@)"o
(37)

The essential form of the function fo*($) stands in front of the integral sign; all that remains to determine it com-
pletely is to find the eigenvalue Eo. To do this we multiply the equation by

and integrate with respect to $. We get

(38)

For a given yo the eigenvalues are determined from
this equation. It is illuminating to see qualitatively why
at least one eigenvalue must exist. The right-hand side
of Eq. (38) must equal unity for the eigenvalue Eo.
More generally, let us consider the magnitude of the
integral on the right-hand side as a function of Eo,
which we imagine for the moment to be a variable
parameter. From our previous discussion of the two-
body problem Eo must be greater than &0—1 (for po
greater than one). If for a moment we imagine Eo close
to its minimum value of yo —1, we see that the denomi-
nator of the integrand almost vanishes for small $. Such
a small value of Eo maximizes the integral; if in fact one
calculates the integral for this case one 6nds that the
right-hand side of Eq. (38) is greater than unity. On the
other hand, for large Eo it is easy to see that the integral
vanishes, essentially because of the oscillatory character
of jo(Ep() and jp(E'of/2). There is some intermediate
Eo then for which the right-hand side is unity. Nu-
merical calculation gives the results: for yo ——1.1,
Eo=0.22; for go= 1.2, ED=0.46.

Kith these values of Eo at hand let us reconsider the
approximations we have made in deriving the approxi-
mate integral equation (38). For the sake of being

specific we take the case F0=1.1. Then the function

fo (P), normalized to unity at the origin is just

0.55

This function has the value 0.316 at $= 1, 0.071 at )=2,
and has dropped to 0.026 at )=3. Now, we have already
discussed the approximations involved in truncating the
expansion in Eq. (35). The next approximation was that
of Eq. (32), the expansion of jo(s) retaining only the
3=0 term. To get an idea of its validity we evaluate it
for those parameters of interest for which it converges
least well, say $=f'=3 and Eo ——0.40, to choose an
arbitrary value. Then the series (31) is 0.731—0.199/&
+0.0101P~—0.0002483 which is not too bad for this
worst case, since the convergence becomes rapidly better
for either $ or $' smaller than 3. Less justified was the
third approximation: the dropping of the term Bj&(8)
and the setting of cost and sint/t equal to unity. Our
reason for so doing was heuristic; if we had expanded
them in the manner of Eq. (31) we would not have been
led to a separable equation. However, we see that these
last mentioned approximations make no qualitative
difference in the integral equation. That is, these func-
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tions are essentially functions which oscillate faster and
faster the larger Eo is. As such they supplement the
roles of jo(K0$) and jo(K0$/2) as convergence factors,
without changing anything essential. It is dificult to
assess quantitively the last approximation, the replace-
mentof thekernel 1/(@+@+1)by 1/L(1+@)(1+$")j
Roughly speaking, it is good up to $=$'=1 and quite
bad by the time it gets to (=t'=2. Now the value of
f0*($) has dropped appreciably by )=1, but it is still
not negligible at )=2, so the error in the kernel may be
quite important. All told it is hard to assess the ap-
proximations, except to repeat that they seem almost
certain to be qualitatively correct and to give the right
general behavior of the eigenfunction and the correct
order of magnitude of Ep.

c. Quantitative Discussion of the
S-Wave Equation

Having established the general features of the solution
of Eq. (30), we turn to a more quantitative, although
still approximate, discussion. We start in a way similar
to the last section, by expanding the functions jo(8),
8ji (8), cost, and sin t/t in Legendre polynomials in y and
keeping only the erst term in the expansion. These
expansions are easily got by differentiating the expan-
sion Eq. (31) for jo. Thus we have, for example,

d sin(at)cost=-
du t

= —ajo(al)
a=] dg - a=1

oo

=—( Z(2&+1)(-) j( ~)j( e/2)~(y))
da ~=0 a=—1

d$' 2

~—i P+$"+$$y+1 P+$ '+1 (39)

Here we have used the same approximation as in the
qualitative discussion of the last section, and as we have
seen there the average error this introduces into the
kernel is of the order of a few percent. The integral
equation (30) is now reduced to

This gives, keeping only the 1=0 term,

cost= jo(KO)) jo(Kop'/2) 2K—o)'ja(K0$)j i(Kok /2)
K.~—~.(K.~'/2) ~ (K.~)

In a similar way we can expand 8ji(8) and get

sjr(s) =2Ko(jo(KoY) ji(KoE/2)
+Kofi o(Kok/2)i i(KoS')

Putting these approximate expansions into Eq. (30),
we can do the y integral; this integral is:

where

t" fo*(&')~(&,&')&(«')~"«'
*(~)=

((I+lV):—(vo —1)/Ko} ". P+t"+1
cos(Ko('/2) cosK0$

&(~,~') =i o(Ko~)i o(Ko~'/2) . , +-. -1+Ko(1+!~")-:,
jo(Ko6'/2) jo(Kok)

cos(KO&/2) cos(KOP')
~(~,~') =j.(Ko~') j.(K.~/2) (~.—2)+—.— +

jo(KOE/2) jo(KOt')

(40)

From Eq. (40) we see that fo (p) is given by the function standing in front of the integral times that functipn pf

t represented by the integral itself. We discuss this latter. We observe first that for the values of $ and $' which we
are likely to be interested in—and which are, from the results of the previous section between, say, 0 and 3 for each
variable the functions A ($,$') and B($,$') are slowly varying compared to the function 1/(j'+f"+1) The mai.n

g dependence of the integral in Eq. (40) derives from this factor. This suggests that a reasonable approximation to
the true solution is a function of the form

f0*(k)=
( (1+48)' —(7o—1)/Ko} (1+~8)

(41)

where e is a constant still to be determined. If we try this and put it into Eq. (40) we get the follpwing equatipn tp
be satisfied for all P.

~(~,e)~(~,~') e'«'4 ~oo

1=-(1+ e)„"o ((1+-:l")'—(~.—1)/Ko}(1+ r")(e-+e+1)
(42)

Since the functions A ($,$') and B($,$') are slowly varying compared to the other factors in the integrand
shall in the argument that follows imagine them as evaluated at some average value P= $. With this approximatipn,
and a little rearranging of the denominator Eq. (42) becomes

oo ~(l,~')~(B')Pde
1=—(1+eP) (43)

( (1+-:8')' —(7o—1)/Ko}L1+8/(8+ 1)j(1+5")(1+ P)
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Now the left-hand side of this equation is a constant;
the right-hand side ostensibly depends on $. How is this
to be reconciled? To answer this question let us antici-
pate a bit, and take e of the order of —', . Then we observe
that the factor

TABLE I. As a function of p0. the eigenvalue parameter
Ko=m

~ E~ /k' and the parameter ~ which appears in the function
/o'(5) =&/(L(I+'8) i—(vp —I)/&pl(I+re ) ).

+0

&"/f L(1+45")'*—(vp —1)/&pj(1+5") (1+et")}
1.00
1.10
1.20

0.27
0.30
0.40

0.27
0.50
0.60

is one which is peaked fairly sharply around $'= 1. If it
were very sharply peaked to the extent, say, of being a
delta function, at some f= $p', we could do the integral
and we see that by choosing e=1/($p'+1) the integral
equation would be satisfied exactly, i.e., the dependence
of the right-hand side on e would cancel out. To the
extent that the integrand has a finite width, the pro-
posed solution (41) is necessarily approximate and the
right-hand side is not strictly a constant independent of
$, but we shall see that it is so to a good approximation.

Although it is clear that, since the integrand peaks at

$' about unity, e is about —',, we would like to determine
e more closely and of course determine the eigenvalue
Ep as well. To determine these two constants we must
have two equations; we can get these by demanding
that the integral Eq. (40) holds exactly at two points
and if the representation of Eq. (41) is reasonable it
will hold approximately at intermediate points as well.

The requirement that the integral equation be satis-
fied at (=0 leads to the equation

~(f,k')&(k 5')$"dk'
(44)

This is an equation very similar to the eigenvalue Eq. (38) we found previously and a similar qualitative discussion
applies, remembering that e= 2. It is convenient to choose x= 2 as the other point at which we demand the integral
equation be satisfied. At this point the function fo* has dropped appreciably from its value at the origin, without
being excessively small. The condition that the integral equation be satisfied exactly at x=2 gives the equation

(45)

From Eq. (44) we get a set of possible allowed values of
Ep for a given e, i.e., a curve in the Ep, E- plane. From
Eq. (45) we get a different curve; the intersection of
these curves gives then unique values of Ep and e, and
we must then verify that these values lead to a function
which satisfies the integral equation at least approxi-
mately at other points than the two chosen above.

The results of calculations along these lines are given
in Table I. Because of the various approximations, in
particular that represented by Eq. (39) we do not
consider the eigenvalues Ep to be accurate to, say,
better than 10 percent.

The results of Table I are quoted for a minimum value
of pp equal to unity, because our main purpose is to
compare the three body binding energy with the two-
body and the two-body system is not bound for pp less
than unity. As we have mentioned before, there are in
fact solutions of the integral Eq. (30) for yp less than one

(although not for yp too small). From Table I we see
that the ratio of three-body binding energy to two-body
binding energy is in6nite for pp= 1, nine for pp= 1.1, and
four for yp=1.2. This seems reasonable.

There is one final point we would like to discuss,
namely, to show qualitatively why the higher order
partial waves we neglected in truncating the general
integral Eqs. (25) are in fact negligible for small Ep. To
discuss this, we observ'e that if the amplitudes of these
waves are in fact small we can estimate them from the
integral Eqs. (25). From these equations we see that the
factor [1+(—)'j precludes relative J' waves. Thus the
next amplitude after fp(lr) which we have to discuss is
the D-wave one, fp(lr). We get an approximate equation
relating fs(lr) to fp(~) from Eqs. (25) by setting 1=2,
l'=0, i.e., by neglecting all partial waves except S and
D. This gives

4r fp(K )np(k f)Pp(cosn)[p j&(as)+sj&'(as) jr'" sin8'd8'de'
~o "p

(s)=—
ikhi'(ika)+yhp(ika)

As before, we introduce dimensionless parameters Jta= Ko, pa =go, new variables )=~a/Kp, $'= I&'a/Ep, and define
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a new function

Then we get

fcosEpt+EQ(1+xPP)
'

slnEpt/Eptj
*(&') +p(cos(x)$7pj2(E08)+E0j8p (Ep&)7pdg dy

8+P+EYy+1

L1+ (4/P)+ (9/P')+(9/P') 7 ~pL(1/P)+ (3/P')+ (3/P') 7

where p=E'p(1+4@)l. Now we can see the basic reason that, for small Ep, fp*($) is small. It is that we have to
integrate in this equation fp ($), a function sharply peaked for small p, with jp (Ep8) and jp (Eps), which are func-
tions which vanish for their argument small. Thus for Ep small the overlap integral is small and fp is small com-
pared with fp"'.

APPENDIX: INTEGRAL REPRESENTATION FOR Kg(iver)Fq (Q)

We want to represent the function h&(ikr) T& (0), defined by Eq. (9) of the text, as a Fourier integral. We write

Inverting this we get

h((ikr) V( (0) =
(2~)-: &

j.
N(„(k,z)=, hg(ikr)V(„(0) exp( —G. r7dr

(2~)-: ~

h&(ikr) V&„(Q)(4~ p & (—i) ' j&.p r) I'&. .(0,) I', ,„,*(Q))rpdrdQ

or

eg (k,X)= (2/~) l( —i) 'I',„(Qg))' h((ikr) j,()Ir)r'dr.
0

We define a function n&(k, X) by

whence
ui„(k,X) = (2~) Ip((k, X) F(„(Qg).

p (k,Z) =
~ h (ikr) j (Zr)r'dr

2x'2 ~ 0

(—i)'
h((ikr) j)() r)r'dr.

27I g

The integral in Kq. (A-1) is an example of a well-known general integral'

(A-1)

"f,(nx)g((Px)x'dx= Pf~(~x)g~-~(Px) —~fr-i(~x)gz(Px)7,

where f~ and g~ can be spherical Bessel, Neumann, or Hankel functions. This gives

(—i) 'a'
~, (k,&) = I ) h, (ika) j&,Pa) —ikhr a(ika) j,(xa)7.

2m'(X'+ k')

6 See, for example, P. Morse and H. Feshbach, 3ffethods of Theoretica/ I'lsys~'cs (McGraw-Hill Book Company, Inc. , New York, ].95/),
p. 1574.



QUANTUM —MECHANICAL THREE —BODY PROBLEM

The case l=0 is, written out explicitly,

vs(k, X) =—
2x'kl. (k'+As)

e "~ (X cosha+k sinXa)
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The cross sections for the elastic scattering of protons by nitrogen have been measured in 105 angular
distributions ranging in angle from 53' to 155' and in energy from 1.05 Mev to 2.93 Mev. Resonances have
been observed at 1065&5 kev, 1557&6kev, 1743%7 kev, 1803+7 kev, 2344&10 kev, and 2468&10 kev.

INTRODUCTION

HE elastic scattering of protons by nitrogen in the
energy range covered by electrostatic accelerators

shows, in addition to a number of well-established reso-
nances, a large background of potential scattering. It
has been reported from 0.6 Mev to 4.1 Mev in several
recent papers. ' ' Spin and panty assignments have been
found for the resonances at 1.065 Mev and 1.557 Mev.
The lack of knowledge of the background scattering,
on which the emphasis of the present work rests, has
been the principal obstacle to establishing the assign-
ments for the others. An early report' that the I'-wave
potential phase shifts were small below 2.0 Mev has
been found incorrect. This conclusion arose from an
incorrect normalization for the cross sections, which
were about 10% too low. The cross sections of Tautfest
and Rubin' are approximately the same as those of
reference 5. Hagedorn et al. ' have compared these

results with the more recent data and show that they
are consistently low. The results of the present work

are available in tabular form in an unpublished report. '
The present data, which are in agreement with the

~ Bolmgren, Freier, Likely, and Famularo, Phys. Rev. 105, 210
(1957).

'Hagedorn, Mozer, Webb, Fowler, and Lauritsen, Phys. Rev.
105, 219 (1957).' Bashkin, Carlson, and Jacobs, Bull. Am. Phys. Soc. Ser. II, 1,
212 (1956).

40lness, Vorona, and Lewis, Bull. Am. Phys. Soc. Ser. II, 2,
53 (1957).' Gove, Ferguson, and Sample, Phys. Rev. 93, 928(A) (1954).

G. W. Tautfest and S. Rubin, Phys. Rev. 103, 196 (1956).
' Ferguson, Clarke, Gove, and Sample, Atomic Energy of

Canada Report PD-261, 1956 (unpublished).

recent data" cannot be satisfactorily analyzed with
5-waves only and thus imply the presence of I'-waves
and possibly higher ones. A phase shift analysis of these
results which includes I'-waves is described in the
following paper. '

APPARATUS

The proton beam for the work was supplied by the
Chalk River electrostatic accelerator. The upper limit
to the proton energy available was 3 Mev. The lower
limit was about 1 Mev, which was the minimum energy
where a resolved peak in the spectrum from the scintilla-
tion proton counter could be obtained. The energy of
the proton beam was measured by deflecting it through
90' in a uniform magnetic field which, in turn, was
measured and controlled by a proton gyromagnetic
resonance detector.

The scattering chamber is shown in Figs. 1 and 2.
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FIG. 1. Gas scattering chamber. A, 8, and D are collimating
apertures. E and Ii are thin nickel windows for beam entry and
exit. If', G, and H are the beam catcher assembly. I is the counter
collimator and J a small scintillator for particle counting mounted
on the rotating cover.

s A. J.Ferguson, following paper /Phys. Rev. 115, 1660 (1959)j.


