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Theory of the Nuclear Magnetic Resonance Shift in Paramagnetic Crystals*
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A theoretical study is made of the shift of the F1 nuclear resonance in paramagnetic and antiferromagnetic
MnF& which has been observed by Shulman and Jaccarino. The problem is reduced to that of a single Mn —F
pair. A net hyperfine interaction is shown to arise from overlap effects in the ground-state ionic configuration
(3d)'(2s)'(2p)' and from overlap and transfer effects to the configurations (3d)'(2s) (2p)' and (3d)'(2s)'(2p)'.
These three configurations are equivalent to a single configuration involving bonding-type molecular
orbitals. The results are in reasonable agreement with the experiment, the theoretical isotropic shift being
slightly too small and the theoretical anisotropic shift (small nondipolar part) being slightly too large. A
re-appraisal is made of Tinkham s data on paramagnetic resonance of Mn++ impurities in ZnF~, which
Bleaney has shown to be closely related to the Shulman-Jaccarino data. It is found that there is no need
to include, as did Tinkham, a large fraction of Auorine 3s and 3P functions into the bond.

I. INTRODUCTION

SHULMAN and Jaccarino' (SJ) have recently suc-
ceeded in measuring the nuclear F" resonance in

the paramagnetic state of a single crystal of MnF2, and
they find that the resonance frequency is shifted from
the free-ion F value by a surprisingly large internal
field. In this paper we examine various possible causes
of the SJ resonance shift.

The experimental results of SJ can be summarized as
follows: In the paramagnetic state of MnF~, in an
applied field Hp parallel to the c axis, or L001$ direction,
the nuclear F" resonance can be fitted by the relation

Io=yA (Hp+AH),

with 5H, as a function of temperature, directly propor-
tional to the paramagnetic susceptibility p. When Hp
is rotated in the (001) plane, the average resonance
frequency is the same as with Hp along c, and there is
in addition a small anisotropic term.

Part of the effective field entering into AH is of
course the dipolar field (including demagnetizing effects)
coming from the paramagnetic Mn++ ions. This has
been calculated by Smilowitz, ' and the results are
quoted in Appendix A of SJ.

The observed value of AH is found to be linear in Ho,
as required for dipolar fields in a paramagnet. The
dipolar fields account for nearly all of the anisotropic
term but are an order of magnitude too small to explain
the large average shift. After subtracting the calculated
dipolar field from the measured average hH, SJ are
left with

(t1H/H p) =0.0735&0.0003,
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at 77'K. It is this large nondipolar average shift, and
also the small remainder of the anisotropic shift, which
we propose to explain.

We shall show that the overwhelming contribution
comes from a net hyperfine interaction accompanying
overlap effects between F and Mn++ ions in the
ground-state nearly-ionic configuration of the crystal.
Very briefly, the mechanism is as follows: Consider an
Mn++ ion with magnetic moment up. The 3d electrons
will automatically be orthogonal to the down neighbor
fluorine electrons (that is, electrons with magnetic
moments down), but not to the up fluorine electrons.
As a consequence the up electrons, in the crystal, will
no longer exactly pair off with the down electrons—
that is, their crystalline orbitals will diGer. This results
in a net internal magnetic field at the F" nucleus. We
shall speak of an "effective fraction" f of an unpaired
fluorine electron as being responsible for this field. The
field will fiuctuate at a rate corresponding to the Mn++
spin-relaxation frequency, which is very rapid compared
to the nuclear resonance frequency. The nucleus will
therefore see an average field which will be proportional
to the excess of Mn moments in the direction of Hp,
or directly proportional to p.

As has been discussed by SJ, we may picture this
effect in terms of antibonding molecular orbitals. But
we may also take the atomic-orbital point of view and
think of overlap effects in the ground Mn++F state
and transfer efkcts to the excited Mn+F state. In
Sec. VI it is shown that these two points of view,
molecular orbitals and atomic orbitals, lead to the
same theoretical predictions.

Bleaneys has shown that the measurements of SJ can
be correlated with the data of Tinkham4 on para-
magnetic resonance of Mn++ substitutional impurities
in ZnF2. Much of our analysis will be based on Tink-
ham's work.

We shall also use data" obtained by SJ from. F"
B. Sleaneyp Phys. Rev. 104, 1190 (1956).

4 M. Tinkham, Proc. Roy. Soc. (I.ondon) A236, 535 and 549
(1956).' V. Jaccarino and R. G. Shulman, Phys. Rev. 107, 1196 (1957).
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resonance in antiferromagnetic MnF2 ~ From Tinkham's
data, 8leaney predicted this resonance frequency at
O'K to be 179 Mc/sec, and from their paramagnetic
data, SJ predicted 177 Mc/sec. The actual resonance
was found near 160 Mc/sec. In Sec. III we present a
consistent analysis of both paramagnetic and anti-
ferromagnetic results which removes this discrepancy.

A theoretical interpretation of Tinkham's experiment
has been given by Mukherji and Das. ' Their calculation
is restricted to the isotropic e8ect. We discuss their
results in Sec. VIII.

II. THE SHULMAN-JACCARINO EXPERIMENT

Following SJ we introduce a nuclear Hamiltonian for
the kth F" nucleus:

By reRection symmetry A „'=A „",but we preserve
the distinction for the sake of clarity. The nucleus at
the other type of site in MnF2 will have an identical
Hamiltonian with JIO rotated by 90' about the s axis.

It is important to realize the difference between the
environment seen by a manganese atom (Tinkham's
problem') and the environment of an F" nucleus. If
we consider the manganese at site II in Fig. 1, then it
will see type II bonds to two neighbor Quorines along
the x axis and type I bonds to four neighbor fiuorines
in the ys plane. The notation type I and type II is
Tinkham's. Ke see that his A „ii will be identical to
our 2„",but that his A „will be related to our A „'
and 3„"by a 90' rotation about the s axis. Thus,

x'= —y~AP Hp+P;P A~' S'. (3)

The first term is the usual Zeeman energy and the
second term is an effective hyperfine coupling between
the kth F" nucleus and the jth manganese spin,
summed over all near neighbors. In addition there will
be terms from the manganese dipolar field as mentioned
in Sec. I, and negligible contributions from nuclear
dipole and quadrupole interactions. It will be the task
of our theory to account for the effective hyperfine
tensors A&".

Since the manganese spin-relaxation time is very
short compared with the nuclear resonance time, the
nucleus will see the thermal average value ($&)t". This
is related to the applied field and the paramagnetic
susceptibility by

(S&),g = Hpg/1VgP. —

As emphasized by SJ, the simplicity of this equation
depends upon the existence of an isotropic g tensor.

We may now write (3) in the form

X"= y~fiP IIp [I—"+nQ Q, I "~ "$ (5)

where
n =g/sVgPy~k,

and where the subscripts indicate vector and tensor
components along appropriate orthogonal axes. We
recall that the superscripts connect the kth F"nucleus
to its jth near-neighbor manganese spin. There are two
nonequivalent fluorine sites in MnF2, but since these
diQ'er only by a 90' rotation about the c axis, we need
concern ourselves with the hyperfine interaction at
only a single F" nucleus. Thus we drop the index k
and consider a nucleus situated as in Fig. 1. The x and
s axes (the latter along c) are taken as shown in the
figure; the y axis is normal to the page; these axes are
principal axes of the hyperfine tensors.

For the nucleus shown in Fig. 1,

kg Hp I )1+a(g r'Pg "Pg rr)j (6)

A. Mukhclji and T. P. Das, Phys. Rev. 111, 1479 (1958).

2~„r+A 'r= 47.8 46.3

2A r+A "=46.3 47.8
(8)

All values are with accuracies of &0.5 and are times
10 ' cm '. The numbers in braces are an alternate
possible interpretation of the experiment.

To this set of parameters we shall add one obtained
by the same authors' from F" resonance in antiferro-
magnetic MnF2. This parameter was determined by
assuming complete sublattice magnetic saturation at
O'K. According to Kubo, ' however, spin-wave theory
predicts that this structure should be short of complete
saturation by 0.075/5, or by 3% for 5= ps. We make
this correction first to the dipole field, which we have
calculated, ' assuming saturation, to be 12 500 oe and
which now becomes 12 120 oe at O'K. This accounts
for 48.56 Mc/sec of the measured resonance frequency
and leaves us with

or
111.43 Mc/sec = (2A —A.")(0.97S)c,

2A, r —2 'r= (15.3+0.2)X10 ' cm—', (9)

as compared with the value 14.6~0.2 given by SJ.
In order to compare the four experimental values of

Mn I'

Fro. 1. Fluorine site in MnF2.
The bond lengths are from Stout
and Reed (see references 10 and

Mn II 11).

Mn I"

7 R. Kubo, Phys. Rev. 87, 568 (1952). A recent theory of J. C.
Fisher, Bull. Am. Phys. Soc. 4, 53 (1959), predicts only 1.3~/&
short of saturation. Fisher's theory gives 14.9 for the numerical
value in Eq. (9). The consequent changes in the values in Kq.
(18) would be within the quoted errors,

From application of Eq. (6) directly to their experi-
ment, SJ were able to determine

2A, '+A,"=47.0
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(8) and (9) with theory we must return to the Hamil-
tonian in the form of Eq. (3) and. relate this to contri-
butions from fluorine 2s and 2p functions. But first
we need a model of the Quorine orbitals.

III. THE INDEPENDENT-BONDING MODEL

unpaired fluorine electron. Therefore

(I.S.') =5(IP.)
and hence we may write

A „'=A, &'+Q „A„.'(3 cos'8„„—1), (13)

If the covalent bonding tendencies are small, one
may consider the Auorine as almost pure F . Then in
a calculation involving any single F—Mn bond we may
think of that bond as a very small perturbation of the
ionic configuration, and we may neglect any correlation
eGects among bonds as being of higher order in the
perturbation. We simply add the independent effects
of all the bonds. We shall ca11 this the independent
bonding model. Although they do not say so explicitly,
both Tinkham and SJ analyze their data on the basis
of this model; we shall rework their analysis with
changes in emphasis and detail in order to clarify the
argument and in order to correct some small, but
important, numerical errors. In Sec. IV we consider
the implications of a model in which the Ruorine 2s
and 2p orbitals hybridize and direct themselves towards
the manganese neighbors.

We may choose p„p„,and p, functions corresponding
to the axes of Fig. 1. However, since the matrix prop-
erties of these functions transform as simple vectors,
we may equivalently analyze the p orbitals along and
perpendicular to any bond we are considering. We
make an independent analysis for each of the three
types of bonds of Fig. 1. For each case we will call the
p„-orbital along the bond p„ the orbital along the y
axis p, and the third and orthogonal orbital p

If we think of the hyperfine interaction of Eq. (3) as
caused by an unbalance of fluorine electrons of up and
down spins, we may write for the hyper6ne expectation
value:

where f, and f„„are the effective fractions of 2s and

2p. electrons producing the net hyperfine interaction.
The Hamiltonians of (10) are the standard atomic
hyperfine interactions and have the expectation values
for F ions:

where
Aa'= 'fa'A-28, A.'= U.'A 2. (14)

etc. for p and p
Noting that the three direction cosines in (13) sum

in the square to one, we write

A &'=A, &'+A, &(3 cos'0„.—1)+A &(3 cos'8 —1), (15)

where A, &' is shorthand for (A„' A„&) a—nd A & is
shorthand for (A„'—A „.&').

We now apply Kq. (15) to the bonds of Fig. 1, and
we use Eq. (7). The result is

A~i=A, r+(3 sin'5 —1)A,i—A

A '=A, '—A.'+2A ',

A, '=A. '+(3 cos'8 —1)A '—A '
II—A II+2A II A II

A ii A ii A ii+2A ii

A II A II A II A II

(16)

These equations contain six parameters on the right
sides, whereas we have only four measurements in

Eqs. (g) and (9). Strictly speaking, the independent-
bonding model requires A„&=A„&,and hence A &=0.
This reduces (16) to four parameters. However, it also
requires A „"=A,", a relation in sharp disagreement
with Tinkham's measurements (see next section). For
reasons we shall give later, we do not believe that
either A~ & or A~ & is large enough to make a significant
contribution, regardless of whether the two cancel or
not; and therefore we shall drop A ' from (16). We
may look on Tinkham's discrepancy as either an experi-
mental error or as an indication that our theory is not
quite complete and that A is taking the place of
uncalculated effects which split A„"from A,".

With A dropped, Eqs. (8), (9), and (16) lead to
(all values in units of 10 ' cm ')

where

(x2,)=A 2.(I„S„),
(X2,„)=A 2„(I„S„)(3 cos'0„„—1),

A2, = (8/3)sgPy~fi~ pg, (0) ~'=1.57 cm—',
(12)

A2, = (2/5)gj8y~k(r ')~„=0.044 cm '.

A '=15.4

A, '= 0.2

A.»= 0.4

15.7

15.5
—0.2

.—0.3.

(17)

Here 8„„is the angle between the bond direction of the
p„orbital and the p axis. The numerical values are
those given by Moriya' and are based on calculations

by Hartree and by Barnes and Smith. '
We note that S„'of Kq. (10) is the spin of an Mn++

ion, whereas S„of Eq. (11) is the spin of a, single

T. Moriya, Progr. Theoret. Phys. Japan 16, 23 (1956).
' R. G. Barnes and W. V. Smith, Phys. Rev. 93, 95 (1954).

Here we have used the value of cos'8= (-,'c/2. 11)'
=0.615, as appropriate for the MnF2 lattice. ""The

"We use the x-ray data of J. W. Stout and A. Reed, J. Am.
Chem. Soc. 76, 52'79 (1954).

» Recent data of W. H. Baur, Acta Cryst. 11, 488 (1958), gives
the bond lengths as 2.13 A for type I, 2.10 A for type II. This
makes cos28=0.604, which is very near the value 0.603 used by
SJ in their analysis. Small changes in cos'6 (the value of which
we regard as somewhat uncertain because of the conflicting data)
fortunately do not lead to very signiicant changes in the results.
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These are the "measured values" of the effective
fraction of fluorine electrons participating in the hyper-
fine interaction. In Secs. VIII and IX we compare these
with theoretical values calculated from electronic over-
lap and hopping matrices.

The values (17) which are not in braces may be
inserted into (16) to obtain (all in units of 10 ' cm ')

A„'= 15.4,

A.r= 15.2,

A, '= 15.6,

rr=17 0

A»=15 8

A.»= 15.8.

(19)

IV. THE HYBRIDIZED-ORBITALS MODEL

Let us assume that covalent tendencies are strong
enough so that the appropriate fluorine orbitals are a
hybridized set directed towards the manganese ions.
We may form such an orthonormal set as follows:

@i,i ——2—l
I (1—tan'b) ly, —(tanb) y,a@,),

(2o)e» ——(tanb)y, + (1—tan'b) -'*y, .

The subscripts on 4' indicate the manganese of Fig. 1
towards which the orbital is directed. The p function

g„ is nonhybridized.
We now assume these orbitals to be occupied by

electrons of both up and down spins (with respect to
Hp) with a slight fractional excess of down spin given by

Orbital Fractional excess

values in braces correspond to the braces of Eq. (g).
Since all numbers are estimated to be in possible error
by &0.3, little significance can be attached to A and
A,".These should, however, be positive, and hence
the nonbraced set is to be preferred. Using the values
in Eqs. (14) and (12) we find

f,'= (0.49&0.02) X 10 ',

f,"=(0.52&0.02) X 10 '

f„,' f„., i—= (0.2~0.3)X10—',

f ii —f ii= (0.4~0.3)X10

A„'= 7.34,

A r=7.09,

A,r=7.97,

A rr=32 83

A„»=32.01,

A rr 3221
(23)

Comparison of Eq. (23) with Eq. (19) reveals a
marked difference between the two theories. The
hybridized-orbitals model puts a major portion of the
2s function into %rr, and therefore all A„" are much
larger than A„i. (ln order to obtain an equal amount
of the 2s function in all the directed bonds we must
have tan'3= s, i.e., trigonal symmetry. ) On the other
hand, as Eq. (19) shows, the independent-bonding
model predicts all A„' approximately the same magni-
tude asA»

In the next section we discuss Tinkham's experiment,
which gives direct evidence that Eq. (19) is very nearly
correct for Mn-doped ZnF~. We are forced to conclude
that the hybridized-orbitals model gives a very poor
picture of the wave functions in MnF2 or ZnF~. This is
not surprising, since we know from other evidence that
these crystals are highly ionic.

It would be interesting to try the hybridized-orbitals
model on a reasonably covalent crystal, such as perhaps
MnF3. Observations of nuclear resonance in this crystal
have recently been reported, very brieRy, by SJ."

A consistent fit (well within experimental errors) of
Eqs. (8) and (9) can be made with

a= (1 27~0 03)X10 ' b= (1 63~0 03)X 10 '
(22)c= (0.30&0.1)X10-'.

No fit can be made for the experimental parameters in
braces. We should point out that the above fit is
possible only if we allow 2A, '—A, '= —15.3)(10 '
cm '. However, the experiment cannot distinguish the
sign of this parameter, since in the antiferromagnetic
state half of the nuclei see a manganese spin environ-
ment just inverted with respect to that seen by the
other half; thus two resonances will always be seen at
& the absolute value of the effective internal s field,
plus applied Ho.

We may insert the values (22) back into (21) to
obtain (all in units of 10 4 cm ')

5A „'=aL:,' (1—
q) A,+-,'(2q —1)A,) cA „, —

5A,'= aL-', (1—q)A, ——,
' (1+q)A „)+2cA„,

5A, '=aL-, (1—q)A, +-,'(2 —q)A, )—cA„
5A."=bLqA, +2(1—q)A, )—cA „

A ii
byqA (1 q)A~)+2cA

5A."=bgqA. —(1—q)A„)—cA „,

(21)

q
= tan28.

Straightforward evaluation of the expectation value of
the standard atomic hyperfine Hamiltonian then yields

A r=16.5~0.7, A "=14.6~1.2,
r 18 2~0 2) A "=12.5~0.2.

(24)

The values include the direct dipolar interaction, of
which more below. As pointed out in Sec. III, Tinkham
noted that since A~"&A,", it is necessary to retain
A in Eq. (16). Since we have then six unknowns and

'~ R. G. Shulinan and V. Jaccarino, Phys. Rev. 109, 1084 (1957).

V. TINKHAM'S EXPERIMENT

In his paramagnetic resonance experiment on Mn++-
doped ZnFs, Tinkham obtains (all values in units of
10—4 cm '):
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only four measurements, we must. make some simplifi-
cations. "'

For Tinkham's crystal, assuming that the presence
of the slightly oversize Mn substitutional impurity does
not distort the bond angles, we have""

cos'8 = (1.565/2. 03)'=0.594.

From the fourth and fifth of Eqs. (16) we obtain,
from Tinkham's data, A»=0.7, and from the first and
third of (16) we obtain A, '=3.0. If we now assume
A =A and A, =A 'i we find (all values in units of
10 4cm ')

A z A» 0 7~04 A &=1656~10
(25)

A ~=A»=3.0%1.5, A,"=16.2+1.5.

As noted by Tinkham, his data include direct dipolar
effects between the Mn spin and the F" nucleus, and
these vary with the same angular dependence as the A.
term in Eq. (15). Thus the dipolar contributions may
be thought of as contained in A, . The magnitude" is
(gPkyiv/r')=2. 96X10 cm ' for bond I, 2.92&(10 '
cm ' for bond II. Thus, without direct dipole:

These should be compared with the SJ results, Eq. (19),
based on the independent-bonding model. Comparison
with Eq. (23) indicates the complete inapplicability of
the hybridized-orbitals model.

VI. MANGANESE-FLUORINE WAVE FUNCTIONS

We take the ground state of MnF2 as that of a perfect
ionic crystal, which means that both ions have a
closed-shell structure. Since, however, the charge clouds
of both ions will overlap, this definition has a meaning
only in the first approximation. For each ion we choose
a set of Hartree-Fock wave functions which are com-
puted for the ground state of a free ion. In the next
approximation we take overlap of the wave functions
into account.

We denote the Hartree-Fock orbitals of the (2s)'
and (2p)' electrons in the F ion by

and the Hartree-Fock orbitals of the (3d)' electrons in
the Mn++ ions by

A i=A»=0~1.5. (25')
1) 2) 3) 4) 5 O'

We see that Tinkham's results are surprisingly close
to those of SJ, Eq. (17). This close agreement was first
noted by Bleaney, ' who actually used Tinkham's data
to predict, with considerable accuracy, the F"resonance
frequency in antiferromagnetic MnF2.

If we correct (24) for the direct dipolar contribution,
we obtain (all in units of 10 4 cm ')

Consider the pair of F, Mn++ ions on the x axis of
Fig. 1. I.et fi have the angular factor Pss(cos8) where
8 is with respect to the x axis, and call this pi= ipse Th—e.
overlap integrals are defined by

S,= t P,*(r)14(r a)dr, —

A '=15.9, A»=17.6,

A i 159) A» 154
(26)

S.= @.*(r)Pa(r a)dr, —
(27)

"'Note added r'a proof Recen.t—work of Clogston, Gordon,
Jaccarino, Peter, and Walker (private communication) demon-
strates that the hyperfine tensors for Tinkham's case contain
nondiagonal components. When these are incorporated into the
analysis, the deduced values of A become insignificant."Tinkham used the incorrect value cos'8 =0.633 in his analysis.
This leads directly to A,I=1.2A, I ) which is an unusually rapid
dependence on internuclear distance (the bond distances are 2.03 A
for type I, 2.04 A for type II).Tinkham explained this dependence
by including a large fraction of fluorine 3s and 3p functions into
the bond. On the other hand, SJ analyzed their data assuming
A,i=A, 'i to be reasonable, and our analysis [Eq. (17)7 gives
A. =1.05A, (the bond distances in MnF2 are 2.11A and
2.14 A; note the greater diGerence than in ZnF2). It is hard to
reconcile these MnF2 results with Tinkham's large 1.2 factor for
ZnF~. However, as we show above, when our value of cos'6 is
used we obtain A, = 1.02A,II from Tinkham's data —a reasonable
result.

Recent data of W. H. Baur {see reference 11) give bond lengths
in ZnF2 as 2.04 A for type I, 2.01 A for type II, and hence cos'b
=0.590. This is a trivial change. It is interesting to note, however,
that Stout and Reed find type I bonds shorter than type II in
both MnF2 and ZnF& whereas Baur finds type I bonds always
longer. On the other hand, from SJ data we have, in MnF2
A, &A,II; and from Tinkham data, in ZnF2, A, (A, .Probably
neither the x-ray nor the resonance experiments are sufficiently
accurate to warrant any conclusions, however.

'4 Tinkham uses a direct dipolar contribution one-half as large
as ours. This, together with his value of cos'b, accounts for the
difference between his and our anal numerical results.

where a is the distance between the centers of the two
ions.

There will be no overlap between g, and the other iP, ,
which are of the form I'2+' and I'2+'. The overlap S
between I'2+' and the combinations I'~+' may be
neglected since these charge clouds point parallel to
each other. (It is for this reason that we dropped the

contribution in analyzing SJ data. )
Since from the experimental facts we expect the

overlap integrals (27) to be rather small, we may
restrict our attention to the 5-electron problem involv-
ing p, rr, g,p, p~, pg, 14m of a single Mn —F pair. This
corresponds to the independent-bonding model of Sec.
III.

The most important configurations are the ground-
state configuration (A) = (3d)'(2s)'(2p)' and the two
excited configurations involving electron transfer from
fluorine to manganese (B)= (3d)'(2s)(2P)s and (C)
= (3d)'(2s)'(2p)'. We note that only the fluorine elec-
tron of spin P can transfer. The relevant portion of the
Slater determinants corresponding to these configu-
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rations are

~~= (5~) 'l0'~(1)A.P(2)8'~(3),4*P(4) 0«(5) I;
~s= (5 ) 'I4.~(1),~f"P(2)A«(3)A.P(4) 4«(5) I

' (2g)

~o= (5') 'I4.~(1),O.P(2),4*~(3) Ap(4) A~(5) I

Because of manganese-Quorine overlap, these con-
figurations are nonorthogonal. Neglecting terms higher
than first order in the overlap, we have

the probability density associated with our first-order
wave function %'. This is given by

P.D.— t
~

V'(1, ,5)
i

drs des
rl =r

+ ~%'(1 .
,5) ~'drgd7-s .drs +

'I'2 ='I'

)~%'~*%'~dr =
J

@,*(r)Pd(r a)dr —=S„. + t~V'(1, ,5)~'d r,
. dr4

'I'5 =T
(34)

J
%'~*%'cdr = P,*(r)Pq(r a)dr =—S; (29)

J

%'B*%'gd7.=0.

The secular equation is

AA ~ AB ~ Ss AC

BCBA —8 S KBB—8
SCUBA

—8 S BC|.B

=0

To order S we may replace 8' in the off-diagonal
elements by its zeroth-order value K» and we may
neglect KB~ and K~B. Then standard perturbation
theory yields as the first-order wave function

This expression is rather difficult to evaluate with the
orbitals as given by Eq. (33). We may, however,
simplify the problem tremendously by transformation
of the orbita. ls of (33) into an orthogonal set. As
discussed on p. 238 of Seitz,"the Slater determinant is
invariant to the orthogonalization process. This is
because this process is equivalent to adding a constant
multiple of the elements of one row of the determinant
to the corresponding elements in another row, which
procedure leaves the value of the determinant un-
changed.

I.et us assume we have transformed to an orthonormal
set P,. Then (33) becomes

~'= (5 .) I Ni(1), A(2), ds(3), 44(4), ds(5) I (»)
and the probability density may be written simply as

(30) P D =2 I 0'(r) I'.
i=1

(36)

where
(31)

58—XBB KAA 60 XgQ XAA p

(32)
Ta AB AASs 2 To A| +AASO ~

VII. SPIN PROBABILITY DENSITIES

The nuclear resonance shif t is produced by an
unbalance of probability densities in the spin states e
and p. To determine thus unbalance, we must calculate

The constant E is for normalization. It is seen that the
transfer integrals T include nonorthogonality effects.

The function (30) may be written as the single
Slater determinant

e'= X'~ q,~(1), (q,+X,P.)P(2), q.~(3),
(4*+&.A)p(4), 0«(5) t, (33)

and therefore the mixture of three atomic-orbital con-
figurations is equivalent to a single molecular-orbital
configuration. One could, of course, have started with
the function (33); the variational principle would then
have yielded the solution (31) for the X's. It should be
noted that (30) and (33) are equivalent only because
the electron transfer in both excited atomic-orbital
configurations is to the same orbital PdP, and therefore
the term in X,X, in (33) is zero.

S;;= Q;*Q;dr. (3g)

The integral includes a sum over spin states, that is,
S,;=0 if the spins of P, and P, differ.

With this procedure, the orbitals become, to second
order in X and S,

,'S,gd+ s (S—,'—P,+S,S.P.)jn,

P,= (1+X,'+2K,S,)—'*Ly, ——', P.,S,+X.S.+X,X.)y.
1x,ggjp,

-',S.~.+:(S.~.+S-.S.~.)l-,
-' '

(39)

04 (1+X,'+ 2K,S,)—'*PP.—s P——,S,+X.S.+X,~.)P,
+x.pgjp,

4s= t 4d —sS.4.—sSA*+-:(S".+S')A3~.
"F.Seitz, The Modern Theory of Solids t,'McGraw-Hill Book

Company, Inc. , New York, 1940).
'6 P.-O. Lowdin, I. Chem. Phys. 18, 365 (1950).

An orthonormal set may be obtained by the method
of I.owdin".

S.=E,~, (S—:);.
=Xi t 4i s Pj QjSji+s PjkgjSjk, Sk~ ' ' ']q (3~)

where the p; are the original nonorthonormal orbitals
of (33) and
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VIII. CALCULATION OF THE ISOTROPIC SHIFT

The isotropic shift is given by the fractional proba-
bility charge evaluated at the fluorine nucleus (contact
interaction). This is

(P.D.).—(P.D.)p-

(P D)p - nucleus

=(S.+l.)'. (45)

Here we have neglected Pp( —a) as negligible, that is,
we assume that the charge density of the 3d function
is very localized around the Mn nucleus.

We must now compute (45) and compare with the
"measured value" of Eq. (18). From Sec. VI we have

X.= —T,/&, = (~AASg SCAB)/(XBB ~A A) . (46)

Terms of order S in K~~ may be dropped, and hence

~AA=2(sl&ls)+(dl JI[d)
+2(sd[G[sd)+(ss[G[ss). (47)

Here, as usual"

H = (P,2/2m) —e' P g (Zg/r;g), G =e'/r;,
' For a more complete explanation of this notation, together

with a discussion of the order of magnitude of the various integrals,
gee J. Yamashita and J. Kondo, Phys. Rev. 109, '?30 (1958).

The probability density of n spins is given by

(I'.D )-= I N~l'+
I
43['+ I W~l'

= (1+S.')P'+ (1+S.')P*'+ (1+S.'+S.')4A'

+2/, $.S,S. 2|—4(S,Q,+SQ,), (40)

and similarly the probability density of p spins is

given by

(P.D.)p= (1—X '—2X,S )@ '+ (1+X.'—2X.S.)g,'
+P,2+X.')PA'+2/A(X, y,+X.P )

—2 pI„S,+X.S.+X,X.)p,p, . (41)

ln these equations the expansion is to second order
in X and S. It is to be understood that g, and P have
argument (r) whereas fp has argument (r a)—

We shall be interested in the difference:

(P.D.) —(P.D.)p=L(1+2SQ+-'S,'——'X '—~2K ')pp
-(S.+&.)~.-(S.+&.)~*j' (42)

This may be thought of as the probability density of
the augmented manganese function

t4'= (1+-,'S,2+~S '—-'X '—-'X ')PA

-(S.+l.)S.-(S.+l.)~*. (43)

This function is even correctly normalized through
second order. This is the antibonding molecular orbital
suggested by SJ in their Eq. (12), but we now see how

it naturally arises from the total solution of the problem.
If only S, is taken account of, (43) reduces to

(44)

This is the approximation of Mukherji and Das. '

(a) Estimate of S,

By using the Hartree-Pock wave functions of
Mn++ —(3d) and F —(2s) we have estimated the value
of S,. The computation is straightforward and the
result is

5,=0.05. (50)

The same result was obtained independently by
Mukherji and Das. ' These authors calculate the overlap
appropriate to the two Mn —F distances of Tinkham's

experiment. They obtain a theoretical ratio A,r/A. 'r
= 1.05. (However, although they use a molecular
orbital picture, they do not consider the X, contribu-
tion. ) Their theoretical ratio should be compared with
Tinkham's 1.20 and with our correction to Tinkham,
1.02 (see reference 13).The distances used by Mukherji
and Das are those of Stout and Reed; use of the data
of Baur would lead to a theoretical ratio less than 1.

(b) Estimate of 0„

By a rather rough calculation we have estimated the
value of the 6rst four terms in (49) to be —0.01
atomic unit (a.u.). For the 6fth term we have used the
value of (s I

H
I s) computed by Hartree, that is, —1.0765

a.u. , and we have calculated the sixth term by using
the Hartree-Fock wave functions of the 2s electron.
The total result is

—0.015 a.u. =—0.4 ev.

This number is difhcult to estimate with precision since
the last three terms of (49) tend to cancel the Erst
three terms. However, the order of magnitude should

be correct.
Next let us estimate d„. The principal contributions

are

(a) the orbital energy of a 2s electron in the F ion,
which is calculated by Hartree as —1.0765 a.u. , or
about —29 ev;

(b) the orbital energy of a P&"-type electron in the
(3d)' configuration of Mn+, which we estimate from
the spectrum data (Kaiser's table) as about —10 ev;

(c) the change in the electrostatic energy due to the
transfer. This will be equal to the energy created in an
MnF& crystal by placing a negative electron at a Mn++

site and a positive electronic charge at a F site, or
(neglecting charge overlap and polarization effects)
equal to

(52)—eVM +eVF—(e'/a).

To order 5 we have

BcAB= (s I
H

I d) + (ss I
G

I sd) + (sd I
G

I dd)

+L (s I
H

I
s)+ (d I

H
I
d) + (sd [ G [ sd) gS„(48)

and thus

T,= (s I
P

I d)+ (ss
I
G

I
sd) + (sd I

G
I dd)

—
I (sd[G[sd)+(sl&[s)+(»[G[»)jS,. (49)
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Here VM a id t I" are tlie crystalline elect lost.atl(
potentials at the Bin and F sites, respectively, and a is
the smallest i%In —F separation. We may relate this
expression to the Madelung energy per molecule, "

—(n/a) e'= rs[VM„(2e)+2 VF (—e)$, (53)

where n is the Madelung constant (=4.816). The
electrostatic energy-change due to transfer is thus

(4.816—1) (e'/a) =0.95 a.u. =26 ev.

The value of 6, is (29—10+26)=45 ev in the first
approximation. The effect of lattice polarization around
the excess charge will of course reduce this energy.
We know from the work of 3,lott and Littleton however
that this polarization energy is only of 'the order of
several electron volts, so it is doubtful if 5, can be
smaller than 35 ev. Thus we can hardly expect a
larger value than

the neighbor iwln (inultiplied by a very small correc-
tion). When this is added to the dipolar fields of the
other four i~'j;n 3d' electrons, one has the dipolar field
of a spherical cloud at a point essentially outside the
cloud. This is the same as the dipolar field from an
equivalent spin at the Mn nucleus, plus higher poles
which may be neglected. This dipolar field has already
been included in the dipolar lattice sum.

The contribution from the p.s and the p.p, terms
will integrate to zero.

The contribution from the P&, and P~p, cross terms
may be estimated as follows. We assume that the
overlap region is concentrated along the Mn —F axis
at the fluorine ionic radius r~. Then we obtain, approxi-
mately

(1—3 cos'er)rr ' 2(S,+X—,)Jtfq*$,dr

h, 0.4/35 =0.01. (54)

We note that X is positive, which corresponds to a
reasonable molecular orbital in Eq. (43).

(c) Estimate of Isotropic Shift

The isotropic shift is now given by

f.= (S.+li.)'= (0 06)'=0.36X10 ' (55)

which is to be compared to the experimental value
0.50X10 ' of Eq. (18). At the present state of the
development the reason for the discrepancy is not clear,
although we can imagine the following possible causes:
(1) The theoretical value of S, is not accurate, because
the wave functions of the free ions should be modified
in the crystal. In particular, the crystalline field may
deform the F ion; and since this field consists of
electrostatic field, exchange effects, and overlap eGects,
the degree of deformation will depend on the spin
configuration of the surrounding Mn ions. (2) The
theoretical value of T, is not accurate for similar
reasons. (3) The estimate of 6, is in error. (4) There
are other causes of the shift.

IX. CALCULATION OF THE ANISOTROPIC SHIFT

The net anisotropic hyperfine interaction will be
proportional to

—2(S,+lb„) pd*@,dr

= —2(1—3 cos'gr) rr '[S,(S.+li,)+S.(S.+ 7i.)j, (57)

where Hg is the angle between the axis of quantization
and the Mn —F axis.

Finally we have the contribution to (56) from the
P ' term:

(S,+7~,)'J (1—3 cos'0)r '~~t, ~'dr

= (S,+7%,.)'(1—3 cos'Hr) (2/5)(r-')s„. (58)

The anisotropic shift is given by the sum of (57) and
(58) divided by

(1—3 cos'0)r '(P.D.)pdr.

Thus:

f„.= (S,+7~.)'—0.045[S,(S,+7,)+S.(S.+l~.)$, (59)

where the numerical value is obtained from (r ')s„as
given by Barnes and Smith' and rl as approximated
by the Pauling radius of F .

By using the Hartree-Fock wave functions, we have
computed"

' (1—3 cos'0)r '[(P.D.) —(P.D.)s]dr, (56) 5 =0.060. (60)

where 8 is the angle between r and the axis of quanti-
zation. On substitution of Eq. (42) into the above, it is
seen that the contribution from f~' is simply the dipolar
field, at the F nucleus, of a I'2' electron centered about

'8 See' M. Born and M. Goeppert-Mayer, IIuedbuch der I'hysik
(Verlag Julius Springer, Berlin, 1933), Vol. 24, part 2, page 707.
The de6nition of the Madelung constant given on p. 77 of reference
15 does not correspond, for the rutile structure, to the value of
the Madelung constant given in that book.

By methods similar to those of Sec. VIII we have
estimated T = —0.4 ev. In the case of the 2„,-electron
the orbital energy in the F ion is only about —4 or
—5 ev, so that 6 becomes 10—j.5 ev. Hence

0.4/10 =0.04, (61)
'9A preprint version of our work which was distributed in

October, 1958, gave S =0.045. A subsequent calculation by W.
Marshall yielded a higher value. We wish to thank Dr. Marshall
for calling our attention to this discrepancy, which led to discovery
of the omission of an important term in our original calculation.
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or perhaps less. Finally

f„, 1)&10 ' (62)

or perhaps less. The lt&, and lf &, cross terms in (59)
make a very small contribution.

This is to be compared to the experimental values of
Eq. (18). It is seen to be much too large, although the
uncertainty in the experimental values makes definite
conclusion unwise. The discrepancy could be caused by
(1) a non-negligible value of f„;(2) underestimate of
the size of the cross terms.

We note that, regardless of the signs of S or A, , Eqs.
(55) and (59) predict a paramagnetic shift, i.e. , DH

positive. However, the Pr electron must exist in the
transition metal ion for the theory to apply. In the
case of CrFS, where this electron is expected to be
absent, the nuclear resonance is found to be unshifted. "
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High-frequency (23.5-kMc/sec) surface resistance measurements have been made on plane surfaces of
single-crystal bismuth at 2'K as a function of orientation. It has been ascertained that extreme anomalous
skin effect conditions prevail, allowing details of the Fermi surface to be deduced from Pippard's theory. In
Shoenberg's model of the electron band, components of the inverse effective-mass tensor divided by the
Fermi energy are found to be /Ezzz, =9.10, zsz/E, = .0088czz/E, =4 7, and zsz/E, .=O 38 (in units of. 10'/ev).
These results are in essential agreement with values obtained from de Haas —van Alphen experiments and
cyclotron resonance. The number of ellipses is de6nitely established to be six and the number of electrons
found to be X=5.5&&10"/cm'. The parameters for the two hole ellipsoids are found to be t3z/Es= Pz/E$ 1.5—
and ttz/Ey, =0.12. Assuming Shoenberg's value E.=0.0177 ev, we calculate Es=0.00112 ev from specific
heat data. It is also found that the reflection of carriers from the surface of the sample is predominantly spec-
ular in contrast to diffuse reflection found in other metals.

l. INTRODUCTION
" 'T has been shown' ' that measurements of the high-
s - frequency surface resistance of pure single-crystal
metals can yield valuable information about the Fermi
surface when so-called extreme anomalous conditions
are achieved. This requires that the mean free path l
be much greater than the skin depth 8, and that ~7 be
small enough to prevent relaxation effects, where m is
the frequency and 7 the relaxation time.

For a plane surface, the surface resistance will have
the form

R=R, cos'e+Ro sins8,

where x and y are principal axes of the surface, and 0
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the University of Chicago.
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' A. B. Pippard, Proc. Roy. Soc. (London) A224, 273 (1954).
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the angle between the current direction and the x axis.
Pippard, ' assuming that only those electrons traveling
nearly parallel to the surface are e6'ective in absorbing
energy, derives the expression

V3 ma)'h'
E. =b—

2 e'czJ'~ p„~dy
(2)

where p„ is the radius of curvature of the Fermi surface
in a plane normal to the y axis at the point where the
normal to the Fermi surface is parallel to the surface
of the metal. The quantities p„and y are expressed in
units of momentum. The integration must include
summing over all sheets of the Fermi surface when it is
not simply connected. A similar expression holds for
R„.The 'constant b is equal to 8/9 for specular reflection
of electrons from the surface of the metal and equal to
1 for disuse reAection. The choice of b for the inter-
pretation of the present experiment will be discussed
in Sec. 5. It will be noted that E. is independent of the
relaxation time and depends only on the geometrical
shape of the Fermi surface. It is further evident that a
deduction of the Fermi surface frorq. the rpegsured


