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Calorimetric optical absorption measurements at 4.2°K have been made on a representative series of «
brasses over the wavelength range 0.23 to 4.0 microns using electropolished bulk specimens. Changes in
the absorption spectrum below 6000 A are interpreted in the light of current theories concerning the band
structure of noble metal alloys. The variation of the infrared absorptivity with residual resistivity shows
that the impurity relaxation time for copper is anisotropic. This anisotropy increases on alloying and suggests
that the Fermi surface becomes more distorted with increasing solute concentration.

I. INTRODUCTION

ELATIVELY little attention has been given to
optical absorption measurements as a means of
studying the electronic structure of alloys, particularly
those involving the noble metals as solvents. Until quite
recently, the only data relating to the latter were those
given by early experiments on the copper-nickel,!:?
copper-zinc,? and copper-aluminum? primary solid
solutions. These measurements were all made on me-
chanically polished surfaces, using the conventional
polarimetric method of Drude® to obtain values of #
and k over a relatively restricted range (approximately
0.4-1 u). Owing to the disturbed nature of the reflecting
surfaces caused by mechanical polishing, the sensitivity
of the Drude method to fine scratches on the samples
and also owing to the fact that, at room temperature,
the effects of lattice vibrations and the diffuseness of
the Fermi distribution function smear out the transi-
tions, the data gave very little detailed information on
the changes in the absorption structure on alloying.
According to Mott,’ the main absorption edge in
copper is due to electron transitions from the d-band
of the crystal to unoccupied states at the top of the
Fermi distribution, the minimum frequency of the edge
corresponding to the energy separation between the
two. Hence on alloying, the shift in the absorption edge
should equal the associated displacement of the Fermi
level, it being supposed there is very little change in
the relatively low-lying d-band. The addition of zinc
or aluminum, which contribute additional electrons to
the conduction band, should therefore give a shift in
the absorption edge to higher energy, i.e., shorter
wavelengths. More recently, however, Friedel” has pro-
posed a modification of the Mott theory taking into
account the screening by the conduction electrons of the
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hole in the d-band. According to this view, the main
absorption edge in copper should not differ sensibly
from the excitation energy 3d'° — 3d%s for the isolated
Cut ion, the secondary structure in the region below
3000 A8 being associated with the excitation energy
3d"— 3d%p. Alloying should therefore not cause any
appreciable shift in the absorption edge, apart from
relatively small effects due to changes in Coulomb
interaction between the screening charge and the lattice,
exchange interactions, etc.

As a result of the broadness of the absorption edges,
the restricted frequency range covered, and the small
number of alloy systems studied, the older work is not
capable of discriminating between these theories in a
satisfactory way or of providing useful information
about the band structure of noble metal alloys in
general. There is thus a great need for reliable optical
absorption measurements, using the improved tech-
niques of sample preparation and measurement now
available, on an extensive series of alloy systems. The
present work was undertaken to provide such data,
and in this paper the results of experiments on the
copper-zinc primary solid solutions, covering the wave-
length range 0.23-4 p, are presented.

II. EXPERIMENTAL

Measurements were made at liquid helium tempera-
tures using the calorimetric technique developed for
experiments® on the infrared absorptivity of copper and
silver at 4.2°K. A schematic diagram of the apparatus
is shown in Fig. 1. Light from a grating monochromator
or suitable infrared filter enters the system through an
electropolished stainless steel light pipe, which also
serves to evacuate the inner assembly, thereby pre-
venting significant gas conduction. A quartz lens focuses
the incident energy at an angle of incidence of 15° onto
the target, which is screwed into a copper stage contain-
ing a carbon resistance thermometer and a 100-ohm
manganin wire heater. The radiation is then reflected
onto an absorber, which has a similar heater and
thermometer and which is coated with palladium black
so as to have substantially zero reflectance over the
wavelength range of the present experiments.

8 W. Meier, Ann. Physik 31, 1017 (1910).
¢ M. A. Biondi, Phys. Rev. 102, 964 (1956).
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BAND STRUCTURE OF NOBLE METAL ALLOYS

Both the target and absorber stages are supported
by thin walled stainless steel tubing connected to a
heavy copper base in contact with the helium bath.
This base also contains a heater and a thermometer,
which are used in an electronic control circuit to
maintain the base temperature constant to within
about 0.0001°K. Fine copper wires provide the desired
heat leaks from the stages to the base so that, with
radiant energy incident on the system, temperature
differences are set up across the heat leaks proportional
to the power absorbed by the target and absorber.
These temperature differences are measured by the
carbon resistance thermometers. By reproducing the
resistance changes by means of dc power applied
through the respective heaters, the absolute absorp-
tivity can be simply calculated from the formula,
A=Py/(Pr+P,), where Pr and P, are the power
required to reproduce the temperature rises of the
target and the absorber, respectively.

In applying this formula to calculate the absorptivity
of the samples in the infrared, small corrections have
to be applied to allow for the effects of scattered light
leaking onto the target stage. Although this stray
radiation is minimized by placing behind the target a
blackened stop in good thermal contact with the base,
the residual leakage still accounts for a few percent of
the total absorption owing to the high reflectivity of the
targets in the infrared. The appropriate corrections were
determined by noting the apparent heat flux to the
target stage with a dummy sample, thermally isolated
from the stage, reflecting the incident radiation.

To cover the wavelength range of these experiments,
band pass interference filters were used in conjunction
with a Nichrome glower for the region 3.0-4.0 microns.
From 1-2.5 microns, a Bausch & Lomb 250-mm mono-
chromator with a grating blazed at 1 micron and a
tungsten light source were employed. Below 1 micron
a grating blazed at 0.3 micron was used, the tungsten
source replaced by a high-pressure mercury arc lamp
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Fic. 2. Optical absorptivity of a-brasses in the ultraviolet and
visible wavelength regions. The ultraviolet absorption peaks
move toward longer wavelengths (4-G) with increasing solute
concentration.

to cover the region from 0.23-0.6 micron. The intensity
of the arc lamp was sufficient to enable the monochro-
mator to be operated with good resolution (a window
half-width of 60 A) over most of the visible and ultra-
violet regions of the spectrum, while still maintaining
adequate accuracy. Below about 0.28 micron some
difficulty was encountered with scattered light in the
monochromator. Although corrections were made for
this effect, the absorptivity values in this region are of
somewhat doubtful accuracy and should only be taken
as indicating the trend of the actual behavior.

The specimens used in these experiments were ma-
chined from ingots, which were formed by induction
melting appropriate quantities of high-purity copper
and zinc in a helium atmosphere. These ingots were
cast in graphite molds, cold worked and subsequently
maintained at 800°C for 24 hours to remove coring and
to assist in their homogenization. They were next sub-
jected to further cold work in three mutually perpen-
dicular directions (to prevent preferential grain growth)
after which optical and residual resistance specimens
were machined from them. The resulting samples were
then sealed with brass shavings of the same composition
in a Pyrex tube under a helium atmosphere and
annealed. To prevent exaggerated grain growth, the
duration and the temperature of this heat treatment
were varied with solute concentration. By careful control
of the annealing conditions, a grain size of about 1/100
mm was obtained in all specimens, so that the measured
properties can be taken with confidence to be charac-
teristic of polycrystalline material of random orientation.

The targets for the optical absorption measurements
were all electropolished using an 809, orthophosphoric
acid solution. By varying the voltage across the cell
with changing solute concentration, satisfactory sur-
faces could be obtained for all the specimens used
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Fic. 3. Details of main absorption edge for a-brasses. The dashed
lines indicate the extrapolation procedure used to determine the
onset of the main absorption.

in this work. After polishing, the specimens were washed
in running hot and cold water to remove the phosphate
film on the surface, rinsed and then immersed in
distilled water, and finally transferred to a helium dry
box where they were dried in a current of helium gas
and mounted in the apparatus. The latter was evacuated
and cooled to nitrogen temperature as soon as possible
after the mounting operation was completed to mini-
mize the danger of surface deterioration in the speci-
mens. In this way quite reproducible absorptivity
results were obtained, giving a reasonable assurance
that properties measured were in fact those associated
with the bulk material.

III. RESULTS

Absorptivity data for the various alloys in the visible
and ultraviolet regions of the spectrum are shown in
Fig. 2. The main absorption edges are shown in more
detail in Fig. 3. Owing to the improved surface quality,
the residual absorption beyond the edge is quite small
even in the alloys with large zinc concentrations. This
circumstance, together with the fact that the measure-
ments were made at low temperatures, thereby elimi-
nating the effects of lattice vibrations and the diffuse-
ness of the Fermi distribution function, results in
much sharper edges than had been previously reported.
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F1c. 4. Infrared absorptivity of a-brasses. It should be noted
that the absorption scale is one-tenth that used in the previous
figure.
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The infrared data for the alloys are shown in Fig. 4,
which is drawn on a much enlarged scale compared to
Figs. 2 and 3. It will be seen that the absorptivity drops
quite sharply in the vicinity of 1 micron and then
becomes substantially constant from 1.75 to 4 microns.
If the latter values are plotted against the corresponding
residual resistivities of the samples, the graph of Fig. 5
results. It is of interest that our residual resistivity data
are in good agreement with those of previous workers!!
as may be seen from Fig. 6. This agreement suggests
that the metallurgical procedures used in the present
work were such as to give reliable, well-annealed
samples.

IV. DISCUSSION
(a) Absorptivity in the Visible and Ultraviolet

Reference to Fig. 3 shows quite clearly that alloying
moves the main absorption edge to shorter wavelengths.
To determine the magnitude of the shift as a function
of solute concentration, it is necessary to adopt a some-
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F1c. 5. Variation of infrared absorptivity with residual resis-
tivity of a-brasses. The dashed curve was calculated on the as-
sumption of isotropic impurity scattering from the solute atoms

what arbitrary procedure as a result of tailing in the
data on the long-wavelength side of the edge. Accord-
ingly, we have approximated the curves by straight
lines after the manner shown by the dashed lines in
Fig. 3 and have taken their point of intersection as the
wavelength Ay where interband transitions begin. The
relative sharpness of the curves on the short-wavelength
side of the edge, even for the more concentrated alloys,
minimizes the errors involved in this procedure.

Values of \¢ as a function of solute concentration are
given in Table I, from which the full curve of Fig. 7 is
derived. The displacement of the edge, which is initially
quite small, becomes linear with concentration for zinc
contents in excess of three percent. Such behavior is
not at all consistent with the original theory of Mott,
according to which the shift of the edge 6E on alloying
is equal to the change of the Fermi level, as computed
from the rigid band model. In this case we have

¢ dN\ 1
5E=Zf (——~—-) d,c,
o \dE

(1

11 Kemp, Klemens, Tainsh, and White, Acta Met. 5, 303 (1957).
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for a concentration ¢ of solute having a valence Z
relative to the solvent. Using the density of states data
obtained from low-temperature heat capacity measure-
ments on the a-brasses,'? Eq. (1) gives for 6 E the dashed
line of Fig. 7. Clearly, it does not represent an adequate
fit to the data.

According to Friedel,® the Fermi level in an alloy
does not behave in the manner predicted by the rigid
band model. Thus when zinc is added to copper, the
additional valence electrons contributed by the solute
are localized in the immediate vicinity of the zinc atoms
in order to screen out their additional ionic charge.
Because the screening distance is small, the copper
atoms in dilute alloys see virtually the same potential
as that in the pure metal. This is equivalent to saying
that the Fermi level in dilute alloys does not alter
appreciably. For more concentrated alloys there is a
displacement of the Fermi level, but it is much smaller
than that predicted by the older theory. Using the
Thomas-Fermi model to treat the effects of screening,
Friedel has obtained an expression for the shift in the
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AE= ,
¢R coshgR—sinhgR

)

where the screening parameter g is related to the density
of states in the alloy by the relation

¢?=4r(dN/dE),, 3)
and where

1/Ré=c/rs, 4)

7 being the radius of the atomic sphere for the solvent
atoms. For copper, Eq. (3) gives ¢=1.12 (atomic
units)~L _

If we retain the idea that the energy separation
between the top of the d-band and the Fermi level
corresponds directly to the quantum energy of the
absorption edge, then the displacement of the latter

2 7 A. Rayne, Phys. Rev. 108, 22 (1957).
18 J. Friedel, in Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd., London, 1954), Vol. 3, p. 461.
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TaBLE I. Values of Ao, the wavelength corresponding to the
main absorption edge, in a-brasses.

Solute concentration Ao Eo OB
(at. %) @A) . (ev) (ev)
0 5790 2.150 0
2.44 5760 2.161 0.011
4.96 5720 2.177 0.027
10.00 5600 2.223 0.073
14.40 5480 2.272 0.122
21.00 5350 2.327 0.177

should be given by Eq. (2). As may be seen from Fig. 7,
which shows this relation plotted for g=1.12, there is a
slightly better fit to the data in that the theoretical
curve has zero slope as ¢— 0 and at least gives the
right order of magnitude for the energy shift. No reason-
able choice of ¢, however, gives complete agreement
with the experimental results. Hence if the present
picture is correct, the screening must differ considerably
from that given by the simple Thomas-Fermi model.
This, of course, is not unlikely, since the applicability
of the Thomas-Fermi model to a stituation where the
calculated screening length is considerably smaller than
the ionic radius is somewhat doubtful.

The above treatment does not take any account of
the screening of the hole in d-band caused by the
ejection of an electron to the Fermi level. Friedel?:13:14
has considered this effect in some detail and has con-
cluded that the main edge in pure copper essentially
corresponds to the excitation energy 3d*® — 3d%s for
the isolated Cut ion, corrected for the Coulomb attrac-
tion between the hole and the lattice, exchange effects,
etc. Of these the most important appears to be the
former, so that on alloying the displacement of the
edge should be given by the change in the Coulomb
interaction. Hence, using Eqgs. (2) and (4), we have'

8E= (p+2Zc)dAE/dc
2(p+Zo)ZgR? (3)
 3c(gR—1)? exp(¢R)’

] b ] i
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/
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F1c. 7. Variation with solute concentration of displacement of
main absorption edge for a-brasses. The dashed curves indicate
the displacement expected from the models of Mott and of Friedel.

14 J_ Friedel, Ann. phys. 9, 158 (1954).
15 Atomic units are used in these equations.
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TaBLE II. Values of 6Ez, and AEz, for a-brasses.®

Solute concentration 8Ezn AEzn
(at. %) (ev) (ev)
5 0 0
10 0.048 0.058
15 0.095 0.107
20 0.143 0.147

a Referred to 5% alloy.

where p is the number of conduction electrons/atom
of solvent.

The magnitude of the screening constant ¢ may
differ from the Mott value given by Eq. (3), because
of exchange effects and also because of the more diffuse
nature of the screening of the hole in the d-band relative
to that of the zinc ions. Taking ¢=1.64, given by
Friedel as the screening parameter for copper if exchange
effects are considered, we obtain the dashed curve
shown in Fig. 7 for the variation of 6 with solute con-
centration. Although the fit to the experimental data
is better than that given by the Mott formula, Eq. (1),
the concentration dependence does not appear to be
correct. If we reduce ¢ to take screening differences into
account, no improvement is effected. It must therefore
be concluded that the Friedel theory, although correct
in a qualitative way, does nof correctly describe the
screening in an alloy for finite solute concentrations.

It is of interest to compare the displacement of the
optical absorption edge with the changes in the energy
of solution for the copper-zinc system. We define £ 4,
the energy of solution per atom A4 at a concentration
¢ in the alloy 4 .~yBa—ew, by the relation

AeniBa-ont+A4 — AenBa_cyn1+B+E,, (6)

N being a large number. Experimental data are usually
interpreted in terms of a quantity E4’ given by

AcN-lB(l—-c)N_*_A — AcNB(I—c)N+EA,7 (7)
which is related to E4 by the Duhem-Margules

equation!®
EA' ¢ c
Fam—t_ f E,/d(—). (8)
1—¢ 0 1—c¢

Friedel has shown that the changes in energy of solution
on alloying AEyz,, should be the same as the displace-
ments 6Ez, of the optical edge, apart from differences
in screening between a hole in the d-band and a zinc ion.
Using the data of Herbenar et al.1¢ giving Ez,’, AEz,
can easily be computed from Eq. (8). The values of
AEz, relative to the alloy for ¢=0.05 are given in
Table II, together with the associated values of 6z,
taken from the smooth curve of Fig. 7. The agreement is
very good, being within experimental error, and suggests
that the above-mentioned differences in screening are
small.

Reference to Fig. 2, Curve 4, shows that the absorp-

16 Herbenar, Siebert, and Duffenback, J. Metals 188, 323 (1950).

BIONDI AND ]J.

A. RAYNE

tion in pure copper exhibits secondary structure at
about 3200 A. It has been suggested by Friedel” that
this structure is associated with a screening of the hole
in the d-band corresponding to the excitation energy
33— 3d%p for the free Cut ion. One would thus
expect relatively little change in the form of this part
of the absorption curve on alloying, or at least a shift
in the same direction as the main edge. Such is clearly
not the case; the peaks of the absorption curves, which
are designated by the letters 4 to G in Fig. 2, move
from 2900 A in pure copper to 4300 A for a thirty
percent zinc alloy. It thus seems unlikely that Friedel’s
theory is correct.

The interpretation of the absorptivity data below
the main edge is complicated by the fact that transi-
tions can take place both from the d-band to the Fermi
level and from the Fermi level to the next zone, pre-
sumably in the (111) directions. There is consequently
considerable uncertainty about the wavelength at which
the latter process is initiated. In particular no quantita-
tive information can be obtained regarding its change
with alloying, except that it definitely shifts to longer
wavelengths.

The shape of the absorption curve for the 309, alloy
suggests that both transitions begin simultaneously at
about 4800 A, i.e., 2.6 ev. On the basis of this hypothesis,
we can make an estimate of the energy gap for copper
along the [1117 direction. Let us first adopt the rigid
band model and suppose that the Fermi surface in
copper, although nonspherical, does not touch the zone
boundary and that on alloying contact takes place at
a zinc concentration of about 109,.17 Once contact has
occurred, transitions from the center of the zone face
can no longer take place. However, one may reasonably
suppose that, providing the contact area does not
become too large, the minimum energy for excitation
from the Fermi surface into the next zone will still
approximate the gap in the [1117] direction for pure
copper. Thus, the value of the gap is roughly 2.6 ev.
Various theoretical estimates of the energy gap are
available but none of these can be taken very seriously
as a result of the extreme sensitivity of the value to the
starting ionic potential used in the calculations. Thus,
for example, Howarth,'® using the cellular method,
found a value of 0.24 ev with a Hartree Cut potential
and 1.7 ev with a Hartree-Fock potential. The present
figure is much lower than the value of 7.65 ev deduced
by Pippard® from his work on the anomalous skin effect
in copper.

If instead of the above model we adopt that of
Cohen and Heine,? which assumes that contact between

17 At this value the variation of v with zinc concentration
exhibits a marked change in slope. See reference 12.

18 D. J. Howarth, Proc. Roy. Soc. (London) A220, 513 (1953).
(1;'5?). B. Pippard, Phil. Trans. Roy. Soc. (London) 250, 325

2 M. H. Cohen and V. Heine, in Advances in Physics, edited
byslgé F. Mott (Taylor and Francis, Ltd., London, 1954), Vol. 7,
p. 395.
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the Fermi surface and the Brillouin zone already occurs
in copper across the {111} faces, then the gap across
these faces decreases on alloying. This model would
thus predict that the resulting absorption edge moves
to longer wavelengths with increasing zinc concentra-
tion, in apparent agreement with the present work.
Provided that contact between the zone face and the
Fermi surface is maintained on alloying, the energy
gap for the alloy with ¢=0.3 would be 2.6 ev according
to this view. To obtain the gap for pure copper, it is
necessary to use the formula®

Zsp— (Asp)solvent
e/a—1 1
= (1—*—2) I:(Asp)solute"‘ (Asp)solvent:l. (9)

e/a

For (Asp)solmte=5.8 €v, (Asp)sovent=3.8 ev, ¢=0.3, Eq.
(9) gives

Rip— (Asp)ou=0.9 ev. (10)

Since the p level is presumed to lie below the s level,
the gap for copper is thus estimated to be 3.5 ev.

As will presently be demonstrated, however, the in-
frared absorptivity data suggest that the Fermi surface
must become more distorted on alloying. This would
necessitate that the gap imcrease and hence that the
corresponding absorption edge move to shorter wave-
lengths. The present data are inconsistent with such a
conclusion and hence we must depend on the rigid band
model for an estimate of the gap.

(b) Absorptivity in the Infrared

From Fig. 4 it can be seen that the absorption data
beyond the main absorption edge exhibit considerable
tailing out to approximately 1.75 u. In this region the
curves all behave in a strikingly similar way, being
roughly parallel to each other. It has been suggested
by Biondi® that, in the case of copper, the tailing may
result from the effect of indirect transitions. Such a
suggestion cannot be correct, since phonons having an
energy of approximately 1 ev would be required in such
processes and these cannot exist in a metal. Again, it
has been suggested that the effects of electron-electron
interactions could account for the observed behavior.
This explanation also cannot be correct, since the fre-
quency dependence of such an absorption process would
in a simple theory be given by*

11)

which exponent is far too small to account for the above
data. It is equally impossible to ascribe the effects to
collision damping, since for copper the plasma frequency
wp= (4wNe*/m)? corresponds to a wavelength of 1400 A.
At the moment, no plausible explanation can be ad-
vanced for the observed behavior.

20V, P. Silin, J. Exptl. Theoret. Phys. U. S. S. R. 34, 707 (1958)
[translation: Soviet Phys. JETP 7, 486 (1958)].

2
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Beyond 1.75 microns the absorption is constant,
within experimental error, up to the wavelength limit
of the present data; viz., 4 u. In this range, the absorp-
tivity can be written as the sum of three contributions,

A= Asurface+A volume+A impurity, (12)

where the effects of these can be considered independ-
ently provided that the scattering probabilities for each
process are small. This condition is presumably satisfied
for the systems studied here.

The first term of Eq. (12) results from scattering of
the electrons by the surface of the metal. It has been
shown? that for the case of diffuse scattering, which
assumption best fits the experimental data at microwave
frequencies,® the surface absorption of a cubic metal is
given by an expression

(13)

where v is an effective electron velocity defined in terms
of an integral over the Fermi surface of the metal. For a
nonspherical energy surface » is a function of the
crystallographic direction, but if we consider poly-
crystalline specimens, an equation of the form given
by (13) will still apply if for the velocity we take a
simple geometrical average, 9, given by

— 3
Asurface“' Zv/C:

9= (1/4r) f 2(2)d2. (14)
In order for Eq. (13) to hold, the condition
we>w>v/8r; 5= (mc2/4wNe?)}, (15)

must be fulfilled, wo being the frequency corresponding
to the onset of the internal photoelectric absorption. It
is easily shown that this equation is satisfied for the
wavelength region being considered.

The volume absorption arises from the interaction of
the electrons with the zero-point vibration of the lattice.
This interaction has been considered by Holstein? and
also by Gurzhi.?® Using the usual approximations of
conductivity theory, wiz., spherical energy surfaces,
acoustical isotropy, etc., Holstein was able to obtain
an explicit expression for the volume absorption of the
form

Avorume= (m*/mNe®) (1/7et), (16)

where 7. is an effective relaxation time related to the
usual conductivity relaxation time 7 at a temperature
T>>6 by the equation

Tetsi=351'7/0, an

6 being the Debye temperature. Although no closed ex-

22 T, Holstein, Phys. Rev. 88, 1427 (1952); M. I. Kaganov and
V. Slezov, J. Exptl. Theoret. Phys. U. S. S. R. 32, 1496 (1957)
[translation: Soviet Phys. JETP 6, 1216 (1957)].

2 R. G. Chambers, Proc. Roy. Soc. (London) A215, 481 (1952).

24 T, Holstein, Phys. Rev. 96, 535 (1954).

25R. N. Gurzhi, J. Exptl. Theoret. Phys. U. S. S. R. 33, 451
(1957) [translation: Soviet Phys. JETP 6, 352 (1958)].
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pression for the volume absorption of a material with
a nonspherical Fermi surface and arbitrary acoustical
properties is available, one may anticipate that it is
possible to define a suitably averaged relaxation time
which will result in an equation similar to (16) for
this case.

An expression for the impurity absorptivity may be
obtained by solving the Boltzmann equation for a
periodic electromagnetic field assuming the existence of
a relaxation time for impurity scattering. In the near
infrared, where wr>>1, the absorptivity may be ex-
pressed in the form (see Appendix)

Ajsmpurity={T)(1/7)(Ne*/wms) Yoimpurity, (18)

where pimpurity i the residual resistivity due to impuri-
ties and (r), (1/7) are averages of the impurity relaxa-
tion time defined by the following integrals over the
Fermi surface:

(T)=frvd5/fvd5; (1/T>=f3i£/fvd5. (19)

From the Schwarz inequality it may readily be shown

that _
(TX1/7)21,

the equality sign holding for isotropic impurity scatter-
ing. The quantity 1/m, appearing in (18) is the usual
inverse effective mass, which for cubic metals is given
by the equation

1 1
—_— f V,2Edk,
Mo 120N

(20)

(21

N being the density of conduction electrons.
In the region of interest, the absorptivity of the
alloys may thus be expressed in the form

A=4 surface+A volume+ﬁpimpurityy

B={(r)(1/7)(Ne*/mma)*. (23)

It may readily be shown that the first two terms change
only slowly with solute concentration, so that the im-
purity term dominates the variation of the absorptivity
with residual resistivity. In particular, the initial slope
of the curve of absorptivity versus residual resistivity
should be essentially equal to 8o, the value of 8 for
pure copper. Using the value of m,=1.45m for copper
derived from the room temperature measurements of
Schulz?® and setting (r){(1/7)=1, we obtain a slope
from (22) which deviates markedly from the experi-
mental one. No reasonable choice of m, effects a material
improvement in the fit to the data, a value of
ma/m=0.61 being required to obtain complete agree-
ment with experiment. Such a figure is clearly untenable

(22)
where

26 L. G. Schulz, J. Opt. Soc. Am. 44, 540 (1954); J. Phil. Mag.
6, 102 (1957). .
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and we must conclude that (7)(1/7) is greater than
unity, i.e., the impurity scattering relaxation time in
copper is antsolropic.

This result is of considerable importance, since it
constitutes experimental proof that much theoretical
work done in the past is based on an unjustified assump-
tion. In particular, the analysis by Olsen and Rod-
riguez?” of their magnetoresistance data on copper at
low temperatures cannot be correct since they assumed
7 to be isotropic. Their conclusions relating the mag-
netoresistance coefficients to the geometry of the Fermi
surface in copper are consequently open to question.
Furthermore, if the impurity relaxation time in copper
is anisotropic, there is very little doubt that the phonon
relaxation time at high temperatures is also anisotropic.
Thus treatments of transport processes, which make
the assumption of isotropy for phonon scattering, are
probably not accurate and conclusions about the Fermi
surfaces in metals derived from them must be viewed
with some suspicion.

As shown in the Appendix, 7 will be isotropic and the
product (7){(1/7) will be unity, if the Fermi surface is
spherical and the scattering probability P(k,k’) depends
only on the angle between k and k’. No general proof
exists for the conditions under which the second require-
ment will hold, but it seems reasonable to suppose that
it will be true for spherical energy surfaces and that the
product {r)(1/7) is only unity in such cases. Further
one may assume that this product is a monotonic func-
tion of the deviation of the Fermi surface from sphericity
and that the larger the distortion of the surface, the
greater will be the value of (7)(1/7). For pure copper
our data indicate that (r)(1/7)=1.3020.05, which
suggests a highly distorted Fermi surface, in agreement
with the results of other experiments.2

Now according to Cohen and Heine the Fermi surface
in copper alloys becomes less distorted with increasing
solute concentration. In particular, they claim that,
at the limit of the a phase of systems such as the one
studied here, the Fermi surface is essentially spherical
and just touches the zone boundary. If this were true
and our assumptions regarding the isotropy of 7 are
correct, then the experimental data of Fig. 5 would tend
towards the dashed curve?® defined by Eq. (22) with
(r)(1/7)=1and me=m,=1.37m. The latter value corre-
sponds to the effective mass parameter of the spherical
parts of the Fermi surface in copper® as derived from
cyclotron resonance measurements.?* This behavior
clearly does not take place, and we must conclude that
the energy surface does not become more spherical on
alloying. In fact the experimental data are consistent
with a (r)(1/7) which increases on alloying, leading

27 R. L. Olsen and R. Rodriguez, Phys. Rev. 108, 1212 (1957).

28 The theoretical dashed curve has been corrected for changes
in Asurface and A yolume on alloying.

2 It is assumed that the curvature of these sections of the surface
does not change appreciably on alloying.

% Langenberg, Kip, and Rosenblum, Bull. Am. Phys. Soc.
Ser. II, 3, 416 (1958).



BAND STRUCTURE OF NOBLE METAL ALLOYS

to the conclusion that the Fermi surface becomes more
distorted with increasing zinc concentration.

This result again raises the fundamental difhculty,
pointed out by Cohen and Heine, of reconciling the
Hume-Rothery rules and results of specific heat meas-
urements on the a-brasses with the shape of the Fermi
surface for copper derived by Pippard.® If we rule out
the possibility of an increase in the sphericity of the
Fermi surface on alloying, then the energy gap in the
[1117] direction cannot decrease with increasing zinc
concentration. The present data for the visible and
ultraviolet show, however, that it cannot increase. Thus,
we can only conclude that the gap remains essentially
constant, i.e., the rigid band model still applies. In this
situation the only possible way of obtaining consistency
between the experiments is to suppose that the Fermi
surface in copper is only close to the {111} faces of the
first Brillouin zone, but does not actually touch them.

This hypothesis also presents difficulties, since the
measurements of Schulz have shown that for copper
ma/m:>1, where the effective thermal mass m, is
given by the relation

M/ M="/Ytrce. (24)

v is the coefficient of the linear term in the heat capacity
of a metal at low temperatures, and +¢ree is the corre-
sponding coefficient for an electron gas of the same
density. Cohen® has demonstrated that a ratio greater
than unity indicates a Fermi surface having considerable
area of contact with the zone boundaries, which is
contrary to our previous conclusion. It is possible of
course that the value of m, for copper, deduced from
Schulz’ measurements, is inaccurate because of the
difficulty of making experiments on thin films. If such
is not the case, one must entertain doubts either about
our assumptions regarding the relation between the
shape of the Fermi surface and the anisotropy of 7 or
about the applicability of the one-electron theory to
alloys at all. Before making such inferences, however,
more experiments on other alloys (including those based
on silver and gold) should be made.

V. CONCLUSIONS

From the results of optical absorption measurements
on the a-brasses at 4.2°K, it is concluded that the main
absorption edge in copper is due to electron transitions
between the d-band and the Fermi level. The observed
shift of the edge on alloying is found to be inconsistent
with the original theory due to Mott. Although the
Friedel theory gives a better fit to experiment, there is
still quantitative disagreement regarding the depend-
ence of the shift on solute concentration. From the
secondary structure of the absorption in the ultraviolet,
it is concluded that the gap across the {111} faces in
copper is approximately 2.6 ev. The variation of infrared
absorptivity with residual resistivity indicates that

%t M. H. Cohen, Phil. Mag. 3, 762 (1958).
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anisotropy of the impurity relaxation time increases on
alloying and that the Fermi surface becomes more dis-
torted with increasing solute concentration.
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APPENDIX

Assuming the existence of a relaxation time 7, the
general form of the Boltzmann equation is

a ¢] i) —
A v L T
at or 7 ok T

(A1)

For a plane electromagnetic wave polarized along the
x direction this reduces to
of e of  f—Jo
—t=E—=— ,
a h Ok, T

(A2)

which has a periodic solution of the form

f f TeafoR( gz )
T ok \itier)

(A3)

Using Eq. (A3), we find for the current
Jo= Joadk
=1

e? afo
L G) ()
4nr3h2 oks 14-iwr

For a cubic metal this reduces to

e? 8
Jo=— f‘r——!VkElzRe(
1273%2 oE 1+

T

(A4)

)dk. (AS3)

Since dk=dSdE/|VE|, (A5) may be written as

e? &
];,;Z leVkE] Re(
127%%2 1+

T

)dS, (A6)

where the integration over E has been carried out. Thus
we have

1273h2 14-w?7? &

( e? fIVkL[7°dS 98,
127592 1+ ) o

(A7)
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Identifying the real and imaginary parts of the dielectric
constant e= (z-1k)? with the coefficients of these terms
we have, since £>># in this region,

e? dS
nkw= f [ VlcE ‘ )
6m2h? 1+w?r? (A8)
e? 72dS
n?—k=1— fIVkEI .
3% 1+w?r?

For wr>>1, which condition holds for all alloys studied
here, Eqs. (A8) reduce to

e? vdS
nk= -,
6m2he® T
(A9)
62
k2= f 2dS.
3rhw?
At normal incidence we have
(n—1)2+4-k2 4dnk
A=1— —, (A10)

(1) B
so that from Egs. (A9)

A=———-«(62/1;r2h)% f ? / ( f vdS)%. (A11)

1 1
(e*/12x°%) f

Since

Pimpurity =

TU

Eq. (A10) may be written in the form

e? 3 3
Aimpurity= (127#%1’) (fvdS) <T><1/T>pimpurity, (AIZ)

where

<T>=frvdS/fvdS; <1/T)=le§/fvd5.

Equation (A12) may further be reduced if we introduce
the inverse effective mass defined for a cubic metal by
the equation

1 1 1
- f V2Edk— f WS, (A13)
me 1273 N%H2 12037
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N being the density of conduction electrons. Substi-
tuting Eq. (A13) into Eq. (A12) we find

Aimpuriey= (7)(1/7)(Ne*/7M4)* pimpurity.  (A14)
The Schwarz inequality gives the result
2 2
[ ruas f 15> ( Il vdS), (A15)
whence from Eq. (A12)
(/)2 1, (A16)

the equality holding for isotropic scattering.
If we write f= fo+¢, the equation giving the rate
of change of f due to collisions is

9
(_f) - f [6(K)— oK) P (kK)dS, (A17)
ot collisions

where

P(kk)dS=| (K| V|k)| 2m-

For spherical energy surfaces and for P(k k') depending
only on the angle 0 between k and k’, we may write
¢=rk,c(E), assuming the field to be along the x axis.
Equation (A17) then reduces to

T(lk)= f P(k,k’)(1~%§)ds’,

1 Ly
=2rk? f P(6) (1—cosf) sindds,
k) 0

(A18)

T

which depends only on the magnitude of %, i.e., 7 is
isotropic.

Since ¢ (r)=e™Tu;(r), the general form of the
matrix element determining the scattering probability

PK) is
(k’]V[k)=fei(k"k)"uk»*(r)V(r)uk(r)dr. (A19)

Clearly, the explicit dependence of this integral on k
and k’ is determined by the nature of #;(r) and u (r).
As far as is known, there is no general proof that
P(k,k") will depend only on 8 and that 7 will be isotropic
if and only if the Fermi surface is spherical. Such an
assumption, however, does not seem unreasonable and
we suppose that the product (7)(1/7) is a measure of
the sphericity of the Fermi surface.



