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Simplified LCAO Method for Zincblende, Wurtzite, and Mixed Crystal Structures*
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The tight-binding (LCAO) method is a, convenient, if qualitative, way of comparing energy bands in the
zincblende and wurtzite structures. Using this method it is shown that wurtzite states along l —1" ("c"
direction in the zone) can be obtained by perturbing corresponding zincblende states along P —A (L111$
zone direction). The perturbation is the difference of crystal potential, V = V(ZB) —V(Wur), which takes
the zincblende structure into the wurtzite and results in a splitting and shifting of these corresponding states.
For k perpendicular to these directions the correspondence of k vectors and of states is not so clear, although
some comparison can still be made.

The discussion of corresponding zincblende and wurtzite states is helpful in understanding the nature of
the energy states in mixed crystals: (wurtzite structure (111) twinned on zincblende), and in faulted
crystals: $111) stacking faults We .can show that barriers (discontinuities in energy surfaces) exist for
electron propagation (current) parallel to the "c"axis of a twinned or faulted crystal due to two effects: a
symmetry effect and a polar effect. The second effect is simply illustrated for rotation-twinned zincblende.
For randomly faulted crystals, band gaps depend on cx, the probability of faulting. Quantitative theories of
these effects remain to be developed.

1. INTRODUCTION

I
'HE discussion to be presented in this paper is an

outgrowth of work speci6cally connected with
the cellular calculation of the band structure of ZnS
in zincblende (ZB) and wurtzite (Wur) structures.
Although the writer's primary interest is in the band
structure of ZnS, the "simpli6ed LCAO method" to be
discussed here can equally well be applied to other
materials which are dimorphic with zincblende and
wurtzite structures and which have valence and con-
duction bands "s"- and "p"-like, for example SiC,
CdS, CdSe, etc.' While this method does allow certain
general conclusions to be drawn about band structures
in the two crystalline forms it must be emphasized that
only specific knowledge for each material is reliable, and
hence no general statements can replace detailed calcu-
lations and experiment for each particular compound.
On the other hand, the general conclusions one can
draw in the LCAO (linear combination of atomic
orbitals) framework are free of the particular assump-
tions needed for detailed cellular' or OPW (orthogonal-
ized plane waves), or PW (plane waves), or variational
type calculations, such as sphericity of potenti:al, or
number of terms kept in Fourier expansions, etc., and
therefore may be helpful as a framework. The LCAO
methods has an additional advantage for this discussion,
namely that its formalism enables one to make direct

*Most of the material of this paper was presented at the
American Physical Society Meeting, March, 1958, Chicago,
Illinois LBull. Am. Phys. Soc. II, 3, 121 (1958)).' Although the entire discussion in this paper is (except where
noted) of general applicability to all compounds with zincblende
and wurtzite structures, where it is necessary to make an illustra-
tion, we shall refer to ZnS speciffcally, as a typical compound (this
is particularly true in the 6gures).' J. Birman, Phys. Rev. 109, 810 (1958); C. Shakin and J.
Birman, Phys. Rev. 109, 818 (1958). See also F. Hund and
B. Mrowka, Ber. Sach. Akad. (Math. Phys. Klasse) 87, 185, 325
(1935) for an earlier treatment of the zincblende-wurtzite problem
by a cellular type method.' J. Slater and G. Koster, Phys. Rev. 94, 1498 {1954).

use of the similarity of first and second neighbor arrange-
ments in zincblende and wurtzite. Not only can we com-
pare the (structurally) pure zincblende and wurtzite
energy states, but also we shall examine the eGect on the
band structure of a particular stacking fault (the rota-
tion twin in zincblende), and of the existence of L1111
twin crystals (zincblende regions twinned on wurtzite).
Again, although particularly aimed at ZnS, the dis-
cussion will apply as well to other dimorphic
materials. 4

2. COORDINATE SYSTEMS: SYMMETRY ELEMENTS
IN CRYSTAL SPACE

It is usually convenient' to describe atomic positions
in zincblende (space group Tas) in terms of a Cartesian
set of axes coinciding with the cubic x, y, s axes; in
wurtzite (space group Cs„') hexagonal axes are intro-
duced in a similarly conventional manner. The unit
cells on these axes are shown in Fig. 1.However, use of
these diferent axis systems in each structure obscures
similarities long since known to crystallographers. '
Hence, we de6ne a new set of Cartesian axes in
zincblende:

i' 0 1/V2 —1/v2
' i

j' = —2/+6 i/Q6 1/Q6 j.k'. . 1/v3 1/v3 1/v3 . .k
where i, j, k are the old Cartesian set. With this choice
of directions k' or s' in zincblende is along the cube
body diagonal (L111j direction) or three fold rotation
axis 3, and the y axis is on a mirror plane 0-z. This is
shown in Fig. 2. The same Cartesian axes will be used
in wurtzite, and Fig. 2 also shows their orientation with
respect to the conventional hexagonal axes a1, a2. The

4 Jeffrey, Parry, and Mozzi, J. Chem. Phys. 25, 1024 (1956),
Table I.

s W. Zachariasen, Theory of X ray Dtgraeteot-t At Crystals (John
Wiley R Sons, Inc. , New York, 1945), Table 2.6, . 51.' G. Aminoff and A. Broome, Z. Krist. 80, 355 1931).
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In Table I the coordinates of the atoms of the base
are given with a variety of choices of origin, in terms of
the conventional zincblende and wurtzite axis systems.
If a is the distance between neighbors in the close
packed plane (Fig. 2) it is convenient to measure dis-
tances along (x', y', z') in units of (n, P, y), respec-
tively, where'

n= a/2, P =V3a/2, y= ,'(ss-)-:a= c/2

0+ () 0
~ ~
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FIG. 1. Unit cells of zincblende and wurtzite on conventional
Cartesian or hexagonal axes. (Sulfur atom is at the origin. ) Base
plane (s=0) projection is shown in the lower half of the figure.
In this, and the following figures sulfur atom is shown as the
larger, open circle, zinc as the smaller blackened circle Lace
footnote (1)7.

ZI NC BLE NDE (IIO) plane (
WURTZITE

In Table II first and second neighbors of the S atom
at the origin in zincblende, and of the two S atoms of
the base in wurtzite, are given in conventional units
and in units of (n, P, y). The identity of first neighbor
shells, and the close similarity of second neighbor
shells in the two structures, can be obtained from the
coordinates in Table II. In Fig. 4 a perspective drawing
of the first and second neighbor arrangements in zinc-
blende and wurtzite is shown.

x'y' plane contains three diGerent types of sites, labeled
A, 8, C, in Fig. 2; only one of these types is occupied
in any given plane, giving rise to a close packed net
(i.e., a net such that the nuclei are in the close packed
position —no implication as to atom/ion sizes is meant).
In both structures Zn and S close packed nets alternate,
and in both after one Zn —S double layer another follows,
in a displaced position. This is illustrated in Fig. 3 in
terms of a "stacking diagram" or L110]section through
zincblende and wurtzite.

A

C

B

A' C 8' A C' 8 A C 8' A C' 8 A C

-8

- A

-8

-A

FIG. 3. Stacking diagram or (11 07 section through zincblende
and wurtzite. Note the 3 layer zincblende repeat, and the 2 layer
wurtzite repeat. The primed sites (A', etc.) are on (11 0) planes
displaced from the origin (see Fig. 2). Hence 2 of the 4 Zn neigh-
bors are on the same (11 0) plane as the S atom indicated, while
the other 2 are one each in front and behind the plane of the
drawing.

Gio)

FIG. 2. Base plane projection of the wurtzite structure (only
sulfur atoms are shown); conventional hexagonal axes are shown
as a1, ag. Sites A, 8, C are indicated; the origin is at C, along
the six fold screw axis. The g' direction is along a~ (the glide
plane, my, contains x') the y' direction along the mirror plane,
ae. The magnitude of vector z'=a, that of vector y'=P )see
Kq. (2)7. The twelve second neighbors of sulfur atom (1) are
the six labeled A, in the plane, and three 8 above and three below
the plane. In zincblende the sites C are occupied by S (and Zn}
atoms, hence the axis along c is no longer 6g, and the x' no longer
on a mt. The (11 0) planes are perpendicular to the L11 07 direc-
tion indicated.

It will later be convenient for us to have available
symmetry elements for the space groups T&' and C6,'.
These are given in Table III, with the operations ex-
pressed in terms of the primed Cartesian coordinate
system (1) illustrated in Fig. 2. We shall choose our
origin of coordinates in zincblende at the site C, which
is occupied by an S atom, and at the same point in
wurtzite, which is on the six-fold screw axis, (not
occupied by any atom). It is of interest to note that the
site symmetry in zincblende is T&=43ns, while in
wurtzite it is only C3, =3m; that is, although in the
ideal wurtzite structure each S is tetrahedrally sur-
rounded by 4 6rst neighbor Zn, the four are not equiva-
lent. The symmetry elements given in Table III are
needed in formally reducing the E integrals which arise
in the LCAO' method and in specifying G(k), the group

7 M. Miasek, Phys. Rev. 107, 92 (1957).
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TAnLz I. Coordinates of the base atoms in zincblende (ZB) and wurtzite (Wur). Column (a): coordinates in terms of the usual
Cartesian axes [see J. Birman, Phys. Rev. 109, 810 (1958), Table I]; (b), (d}, (f), (h): Coordinates in primed Cartesian axes (n, P, y)
[see text Eqs. (1) and (2)]. We have used I=3/8 here; (c), (e), (g): Coordinates in conventional hexagonal axes. Note atoms labelled

QR Qg O4 and see Figs. 2 and 3. Columns (u) and (b) are for ZB, Columns (c), (d), (e), (f), (g), (h) for Wur.

Wura
B

ZB
A, B, or C

Struc-
ture

Origin at (a) (e)

s o (o, o, o)
OR

Zn ol (1/2, 1/2, 1/2)
04

(b) (d)

(o, o, o) (o, o, o) (0, 0, 0) (0, 0, 0)
(2/3, 1/3, 1/2) (1, 1/3, 1) (1/3, 2/3, 1/2)

(0, 0, 3/4) (0, 0, tt) (0, 0, 3/4) (0, 0, tt)
(2/3, 1/3, st+1/2) (1, 1/3, 7/4} (1/3, 2/3, st+1/2)

(f)

(0, 0, 0)
(0, 2/3, 1)
(0, 0, 3/4)
(o, 2/3, 7/4)

(a)

(1/3, 2/3, 0)
(2/3, 1/3, 1/2)
(1/3, 2/3, u)
(2/3, 1/3, st+1/2)

(tlat)

(0, 2/3, 0}
(1, 1/3, 1)
(0, 2/3, 3/4)
{1,1/3, 7/4)

a u =3/8 in the "ideal" wurtzite structure.

of the wave vector at various points of interest in the
Brillouin zones.

3. ZONES AND CORRESPONDING k VECTORS

To facilitate the comparison between zincblende and
wurtzite zones and k vectors, it is now necessary to
take into account the difference in base (2 atoms in
zincblende, 4 in wurtzite): Table I. We introduce the
Jones or energy zone' for the two structures and sup-
pose that we deal with a zincblende crystal, and a
wurtzite crystal (grundgebiet)' each containing the
same number of atoms, and hence half as many primi-
tive cells in wurtzite as in zincblende. The Jones zone
of wurtzite is twice the volume of the reduced zone of
wurtzite, while the Jones zone of zincblende is identical
with the reduced zone (the familiar truncated octa-
hedron). Both Jones zones contain the same number of

states per atom. These zones are shown in Fig. 5. A
number of points of interest in the two zones are
marked. The median section (h,'k„'plane) through the
zones is shown in Fig. 6. In Table IV the coordinates
of various points in both zones are given in terms oP

j=nk. , rt=pk„, l =yk, ,

where k, , k„,k, are the Cartesian components of the
k vector, parallel to the primed system (1), and (ot, P, p)
have been defined in (2}. We now discuss k vectors
along the polar ("c" or [111])directions: F—A(ZB)
and I' —F'(Wur) and perpendicular to them: F Eand-
F—3f in both structures.

Now, to each k along F—A. (ZB), there corresponds
an iderttica/ k along F—I"(Wur), from k=I' to k=A
or I". Thus, considering plane wave propagation, we

may choose plane waves of exactly corresponding wave

TAnLE II. First and second neighbors of the base atoms, zincblende (ZB) and wurtzite (Wur). Column (a): coordinates in terms
of the usual Cartesian axes; {b), (d), (f): Coordinates in terms of (n, P, y) [see Text Eq. (1}and (2)g; (c), (e): Coordinates in con-
ventional hexagonal axes. Columns (a) and (b) are for ZB, columns (c), (d), (e), (f}for Wur.

Structure
Base atom

ZBa
(0, 0, 0)

(1/2, 1/2, 1/2) (0, 0, 3/4)
(1/2, —1/2, —1/2) (0, —2/3, —1/4)
(—1/2, —1/2, 1/2) (—1, 1/3, —1/4)
(—1/2, 1/2, —1/2) (1, 1/3, —1/4)

Wurb
(1/3, 2/3, 0) = (0, 2/3, 0)
(~) (~)

(2/3, 1/3, 1/2) = (1, 1/3, 1)
(~) (d)

First Neighbors

(2/3, 1/3, 7/8)
(1/3, —1/3, 3/8)
(1/3, 2/3, 3/8)
(4/3, 2/3, 3/8)

(1, 1/3, 7/4) (1/3, 2/3, 3/8) (0, 2/3, 3/4)
(1, —1/3, 3/4) (2/3, 4/3, —1/8) (0, 4/3, —1/4}
(0, 2/3, 3/4) (—1/3, 1/3, —1/8) (—1, 1/3, —1/4)
(2, 2/3, 3/4) (2/3, 1/3, —1/8} (1, 1/3, —1/4)

(1, 1, o)
(1, —1, 0)
(—1, i, o)
(—1,

'—'1, o)
(1, 0, 1)
(1, 0, —1)
(—i, o, 1)
(—i, o, —1)
(0, 1, 1)
(0, 1, —1)
(o, —1, 1)
(0, —1, —1)

(1, —1/3, 1)
(—1, —i, o)
(1, 1, o)
(—1, 1/3, —1)
(—1, —1/3, 1)
(1, -'1, 0)

'

(—1, i, o)
(1, 1/3, —1)
(0, 2/3, 1)
(2', o, o)
(—2, o, o)
(0, —2/3, 1)

Second Neighbors

(4/3, 2/3, 1)
(—1/3, —2/3, 1/2)
(5/3, 4/3, 1)
(1/3, 2/3, 0)
(1/3, —1/3, 1)
(2/3, —2/3, 1/2)
(2/3, 4/3, 1/2)
(4/3, 2/3, 0}
(1/3, 2/3, 1)
(5/3, 1/3, 1/2)
(—1/3, 1/3, 1/2)
(1/3, —1/3, 0)

(2, 2/3, 2)
(0, —2/3, 1)
(2, 4/3, 1)
(0, 2/3, 0)
(1, —1/3, 2)
(2, —2/3, 1)
(0, 4/3, 1)
(2, 2/3, 0)
(0, 2/3, 2)
(3, 1/3, 1)
(—1, 1/3, 1)
(1, —1/3, 0)

(—1/3, 1/3, —1/2)
(—2/3, —1/3, 0)
(—1/3, 1/3, +1/2)
(1/3, —1/3, 0)
(2/3, 1/3, —1/2)
(2/3, 1/3, +1/2)
(2/3, 4/3, —1/2)
(4/3, 2/3, 0)
(2/3, 4/3, +1/2)
(4/3, 5/3, 0)
(—2/3, 2/3, 0)
(1/3, 5/3, 0)

(—1, 1/3, —1)
(—1, —1/3, o)
(—1, 1/3, 1)
(1, —1/3, 0)
(1, 1/3 —1)
(1, 1/» 1)
(0, 4/3, —1)
(2, 2/3, 0)
(0, 4/3, 1)
(1, 5/3, 0}
(—2, 2/3, 0)
(—1, 5/3, 0)

a Origin at a sulfur site.
b Origin at site C (see Table I).

J. R. Reitz, Solid State Physics (Academic Press, New York, 1955), Vol. 1, p. 32; A. H. Wilson, Theory of 3fetals (Cambridge
University Press, Cambridge, 1953), second edition, p. 90.' J. C. Slater, Hartdblch der Physih (Springer-Verlag, Berlin, 1956}, Vol. 19, p. 13; A. Sommerfeld and H. Bethe, Hartdbttch der
Physik (Verlag Julius Springer, Berlin, 1933), Vol. 24, part 2, p. 373.
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FIG. 4. First and second neighbors in zincblende and wurtzite.
Large circles are S atoms, small ones Zn. Open circles are in the
same plane. Comparing the two structures, we note that only
three of the twelve second neighbors differ, and even these are
disposed symmetrically. These are shown as the 3 atoms "above"
and are rotated bye/3 incomparing zincblendeandwurtzite.

lengths in both structures. The planes of constant phase
(close packed nets) are, of course, the same in both
structures, alternating Zn and S as discussed above.
The minimum wavelength (k=k-,„)is X=2dttt where
d„,is the Zn-Zn or S-S interplanar spacing. This is
illustrated in Fig. 7.

The situation along F—E and I' —M is not so

clear. As shown in Fig. 6, the distance F—E'(ZB)
)F—E'(Wur). In fact, as Herring has shown" a wave
vector along the prolongation of F—E(Wur), is equiva-
lent (divers by a lattice vector in the Fourier Space)
to a vector along the line E'—M'. The point in the
wurtzite zone equivalent to E(ZB) is shown as "en-
circled E" in Fig. 6. In words this means that we can-
not propagate a single plane wave (chosen from within
or onthe energyzone) inwurtzitein the direction l' E—
with wavelength equal to the wavelength of the vector
E(ZB), but we must superimpose 2 plane waves: "en-
circled E" plus (—bt+bs). Similarly M(Wur) does not
coincide with 3E(ZB); the point equivalent to M(ZB)
is shown as "encircled M" in Fig. 6. This lack of identity
of zincblende and wurtzite points X and M makes for
ambiguity in the comparison of states along I'—E and
I' —M. We may either (a) comparestates at the same k
thus necessitating folding of certain wurtzite k vectors
as discussed above, or (b) compare states a,t the same
fraction of k,„along these directions. A third alterna-
tive, possible since the two energy zones contain the
same number of states, would be to shift all zincblende
k's which are outside the corresponding wurtzite vol-
ume in such a way as to duplicate this volume, and then
to identify wurtzite states and shifted zincblende
states. In Fig. 8 we illustrate the plane wave propaga-
tion at points E and M in zincblende and wurtzite,
showing the shortest waves which may occur in these
directions.

While F—X is a principal symmetry direction in zinc-

ZfNC BLENDE

„[g,i]

ZONE

0/URTZ I TE

[o,o,i]

~A

j

k (max)

I

Ki

f'

f

I
I

XK

'fT
k{max)= —{f f, f) 2TTk{mpx)=

C (O,Q,f)

FIG. S. Jones zones for zincblende and wurtzite. Each zone has volume=m%2/ns. ois de"nedin Eq (2). ~ow lp —'I=Ip —p'I
=~k-,„~.For the section perpendicular to csee Fig. 6.

~o C. Herring, J. Franklin Inst. 233, 525 (1942).
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blende, it is clear from Fig. 5 that no principal direction
in the wurtzite zone corresponds to it. Consequently we
shall not attempt to make a correspondence for k vec-
tors, or states, along this direction, even though the
zincblende secular determinant factors simply (see refer-
ence 3, p. 1522).

Op

ZB ZONE l TO C

4. CRYSTAL POTENTIAL IN ZINCBLENDE
AND WURTZITE

In discussing the relationship between the crystal
potential in zincblende: V(ZB), and in wurtzite:

ZONE l TO C

b2
2

TAaLE III. Symmetry elements zincblende and wurtzite. '

ra (ys):

2:

m':

m":

6g.'

m&'(6x):

m)" (6'x):

«(ys):

us' (6'ys):

t' —1/2
VS/2

(—1

(—1
o

0
1/V3
2/v'6

1/2
I

+1/(»)1
&
—2/v'6

1/2
3/(12) 1

1/2
vS/2

1

—1/2
VS/2

E 0
/-1/2

I

—vs/2

t' —1
o

( 1/2
vS/2

0 0
0 1—1 0
0 0
0 1
1 0

Kurtzite
—vS/2

1/2
0
0

0
v3/2—1/2
0

—v3/2
1/2
0
0
1
0

v3/2—1/2
0

(0
I+I oj &as/2 j

(0
I+I 0
j Ea~/2 j
I+I 0

Ea,/2 j

I+I o
j (a /2 j

Zincblende
—V3/2 0

o
0 1

0 0
1 0
0 1 j
0 0
1/3 -4/3v2

-4/342 -1/3 j
—1/v3 —2/V'6 )-2/3

2/3v2 —1/3

+1/(12)t 2/v'6
5/6 2/(1&) & !:I
2/(18) & —1/3 j
3/(12)' o l (—1/2 0
O 1 j l

d

2

FIG. 6. Composite section through the zincblende and wurtzite
Jones zones perpendicular to c. The outer hexagon refers to zinc-
blende, the inner to wurtzite. The vectors b~/2 and bs/2 are half
the wurtzite Fourier (reciprocal) lattice vectors, hence points
E, E', E" in the wurtzite zone are equivalent. The point E(ZB),
considered as a point in the wurtzite zone, is equivalent to "en-
circled E," and similarly M(ZB) and "encircled M" are equiva-
lent. The point E'(ZB), Lon the prolongation of 1'—E'(Wur)g is
Not equivalent to E,(ZB).

ZtNC BLKNDK

tte —(ttl)
24

WURT Zl TF

tt"-~ (OOI)

either zincblende or wurtzite structures. " The nature
of the bond may be characterized by specifying the
crystal charge density p(ZB) and p(Wur) and these are

0! amenable to experimental determination by refined x-
ray Fourier synthesis techniques. To date no work has
been reported on this important problem, although some
recent x-ray work has gone on in dealing with certain
zincblende and wurtzite structures separately. ' "From
somewhat general arguments it seems likely that the
chemical bond of the same compound in wurtzite struc-
ture should be more ionic than in zincblende structure. "
For example, this may mean that the "effective charges"
on the ions are somewhat greater in the wurtzite then
in the zincblende structure.

Closely connected with this problem of bonding is that
of the ideality of the wurtzite structure. We may take

a These elements are convenient for later discussions rather than a
generating set, in the sense of Zachariasen. '

b The elements are expressed in the primed Cartesian coordinate system,
Eq. (1), except for those matrices indicated e: the latter are in terms of the
original zincblende Cartesian system.

V(Wur), one must distinguish two factors which enter:
(a) the relationship between the bonding of a given
compound in zincblende and ideal wurtzite structures,
(b) the dev'iation of the wurtzite structure from
ideality.

It is rather unlikely, on the face of it, that there be
no difference in bonding when a compound occurs in

B C

FIG. 7. Plane wave propagation at the edge of the zone in
L"c"j direction, at k=A(ZB) and k=F'(Wur). Note that these
shortest wavelength waves change phase by m- on progressing from
one close-packed plane to the next identical one, in either struc-
ture (i.e., from an S to an S plane).

"See A. v. Hippel, Z. Physik 133, 158 (1952); reference 4; and
also F. Keffer and A. M. Portis, J. Chem. Phys. 27, 675 (1957)."E.A. Jumpertz, Z. Elektrochem. 59, 425 (1955).
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TABLE IV. Coordinates of points in zincblende (ZB)
and wurtzite (Wur) zones.

k=(g, g, f) See F.q. (3)
Wur

S. CORRESPONDENCE BETWEEN STATES IN
ZINCBLENDE AND WURTZITE

In Table V we give, for various lr vectors of interest
in zincblende" and, wurtzite": (a) the symmetry ele-

(0, 0, 0)
(0, 0, ~)
(3'/8, 9x/8, 0)
(9x/16, 9x//16, 0)

r
E
M

(0, 0, 0)
(0, 0, )
(x/3, vr, 0)
{vr/2, vr/2, 0)

TABLE V. LCAO Bloch functions for zincblende
and wurtzite.

Zincblende

as prima facie evidence for the essential identity of
bonding in zincblende and wurtzite structures the
ideality of the latter. Our argument is if those forces
tending to make the wurtzite structure locally ideal
LN=3/8, c/a= (8/3)*'$ win out over other steric and
ionic forces which tend to produce the nonideal wurtz-
ite, then the bonding is essentially determined by first
neighbor interaction. Now these erst neighbor inter-
actions may be essentially responsible for the existence
of a stable zincblende structure, and consequently it
seems reasonable to infer that if a compound exists in
zincblende and (essentially) ideal wurtzite structures,
the bonding is substantially the same in both. It would
then be natural to use the same valence charge densities
per atom pair: p(ZB) =p(Wur) =p~+p~, where A and
8 are the two atoms/ions (i.e., Zn and S) of the com-

pound AB, in constructing the crystal potentials V(ZB)
and V(Wur). (This approach was used in the numerical
work now under way for ZnS in zincblende and wurtzite
structures. )'

If the same atom/ion charge densities are placed on
both zincblende and ideal wurtzite lattices, then for
the crystal potentials we may take

V(ZB) = V(Wur)+ V',

where V' is a small perturbation. If the wurtzite struc-
ture diGers from ideality (uA3/8), then V' will be the

larger, as will the matrix elements computed from V'.
In any event we shall use (4) in establishing various
relationships between zincblende and wurtzite energy
states.

r: G(r) =T~=43m
Fj. =QsI+bs

gI'4' ——a(—2/(6) &y&+1/v3s&)+b( —2/(6) &y&+1/v3s&)

x: G(X) =C,„=3m
AI = GSI+bSI+cs3+dz3

Osh. 3 =agI+bg3

IC: G(E) =Cia=m'

gI yI SI C gI 3
E&e=cs&+b + + +—————

y&
v2 (6)& v3 V2 v2 (6)&

g8 y3 &3 f ge 3
+— + +-

v2 (6)& V3 v2 v2 (6)&

8 gI yI 23'I b g3 y3 283
+ + + + +

W2 V2 (6)& V3 V2 V2 (6)& V3

M: G(3E) =CIg=m",
gI yI Sy C gl yI 2$I

J}/I I,=asg+b —+ +—+———— +-
v2 (6) & v3 v2 v2 (6) & v3

x8 ya s3 f xz ys 2sa
+ds3+e —+ +—+———— +-

42 (6)& V3 V2 V2 (6)& V3

g& K3 g& vSy3
Mlo=~ —

yT. +b
2 2 2 2

+ds3+e

Wurtziter: G(r) =C,„=6;m;,
r, = (a/W2) (sg+ss)+ (b/K2) (s,+s2)

+ (c/V2) (s3+$4)+ (d/v2) (s3js4),
Q21's= (a/v2) (x&+xs)+ (b/v2) (x3+x4),

E: G(E) =Cg, ——(6y)'m),

Xg ——(a/v2) (sg+ss)+ (b/v2) (si+ss)
+ (c/v2) (s,+s4)+ (d/v2} (s3+s4),

Q2X, = (a/v2) ( (——',x& —(v3/2) yi) +[——',*2—(v3/2}ys] }
+ (b/v2) {[—-', x3 (v3/2) y&]+[—-', x4 —{v3/2)y4] },

M: G(M) = Cg„——(6y)'oa'(6'ys)my" (6'x)

Mf —(a/v2) (sg+ss) + (b/v2) (s&+s2)
+ (c/V2) (s3+s4) + (d/v2) (s3+s4)

M, = a[(x&/2 —v3y, /2) + (x,/2 —v3y, /2}]
+b[(xp/2 —v3y&/2)+ (x4/2 —v3y4/2))

c}d4 a[(v3x, /2+y, /2)+ (4——3x,/2+y, /2)]
+ [b( 3vzx2/+zy2/)+(%3x, /2+y4/2)]

hl(ZB)
~}(f 9TT

8

v(w}
bg! IT

a All functions (Bloch sums) are expressed in terms of the primed axes
L~q. (1).Where degeneracy exists the degree is indicated by a number in a
circle, preceding the single partner which is given. For more conventional
listing of the functions for ZB see D. Bell, Rev. Modern Phys. 26, 311
(1954). The elements of various G(k) are explicitly given in Table III. In
the functions, a, b, e, d, e, and f are constants.

FIG. 8. Plane wave propagation at K and iV in zincblende and
wurtzite. Note the diGerent phase changes Ap on progression
through an identical distance (i.e., diferent wavelengths) making
for ambiguity in comparison of states in zincblende and wurtzite
along this direction. (See Text.)

"D. Bell, Revs. Modern Phys. 26, 311 (1954); R. Parmenter,
Phys. Rev. 100, 573 (1955); G. Dresselhaus, Phys. Rev. 100, 580
(1955)."G. Dresselhaus, Phys. Rev. 105, 135 (1957);W. J. O' Sullivan,
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ments (see also Table III) contained in G(k), the group
of the wave vector k, (b) the LCAO wave functions for
the different states [irreducible representations of G(k) j
considered. A function such as x, (j= 1, 3 for zincblende;
j=1, 2, 3, 4 for wurtzite; see Table I) is an ortho-
normalized Bloch sum of "x"-like Lowdin functions, '
quantized on the primed Cartesian axes defined by
Eq. (1), and centered on a lattice of sites of the jth
sort (j=1, 2 are S sites; j=3, 4 are Zn sites: see
Table I). In Table VIa, VIb we give matrix components
for s and p functions taking account only of first
neighbor interactions for zincblende and wurtzite
structures, in terms of the 8 integrals. ' (We also worked

TABLE VII. Two-center integrals and perturbation parameters.

Zincblende

E„(rp)=E„(—rp) =sso(ro),

E-(ro) = —E*.( o) =spo(ro)

E**( o)=E.*( o)=—PP ( o),

E„(rp)=E (—rp) =PPo(ro).

Wurtzite

E (Tp) =sso'(Tp), E (Tp) =spo'(Tp)

Ess (Tl) =ssx (Tl) s Ess (Tl) = 2SPo(Tl)l'
E (Tp) = E (Tp) = SPO'(Tp)

Ess(rl) Ess(rl) pSPO (Tl)s

Esp (Tl) = —Eps (Tl) 2VZSPO (Tl) s

E**(rp)=E**(—«) =Ppsr(ro),

Ess(rl) =Es*(—Tl) =ppx(rl),
E,*(ro) =E*s( o) =PPo—( o),

E,s(rl) = (1/9)PPo. (r,)+ (8/9)ppx(r, ) =PPT (T,) '
E"( )=(2v2/9)[pp ( ) —PP ( )3=o

TABLE VI. Matrix components of energy for
zincblende and wurtzite.

a. Zincblende. a v 0 = (0, 0, 3/4) in units of (a, P, y)—Eq. (2).
(g, yf, t ) are defined in Eq. (3) of text.

Perturbation Parameters

sso(rp, ZB) =sso(rp, Wur),

spo (Tp ZB) =s'po (rp', Wur),

PPo (ro, ZB) =PPo (rp, Wur),

sso'(Tl' Wur) = sso (rp, ZB)—+8l,
sPo (rl, Wur) —=sPo (rp, ZB)+i&2,

PPo (Tl, Wur) =PPx(rl, Wur)'
=—PPo (rp, ZB)+82,
=—PPm (V p, ZB)+84.

a These equalities follow from the fact that E (ri, Wur) =B»{ri,'Wur),
i.eso the apparent Ce symmetry of the B~&2 integrals in Wur.

out the results including second neighbor interactions
but these would only unnecessarily complicate, without
really clarifying, the relationships of interest. Of
course, an accurate LCAO numerical calculation or
interpolation should include these and any other
necessary shells of neighbors. ) Reduction of the E
integrals to the independent ones shown, has been
carried out by using the elements of crystal symmetry
(Table III). It is of interest to note that although the
site symmetry in wurtzite is only C3,=3m the E in-

tegrals have the higher symmetry characteristic of
point group C6, =6m. This is due to the "rotational"
part of the crystal symmetry operations 6; and mg. In
Table VII is given the reduction of the E integrals to
two center integrals and also the definition of the four
perturbation elements 6;, which are the matrix elements
of the perturbation V' of equation (4), in terms of which

we shall obtain the relationship between certain zinc-
blende and wurtzite energy states.

Consider states along I' —A(ZB) and I' —I"(Wur).
Using the information in Tables IV and VII, we have
set up the secular determinants for energies of states
at the end points" (I' and A and I"), and these are

"If the wurtzite reduced zone is used, j."(Wur) =—F'(Wur), and
the states Fl'(Wur) and Fp'(Wur) are respectively Fp and Fp (see
Dresselhaus, reference 14).

(24/m) 12 = (24/m) 24 =E (Tp) e

(24/m) 44 =E„(rl)[(2 cosp cos (2&/3)+cos (22&/3) )
+2(2 cos$ sin (2&/3) —sin (2»/3) lge lr«,

(I/m) 22 = Es~ (Tl) [(2 cosp cos (4&/3)+cos(2&&/3) )
—2(2 cos$ sin (4&/3) sin (2 &/3)—)&5e 't&4,

(24/x)&4=os/3E „(Tl) i sfen'«" t&4&,

(24/x)22 os/3E„„(rl)singe —'«&'+t&'&,

(24/y)l4=E„„(rl)[e'&'«'+t&'& cos$e'«&2 t&'—&j,
(42/y)22 — E (Tl)[e&&po 3—t 4& costs—4&olo+t/4&g

(P/P) lp (P/P)24 E**(«)e"t"
(p/p)ls E„(rl)e'&'«'——+t&'&+2 cospE„(rl)e'&»' tt'&

(P/P)22=E„(rl)e'& «2 t& &+2 cos)E„(r,)e '«»+t&4&,

(I/p) &2= (I/p) 24
——(p/q) ll ——(p/q) 24= (p/q) l4= (p/q) 22 =o.

a The I
~ j in the expressions for (s/z) i8 and (z/z) i3 for zincblende is the

same function of {$,y, g) as given inside the square brackets in the expres-
sion for (s/s) ia.

b n, qn can be (s and z); 1t&, q can be (x and y). n and m may be equal;
P gq.

J. Chem. Phys. 30, 379 (1939); M. L. Glasser, J. Phys. Chem.
Solids (in press); R. Parmenter (unpublished notes); F. W.
Quelle, Jr. Quarterly Progress Reports, Solid State and Molecular
Theory Group, Massachusetts Institute of Technology, Cam-
bridge, Mass. July 15, 1958 (unpublished) p. 28; R. C. Casella,
Phys. Rev. 114, 1514 (1959);J. L. Birman, Phys. Rev. 114, 1490
(1959). I am indebted to Dr. Glasser, Dr. Parmenter, and Dr.
Caseg. a for making preprints of their papers available.

(s/s)ll E„(Tp){ep't&4+e *t&'[(2 cosp cos(»/3)+cos(2&&/3))
+i(2 cosg sin(»/3) —sin(2&&/3) )]},

(S/S)&2=Ess(ro){e"t&' ', e 't&'[ —~ —j}
(s/x)lp= [42/(6)&gE (Tp) singe'«&' r&'&,

(s/y)&2= —(2&2/3)E„(ro)[e '& o&2+t& & cosine" «&— '

(2/s)lp=E„(rp)es't&4+(1/9)[8E (Tp)+E (Tp) je 't&'[

(x/x) —E (T )[epi t&4+ e &&2 p&2+ti4&g-

+l cosK(4/3)E**( o)+(8/3)E (.o)3 "'" '"',
(y/y)» E„(rp) [e"r&——'+ oc s$eo'«&' t&'&-j

+(1/9)[Ess(rp)+8Es, (Tp) j{e-'&»&2+2&'&+2' cos(e'«&2 «'&}-
(x/y) lp= (4V32/9) [E (ro) —E (ro)j singe'&ol' " '&

(x/2) lp
——(4v3'z/9v2) [E, (rp) E„(Tp)g singe'«& «—&

(y/2) &2= (4/9v2) [E**(ro)—E**(ro)3{e '"""+'"'—cosine" 2" ""}.
b. Wurtzite. & y o = (0, 0, 3/4); ri = (0, —2/3, —1/4) in units of

(e, P, y)—Eq. (2). ($, g, f) are defined in Eq. {3)of text.
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Ess(0)-& 4SS&

fze:I'/
E",,'(0)-) 4ss~+38,

)w. I')

4ss~ Eoi(o~ ),
88

fpp(0)-i -[2pprrtppm]

3 2PP& spp& EIt x (o)- &
4l

I

4ss~+38& Es,'(0)-X

38'

-y8s

sp2ppnkppcr
~f

.—,'[s,+ss,)

p [2PPTP+ PPP]

t p[sp+ssp)

E(3)(p)

&L2pp~+ppn
of

q[2PPP4PPP] E,„'IOI-i

88: P

E l0 (0)

0=
7 2pplT+ppn

+ s 48st58~

&
2pptr+ppcr

y f'

r,

E'„'„'(o) -)

Fro. 9. Secular determinants k= (0, 0, 0) zincblende and wurtzite. Two center, nearest neighbor approximation. For definition « the
matrix elements see Tables &I and VII. Note that when ail S, ~ 0 [U' in Eq. (3)7, rr (Wur) =rr (Z8)+r4'(ZB), r 4 (~«) =r4'(Z&).

Z INC BLENDS

[I oINT:rI

4=000
WURTZ IT E

APPOINT:r

3 r IP (Xpf ~ I)
4

r,
(spaz)

I

ts+ z)
l

shown in Figs. 9 and 11 in terms of the two center
integrals and the 6, defined in Table UIII. In Figs. 10
and 12 we indicate reasonable separations of the various
states in zincblende and wurtzite, assuming these occur
in normal order (as seems to be the case in ZnS, accord-
ing to our most recent numerical results at these points).
Note the e8ect of the perturbation U' in mixing and
shifting zincblende states to yield the corresponding
wurtzite states. Since the relative change in magnitude
of the corresponding matrix elements is greater at F
than at A, F', we conclude that the shift of correspond-
ing states is greater at I' than at the end points. Further,
since within this simplified I.CAO theory (first neighbor,
2 center) the change in matrix elements varies con-
tinuously from k=r to A, F' we conclude that the shift
of corresponding states varies continuously as illustrated

in Fig, 13. Now this is certainly an oversimplihcation,
since one would hardly expect the simple e(k) curves
shown to apply to a real material. However, in the
absence of exact information, this approach enables
certain conclusions to be drawn with varying degrees
of accuracy. Hence, for I' —A, I' —F' propagation:

I. States (as well as k vectors) show a correspondence
along this direction.

2. The perturbation (shift and splitting)" of corre-
sponding states depends on k. For simple model (nor-
mal order of states, band extrema at F), it appears that
the perturbation is greatest at F, diminishing as k
approaches the zone edge. It must be pointed out that
G(k) in wurtzite =6,n24 for k along F—I"(Wur),
G(F(ZB)) =432m, and G(k) =3222 in zincblende for
other points along I' —A. Hence in our approximation,
G(F(Wur)) is effectively a subgroup of G(I'(ZB)),
while along I' —F'(Wur) and I' —A(ZB), G(k(Wur))
and G(k(ZB)) are effectively isomorphic.

3. At fixed k the perturbation is the greater, the
larger is V'. The factors inQuencing V' are the change
in bond type (ion charge) in going from zincblende to
wurtzite, as well as the departure from ideality of the
wurtzite structure. Another factor affecting V' will be
mentioned in discussing faulted structures: the proba-
bility of faulting, u.

4. As lI; —& 0 (wurtzite —+ zincblende):

Q~ r,' &, T, *I Q2 r "(p. Pi

II(S + Z)
I

~l (S+ t)

Fi (Wur) =. F2 (ZB)+I'4'(ZB)
at k= 000,

F8(Wur) =F4'(ZB)

Fr(W«) =Ai(ZB) at other points along F—&(ZB)p

F,(Wur) =A, (ZB) and F—I"(Wur).

FIG. 10. States at k= (0, 0, 0), illustrating shift and splitting
of corresponding states. States are shown in "normal" order and
separated by roughly the amounts indicated in the ZnS calcula-
tion now in progress.

For I'—M and F—E propagation the situation is
more complicated. First, it is not clear how to compare

See, e.g. , E. P. Wigner, Gruppentheorie (Edwards Brothers,
Ann Arbor, Michigan, 1944), p. 128.
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[ze: AL
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27 (S cr (0)-)8 27 Spcr 0

E",,'(0)-& (SScr+ 33)y -(2Spcr~3~) y
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0=
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7 L4pprr pp cr

+48„]

(2SS +53,)y Ess (0)-& (2$pcr+S&) y

&7„4pprr -p pcr
I

+4Sx8
2

E x „(0)-)i.

0

F„„(0)-

3 ppm+2ppcr y%
a t'

Pp&&2ppcr 7

Eisa(0) &
XX

0

y, -TT i/4

0:
s 7 PP&+2ppcr

+ x (58x+48xI]
&
7 pprrt 2ppo'+

E'" (0)-)
I

XX

+ t2(SS4+48&))

FIG. 11.Secular determinants: at k=4, k=F' for zincblende and wurtzite, respectively.
Note that as 8; —x 0; I'r'(Wur) =A&(ZB), I'8'(Wur) =A8(ZB).

k vectors: three choices have been mentioned above.
In addition the G(k) of zincblende and wurtzite along
these directions are not simply related. For example
G(k) for I' —E(ZB) is Crs (see Table III) where m' is
a mirror plane containing I'—E(ZB) but at an angle to
the x'y' zone section of Fig. 5, while the G(k) for
I' —E(Wur), except al E, is isomorphic to Cts but the
"mirror" plane is the glide plane m;. In addition, at E
wurtzite the G(k) is isomorphic to C8„——3m (see Tables
III and V). This comes about because the points in
Fig. 5 labelled E, E', E" are equivalent (differ by a
lattice vector in the Fourier space for wurtzite). This
is not true for the corresponding zincblende points,
since the lattice vectors in the zincblende Fourier
space are not in the plane of Fig. 5 nor does any com-
bination of such vectors send E(ZB) into a vector
rotated by 2~/3. Consequently at E(Wur) there is a
degeneracy: representation E8 (Wur) is double de-
generate. In Fig. 14 secular determinants at E(Wur)
=k(ZB) =(~/3, m, 0) are shown and in Fig. 15 states
are listed in a "normal" order. Consequently, a simple
perturbation argument does not hold in this direction,
for zincblende-wurtzite states. Evidently the same con-
clusion holds for zincblende-wurtzite states along I' —M.

ZINC SLENOE
POI NT A

I = —(I, I, I)20

WURTZ IT 6
POINT r

I = (O, o, —, )

perience. A typical single crystal needle of ZnS is
shown in Fig. 16. This crystal was grown in this labora-
tory by H. Samelson, and shows (x-ray and optical)
features characteristic of [111$faulting and twinning.
In terms of the stacking diagram, Fig. 17(a), 17(b)
shows a mixed crystal (wurtzite twinned on zincblende)
and a particular kind of stacking fault: the rotation
twin in zincblende. The latter kind of fault is helpful in
understanding what we shall call the "polar eQ'ect" in
producing a barrier.

(a) Polar egect.—Consider a crystal consisting of
many regions of zincblende rotation-twinned with re-
spect to each other. The polar axis (unique "c") has
the same direction throughout the crystal. At each twin
plane however, the local stacking is characteristic of 3
layers of wurtzite structure Li.e, K73 . in Fig.
17(a)j.The atoms in the twin plane region are subject

6. BAND STRUCTURE OF A MIXED CRYSTAL;
EFFECT OF FAULTING

The correspondences established above can help us
understand the band structure of mixed and faulted
crystals after we have established some geometric-
crystallographic preliminaries.

Actual synthetic crystals of ZnS," SiC, and related
materials often show structural imperfections: stacking
faults (random and periodic) and twinning. In fact
structurally homogenous ZnS (either zincblende or
wurtzite pure structure) is an extreme rarity in our ex-

'7 H. Muller, Neues Jahr. Mineral. Abhandl. 84, 1, 43 (1952);
Lx W. Strock and V. Brophy, Am. Mineralogist 40, 94 (1955).

F,

FIG. 12. States at k=A. and F', in "normal" order and separated
as indicated in the ZnS calculation now in progress.
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r~5
Os

r'

FIG. 13. Shift of corresponding states along I' —h. (ZB) and
r —r'(Wur) (schematic). Heavy line is for zincblende, light one
for wurtzite. This illustrates (in simple if exaggerated fashion) the
conclusion that the shift of corresponding states is k dependent,
and apparently greater at the origin than at the end of the zones,
for the simplified model treated. The states r«'(ZB) (upper valence
state) and ri(ZB) (lower conduction state) and corresponding
wurtzite states are illustrated. For Wur' (faulted wurtzite-like
structure) separations at each k depend upon o«, the probability of
faulting.

to unbalanced forces causing departure from normal
positions. The local (uniaxial) strain gives rise to a
sheet of polarized materiaiis (piezoelectric plus pyro-
electric effects) included in the zincblende. This thin
sheet of a dipole layer is equivalent to a charge double

layer, and it is well known that the potential exhibits

a discontinuity on passing from one to another side of
such a charge double layer. " The discontinuity of
potential is a barrier (see Fig. 18). We call this a polar
e6'ect since the locked-in strain and polarization arises

largely because of the polar (partial ionic) character of
the chemical bond in this material. Quantitative work

on the magnitude of locked-in strain and potential dis-

continuity still remains to be done.
(b) Symmetry effect.—Consider the mixed crystal in

Fig. 17(b) and let us ignore distortions and polarizations
in the boundary layer, and assume unchanged [111]
interplanar spacings in the twinned crystal. Hence our
mixed crystal consists of ideal zincblende-wurtzite re-
gions in series for propagation parallel to t 111],and in
parallel (for propagation perpendicular to L111]).Be-
cause of the identity of corresponding zincblende and
wurtzite k vectors along l' —A and I' —I", respectively,
we see that a plane wave propagating parallel to t 111]
can pass undistorted from zincblende to wurtzite sides
of the boundary for all k parallel to [111].Otherwise
stated we may preserve k on either side of the boundary.
Now assume that in the zincblende region the crystal
potential is V(ZB), and in wurtzite it is V(Wur). Then
we may use Fig. 13 to determine relative location of
energy levels of the appropriate states on either side of
the boundary. For example, at k= (0, 0, 0) zincblende
states are shifted and split to yield corresponding
wurtzite states as shown in Fig. 9. The result is indicated
in Fig. 19, where the existence of a barrier (energy dis-
continuity in both valence and conduction bands) is

shown schematically. We emphasize that this barrier
arises solely because of change in the symmetry of the
crystal potential V(r) by calling this the symmetry egect
Further, the barrier height (discontinuity in energy at
a fixed k) depends on k (i.e. , electron energy) and
should diminish as k approaches the zone edge if Fig. 12

applies. Note that one may introduce a common refer-

ence level of potential and also that the vertical separa-
tion of the bands at fixed k, labelled AEzn and A&w, is

characteristic of each of the structurally pure zincblende

or wurtzite regions. Hence a given mixed crystal will

show optical evidence of the simultaneous existence of
both band gaps. The wavelength dependence of the
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Fio. 14. Secular determinants at K(Wur) = («r/3, «r, 0) =h(ZB).

"J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1957), appendix E«. J. Birman, Domains of Polariza
tion and Anomalous Birefringencein Twinned Zincblende (Sylvania report, 1957, unpublished).

'e J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, New York, 1941), p. 189.
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Fro. 15. States at X(Wur) = 0 (ZB) = (s./3, s., 0) in a "normal"
order. No "simple" correspondence between states exists here as
in the cases of propagation along F—A; F—F'.

20 G. Cheroff and S. P. Keller, Phys. Rev. 111, 98 (1958);
A. Lempicki, Phys. Rev. 113, 1204 (1959).

2' Lempicki, Frankl, and Brophy, Phys. Rev. 107, 1238 (1.957).

anomalous photovoltage in twinned and faulted crys-
tals of ZnS is probably related to this property. "The
existence of barriers for conduction parallel to [111j
has already been noted experimentally for faulted ZnS
single crystals, and in fact there seems to be some
evidence of more ohmic behavior at higher field strengths
(higher electron energy and therefore k near the zone
edge) which would corroborate the model of lower
barrier height at larger k."

Of course the actual barriers exist because of both
polar arid symmetry effects and much more work needs
to be done before these are unscrambled. Conduction
perpendicular to "c"involves carrier transport in zinc-
blende regions, wurtzite regions, and within the barrier
region. Quantitative analysis of conduction in this
direction would involve averages over the F—M, I' —E
directions in both zincblende and wurtzite, and lacking
precise experimental or theoretical information on band
structures would be premature at this time.

(c) Randomly faulted structure: Wur'. —Consider a
region of a crystal which in terms of the stacking dia-
gram is neither 2 layer nor 3 layer but rather where the
stacking shows one dimensional stacking disorder. That
is, we may characterize the structure by the proba-
bility of faulting 0.."The local potential in such a region
of random faulting will Quctuate but it seems reasonable
to relate it to the pure zincblende and wurtzite struc-
tures' potential on the average by

V(ZB) = V(Wur')+ V'(n) = U(Wur)+ V', (5)

where Wur' means the randomly faulted, wurtzite-like
structure, and the perturbation V'(n) depends upon tr.

The exact nature of this dependence is of great im-

portance, but is a problem beyond the scope of this

:css.,

(b)

Fzo. 16. Photomicrographs of a synthetic ZnS crystal needle.
Upper: using unpolarized white light; lower: under crossed Nicols
using convergent plane polarized white light (the crystal has been
rotated about its c axis in the lower photograph). The c axis is
directed along the needle, perpendicular to the striations and in
the plane of the photograph. Note the alternation of optically iso-
tropic bands (zincblende) and birefringent bands (pure wurtzite,
or faulted wurtzite: Wur'(o. ), regions). Photograph courtesy of
H. Samelson and L. Ankerson.

paper. For example, we might define n so that 0.=0
(perfect structure) means wurtzite structure and then
V'(n=0) = V', while n= 1 means zincblende structure so
that V'(n= 1)=0. If (5) holds and we assume that we
can always choose a k parallel to the "c"axis, ranging
from k= (0, 0, 0) to k= (0, 0, z.) (see Table IV) (i.e.,
that there is always a plane wave of wavelength X= 2d»&
which can be propagated), then we may carry out the
LCAO treatment relating the Wur' structure to the
zincblende as we did for the zincblende-wurtzite struc-
tures. Now, however, at any k (parallel to "c") the
shift and splitting of "corresponding" Wur' states will

depend on o.. It is of interest that the correspondence
between states still seems to apply for propagation
parallel to "c".For propagation perpendicular to "c"
we may relate Wur' states to wurtzite states, by using
(5). (It should be pointed out, however, that a randomly
faulted Wur' structure will no longer belong to space
group C6,'. the 6,; and m; operations will be lost and the
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FIG. 17. (a) Stack-
ing diagram of rota-
tion-twinned zinc-
blende. Compare Fig.
4. The dotted and
shaded circles show
stacking for the con-
tinuation of the pure
zincblende structure.
Note the 3 layers of
wurtzite structure at
the rotation twin
plane: 8, C, 8 and
the probable atom/
ion displacements
from "ideal" posi-
tions due to unbal-
anced forces in the
twin plane (arrows).
This locked in strain
gives rise to a "po-
lar" effect on the
band structure for
propagation (k)
along "c." (b) zinc-
blende-wurtzite mix-
ed crystal. Regions
of zincblende may
alternate with re-
gions of wurtzite in
a real crystal and
within each region
the potential may
show slbstamtiully the
zincblende or wurtz-
ite site symmetry, as
illustrated by optical
properties shown in
Fig. 16.

site symmetry at A, 8, C sites would be C&,=3'. This
would not affect the simplified ICAO approach as
used here. )

In any event, if the definition of o; given above holds,
jt would follow that the extremes of optical band gap
(vertical energy band separations at some k) should be
for pure zincblende and wurtzite structures, the gap of
a crystal with random faulting lying always between
these extremes. Experimental work to test this hy-
pothesis would be of considerable interest.

ZB
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FIG. 18. Band structure: rotation-twinned zincblende illustrat-
ing the barrier caused by a "polar" eRect. This is due to a thin
layer of locked-in wurtzite and hence polarization (due to pyro-
electric and piezoelectric eRects), or an inner "double layer, " at
the twin plane.

'7. CONCLUSION AND SUMMARY

The relationship between energy bands of a com-
pound in zincblende and wurtzite structures was dis-
cussed in the simplified I.CAO framework. For propaga-
tion parallel to the "c" axis (I'—A or I"—F') wurtzite
states may be regarded as perturbed zincblende states.
The magnitude of the perturbation V' in Eq. (4) de-
pends on (a) difference in bond type (e.g. , effective
charge) in the two structures, and (b) departure of the
wurtzite structure from ideality. Consequently, the
amount of the perturbation of corresponding zincblende
and pure wurtzite states depends on these too. Along
F—M and F—E in both zincblende and wurtzite it is
possible to compare k vectors but the states along these
lines are not simply related. This follows because there
is not a simple relation between the group of the wave
vector G(k) along this line for zincblende and wurtzite
structures, as there is for propagation along "c"in the
two structures, where G(k) for wurtzite is either a sub-
group of, or isomorphic to, the corresponding G(k) for
zincblende.

Experimental results on ZnS and SiC band gaps in
zincblende and wurtzite structures" suggest that some
general relationship exists between the band gaps
(relative displa cern ents of various conduction and
valence band states) of a compound in zincblende and

"H. R. Phillip, Phys, Rev, 111, 440 (1958); F. A. Kroeger,
Physica 7, 1 (1940).
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wurtzite structures. We have in Fig. 12 a hint of such a
general relationship, although Fig. 12 applies only to a
simplified case within the already simplified LCAO
method. In particular we would like to know: do band
extremes occur at corresponding (as we have defined
them) points or lines in zincblende and wurtziteP If
not then what determines a shift of the extremes when
going from one to another structure?

For a mixed crystal of zincblende twinned on wurtzite
we find energy (k) dependent barriers for propagation
parallel to the "c"axis (the same k can be used on either
side of the boundary plane). We identify two effects as
producing these barriers: (a) a polar effect, (b) a sym-
metry eGect. The polar eBect is illustrated by rotation-
twinned zincblende where the boundary (twin) layer
gives rise to a locked-in double layer across which the
potential is discontinuous. The symmetry effect is due
to change in symmetry of the crystal potential on pass-
ing from wurtzite to zincblende regions and gives rise
to the k dependence of barrier height. A mixed crystal
should show evidence of both zincblende and wurtzite
gaps in its optical absorption; the wavelength depend-
ence of the anomalous photovoltage may be related
to this."

For the randomly faulted wurtzite-like structure:
Wur'(rz), we expect a smooth progression of gap width
from pure zincblende to the pure wurtzite depending on
rz (probability of faulting) which controls U (o.), in Eq.
(5). Hence assuming that all k are allowed from
k= (0, 0, 0) to k= (0, 0, zr) (I"'or A), (see Table IU), i.e.,
that plane waves of wavelength as short as ) = 2d~~~ can
be propagated parallel to "c," the effective gap at any k
(along "c") will depend upon rz in that local region.
Similarly, the barrier height (symmetry effect) on
transition from a zincblende region to a Wur' region
will depend upon the 0. of the latter. Propagation per-
pendicular to "c" in such a region will involve carrier
motion on the close-packed sheets ([111] planes)
within zincblende, wurtzite, Wur (rz), or barrier regions.
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As a Gnal word, the simplicity of the arguments used
in this paper must be emphasized. A really self-
consistent dynamical theory of electron propagation
and band structure analogous to the work on x-ray and
electron diffraction in faulted materials now under
way, "remains for the future.
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OI STANCE ( II IO "C"1

FIG. 19. Band structure of a mixed crystal illustrating the
"symmetry e6ect" or production of a barrier due to the shift and
splitting of corresponding states. The situation shown is for
constant k propagation on both sides of the barrier, k parallel to
"c." Barrier heights (discontinuities) as well as absolute magni-
tudes of energy separations (nEss| BEw) are ir dependent. To
obtain a proper "symmetry" effect band structure at a different
ir one uses Fig. 13 (or its correct equivalent) and draws a vertical
line at the appropriate k. The figure is schematic, as the magni-
tudes of barriers, splittings, and shifts of bands with respect to
the common reference level are not known for any particular
material. For example, it is entirely possible that the valence and
conduction bands (for some particular material) are all shifted
away from the common reference level, on passing from the zinc-
blende to the wurtzite parts of the mixed crystal.




