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Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian*
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The Hamiltonian of a Itloch electron in a static magnetic field is II sr=Ps+ U(r), where U(r) is the periodic
potential, P= p+A/c, and A is the vector potential giving rise to the magnetic field R. We consider the
case of a nondegenerate band m. It is then shown that, with an error vanishing with X like Xu+' (iV arbi-
trary), the eigenstates of H can be calculated from an equivalent Hamiltonian H (P) with the following
properties: (1) It is a one-band Hamiltonian, obtained by transforming away all relevant interband matrix
elements. (2) It depends only on the gauge-covariant operators I' . (3) It has the periodicity property
H (P+K) =H . (P), where K is an arbitrary reciprocal lattice vector. (4) It can be written as a series
H (P) =Z; 0&rs'H;(P) where s—=X/c and the functions H;;(P) are completely symmetrized in the
noncommuting operators P Properties . (3) and (4) can also be summarized in the equations H (P) =2&a&'&

XexpLiR&'& P7, where the R&'& are lattice vectors and the a&'& can be expanded as a&'&=5;=0 s'a;&'&. An
algorithm is given for the construction of the H,.; and carried through for ~=0, 1, 2. The formalism is not
restricted to the neighborhood of the bottom and top of the band. We believe that the equivalent Hamil-
tonian H (P) provides a sound basis for a discussion of wave functions and energy levels of Bloch electrons
in a magnetic field.

I. Introduction

HE study of the physical properties of metals and
semiconductors in external magnetic fields has

been among the most fruitful methods for obtaining
insight into their electronic structure. In many cases the
experiments give us information about the electronic
energy levels in a magnetic field. Examples are the dia-
magnetic susceptibility, De Haas-Van Alphen effect,
cyclotron resonance, and magneto-optic effects.

It is therefore not surprising that the theory of the
motion of Bloch electrons in a uniform magnetic Geld
has received a good deal of attention. Following the
classic work of Landau' on the quantum theory of free
electrons in a magnetic Geld, the Grst analysis of Bloch
electrons in a magnetic Geld was carried through by
Peierls. ' This latter work was based on the tight-
binding approximation and therefore its results have
only qualitative validity. Since then a great many con-
tributions to this problem have been made, some of
them dealing with the individual energy levels, ' "
others emphasizing the free energy of the entire sys-
tem." "However, because of the great mathematical

*A preliminary account was published in Proc. Phys. Soc.
(London) 72, 1147 (1958).' L. Landau, Z. Physik 64, 629 (1930).' R. Peierls, Z. Physik 80, 763 (1933).' J. M. Luttinger, Phys. Rev. 84, 814 (1951).

4E. N. Adams II, Phys. Rev. 85, 41 (1952); L. Onsager, Phil.
Mag. 43, 1006 (1952).

5 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
P. J. Harper, Proc. Phys. Soc. (London) A68, 874, 879 (1955).

7 T. Kjeldaas and W. Kohn, Phys. Rev. 105, 806 (1957).
A. D. Srailsford, Proc. Phys. Soc. (London) A70, 275 (1957).' G. E. Zil'berman, J. Exptl. Theoret. Phys. U.S.S.R. B2, 296

(1957) /translation: Soviet Phys. JETP 5, 208 (1957)7.' G. E. Zil'berman, J. Exptl. Theoret. Phys. U.S.S.R. BB, 387
(1957) /translation: Soviet Phys. JETP 6, 299 (1958)7."L.D Landau and .D. Shoenberg, Proc. Roy. Soc. (I.ondon)
A170, 341 (1939), Appendix.

'2 A. H. Wilson, Proc. Cambridge Phil. Soc. 49, 292 (1953).
'3 E. X. Adams II, Phys. Rev. 89, 633 (1953).
' I. M. Lifschitz and A. M. Kosevich, J. Exptl. Theoret. Phys.

I).S.S.R. 29, 730 (1955) Ltranslation: Soviet Phys. JETP 2, 636
(1956)7.

complexity of the problem, many authors have found
it necessary to use one or the other uncontrolled
approximation, so that the reliability of their results
remains often in doubt. Thus much work is based on the
so-called single-band Hamiltonian

H—=e„(P),

where e (k) is the energy band in question, "'
P= p+A/c,

and A is the vector potential giving rise to the uniform
magnetic Geld. At least some interband matrix elements
are left out of account in such theories and in certain
cases it has been shown that this may lead to very
serious errors.

Two relatively recent developments have been of
particular interest. One is an expression due to Onsager, '
which relates the levels in a magnetic Geld to simple
geometrical properties of the energy bands and applies
to bands of arbitrary shape. This expression has been
extremely helpful in analyzing De Haas-Van Alphen
experiments. However it is derived by means of a semi-
classical argument whose range of validity is, as the
author points out, not entirely clear.

The other question which has been recently discussed
by several authors' " concerns the extent to which
magnetic levels, highly degenerate in the absence of a
periodic potential, are spread into bands. That such
banding occurs is beyond any doubt, and may be
demonstrated in some simple examples. But the width
of the bands is a matter which is not settled at present.
and there is substantial disagreement between diferent
authors.

The present work was undertaken in the hope of
clarifying some of the existing uncertainties. It is in a
sense an outgrowth of some earlier work, ' ' but unlike
it is not restricted to the vicinity of the bottom or top

'5' Atomic units are used in this paper.
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HP= (-', P'+—V)P= Ef (1 3)

where P is defined in Eq. (1.2) and V is a, periodic
potential. For A=O, the eigenfunctions of H are the
Bloch waves

of an energy band. In this paper we derive an eHective
single-band Hamiltonian as well as the corresponding
basis functions. The diagonalization of this Hamil-
tonian and the resulting energy levels, wave functions,
and free energies will be discussed in a second paper.

Following is a summary of the results obtained in
this paper. We are concerned with the solution of the
Schrodinger equation

culties associated with this -redgmdmcy are more than
balanced by its advantages.

The effective one-band Hamiltonia, n, H,„,(P) includes
all interband effects. If we define

s—=K/c,

it can be expanded in the form

H (P)=H, o(P) +sH ., i(P)+s'H. , (2P)+ ~ ~ ~, (1.8)

where each II' ., ; is a completely symmetrized function
of the noncommuting operators I' . Furthermore, if we
denote the lattice vectors of the crystal by R~'&, each
H . ; has a Fourier series expansion of the form

P I =+ a(&)t." ', (1.4) H~, ;(P)= P. i a &'& exp(iR&" ~ P).
and the corresponding eigenvalues are the energy bands
e (k). We fix our attention on solutions of (1.3) which
in the limit of vanishing A go over into Bloch waves be-
longing to a nondegenerate band denoted by m.

In the presence of a magnetic field, the Hamiltonian
H in (1.3) has nonvanishing matrix elements between
Bloch waves associated with the band m and those be-
longing to other bands. We shall explicitly construct a
new set of functions g„~ such that, ie a certairI, sense,
Bg k can be expressed as a linear combination of the
g k with the same m. In fact we shall show that

H g ~=P ~ p j, (k'
~

H (P)
~
k), (1.5)

where H (P) is an explicitly constructed function of
the operator P, and the notation (k'~ ~k) denotes a
matrix element between plaice-wave states k' and k."b

The meaning of the phrase "in a certain sense" and
of the = sign in (1.5) is the following. We construct
g & and H (P) by a step-by-step process, which can be
carried to arbitrary order E in the magnetic field X.
If we stop at the Nth order, the equation (1.5) is cor-
rect apart from terms which vanish with 3C like K~+'.
We do not yet know if for small enough K our process
converges strictly or only in an asymptotic sense. To
simplify our langugage, we shall assume the former, but
if in fact the convergence is only asymptotic our results
may have errors which vanish however more rapidly
than K~, where E is arbitrary. "

The new basis functions p & have a "periodicity"
property similar to that of ordinary Bloch waves. That
is, if K is a reciprocal lattice vector,

Pm~+K= + g~k. (1 6)

'sb For earlier discussions of an effective Hamiltonian, see
especially references 3 and 4.

'6This possibility is of importance in the question of the
"banding" of the magnetic levels.

The sign here depends on the details of V(r) as well as
on K. It is extremely convenient not to restrict k to a
single Brillouin zone but to allow it to run over a very
large volume in k space. Because of (1.6) the p ~ are
then of course not linearly independent, but the diK-

6 =Go +SGi +$282 i +' ' '. (1.13)

From this form the important periodicity property

H. (PyK) =H„(P) (1.14)
is apparent.

The Hamiltonian H (P) of Eq. (1.8) is far from
unique. Any unitary transformation U(P) with the
appropriate periodicity properties will lead to an equiva-
lent but diferent Hamiltonian. The leading term
H, o(P) is of course common to all these forms.

When the crystal in question has a center of inversion,
only even powers of s occur in our expansion (1.8). In
this paper the expansion is explicitly carried out up to
order s'. When a center of inversion is absent, also odd
powers of s occur. For this case the expansion is ex-
plicitly carried through up to order s.

This is the point where the present paper stops. It
remains to find the solutions of Eq. (1.3) corresponding
to the band m. These ca,n be written in the form

&=&~A (k) g ~, (1.15)

and by (1.5) will satisfy the Schrodinger equation, if
A„(k) satisfies the equation

Qg (kiH (P) jk')A„(k')=RA (k). (1.16)

The solution of this equation and related questions will

be discussed in a subsequent paper.
The results derived in this paper have a very simple

structure. It is therefore a pity that the methods by

Explicit constructions for the functions

H, (k) =Pi a, ~'& exp(iR&'& k) (1.10)

(and hence for the a,') are given. For i=0, we find of
course

H„,.p(k) = e„(k), (1.11)

which gives rise to the simple one-band Hamiltonian
(1 1)

In view of (1.8) and (1.9), H (P) can also be ex-
pressed as a Fourier series,

H (P)=g ~
u&" exp(iR&" P), (1.12)

where
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which they are derived here are shockingly compli-
cated. Also the particular expressions we obtain for the
higher-order Hamiltonians in Eq. (1.8) are very in-

volved and depend rather surprisingly on such unex-

pected quantities as the values of the normalized
Bloch waves at the arbitrarily chosen origin of co-
ordinates. We have already mentioned the lack of
uniqueness of the Hamiltonian. Perhaps much simpler
expressions exist and much simpler derivations. If so,
we hope that they will in time be found.

PART I
2. Formulation of the Mathematical Problem

Our problem is the solution of the Schrodinger
equation

Hp= (-', P'+ V)P= EP, (2.1)

where V is a periodic potential, P is the velocity
operator

P= p+A/c, (2.2)

our procedure is quite independent of the temperature.
For example, the observation of the De Haas-Van
Alphen effect requires a "strong" field, but in the sense

s& kT. (2.6)

Since kT at 1'K equals 10 ' in atomic units, the condi-
tion (2.5) need by no means rule out the inequality (2.6).

3. Initial Basis Functions

Returning now to Eq. (2.1), it is of course well
known that it cannot be solved by simple Schrodinger
perturbation theory in powers of s. The e6ect of even
a very weak magnetic field on the eigenfunctions is too
profound. Nevertheless it seems natural to begin by
writing Eq. (2.1) in the representation of the unper-
turbed eigenfunctions of H, the Bloch waves, and carry
on from there. However, this approach led to technical
difficulties which we could not overcome.

The procedure which we could carry through begins
with the following basis, introduced in reference 5:

I!= curlA. (2.3)

and A is the vector potential giving rise to a uniform

magnetic field X:
Xnk= danae

Here N„o is the periodic part of the Bloch wave

(3.1)

this means that
s=—X/c,

s((y,

(2 4)

(2 5)

where y is a pure number of the general order of magni-
tude 1. However in some cases, for example when deal-

ing with very small effective masses, p may be as small
as 10 ' or 10 '. We shall by a sequence of unitary trans-
formations construct new Hamiltonian, equivalent to
II', in the form of a series whose eth term contains a
factor s". The validity of the expansion can then in
each case be checked by inspection of successive terms.
In most practical cases a few terms are sufficient.

It is perhaps worth mentioning that the validity of

The boundary conditions are the usual periodicity con-
ditions on the surface of a large box of volume Q.

We shall be interested in the solutions of (2.1) which

correspond to a simple band whose band index we de-

note by m. By "correspond" we mean that in the limit
of vanishing A the solutions go over into Bloch waves

with the band index m; and by a "simple" band we

mean a band which has only one wave function for a
given k and which does not touch or intersect another
band.

Of course, except in some very special cases, such as
V—=0, an exact solution of (2.1) is not possible. We shall

seek approximate solutions which are valid if the mag-
netic field is sufficiently weak. However, what consti-
tutes a weak field for one part of the spectrum may not
for another. Loosely speaking, we may say that a weak
field is one in which the magnetic energy of the electron
is small compared to some characteristic energy when
the magnetic field is switched off. In atomic units, if
we call

(2z)' r

Ink @n'kdr ~nn'

cell

(3.3)

where 0 is the volume of the unit crystal cell. Finally it
follows from time reversal symmetry that we may fix
the phase of M„o(r) such that

Im N„o(r) =0. (3.4)

When k is restricted to the fundamental Brillouin
zone, the set X„k forms a complete orthogonal basis.
This was the set used in the papers by I uttinger and
Kohn' and Kjeldaas and Kohn' that were concerned
with levels near the bottom or top of a band, which
involved only small values of k.'r ln the present paper
we shall not limit ourselves to levels near the band
edges. In particular we want to be able to describe
levels which, in a semiclassical description, correspond
to Bloch wave packets circulating under the inAuence

of the magnetic field through several Brillouin zones,
Two courses of action suggest themselves: One is to
hold fast to the basis of Luttinger and Kohn and con-
sider very carefully what happens when k is oe the
Brillouin zone boundary. This procedure we found not
tractable. The other course, which we adopt, is to ex-
tend the basis (3.1) by letting k run over a very large
volume 7 in k space. Now since the X„~form a complete
set when k runs over any one Brillouin zone, of volume

r, this extended basis has a redundancy of (r/7. ). The

17 The results of the present work are in agreement with the
conclusions of these earlier papers.

(3.2)

for k=0. The normalization is 6xed by the equation
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magnitude of ~ will of course drop out of our 6nal re-
sults just as does the coordinate volume 0 of the
crystal.

When we come to count states, the finiteness of both
~ and 0 will be made use of. But during most of the
following developments it is convenient to regard them
first as infinite. Then both r and k become continuous
variables ranging over their entire respective spaces.

p=p A„(k)x„„, (4 1)

where the symbol g includes both summation over e
and integration over k. However, it is obvious that the
coeKcients A„(k) are not unique.

When we substitute (4.1) into the Schrodinger equa-
tion (2.3), we are led to consider the effect of (H E)—
operating of X„k. The resulting function has of course
again a highly ambiguous expansion in terms of the
X„k, but we are entirely at liberty to choose one which
is particularly simple.

We follow in this largely the procedure of Kjeldaas
and Kohn. 7 We wish first to compute the result of
—,'(y+A/c)' acting on X„~. We make the following pre-
liminary definitions. If Q is an operator which is a
function of x and p, we define

4. Schrodinger Equation in the Initial
Representation

Since the functions x„k of our extended basis are
more than complete, the solutions iP of the Schrodinger
equation can certainly be expanded in terms of them:

Hence by (4.4) and (4.5) we can write

P Xag=g Xa~ig«

&& @„-„(k"
i
P-i I )+p„.„-c(1"—1)). (4.8)

A second application of p results in

LpQprxg

=Q x„., [a„.„(k'[-,'P-P-~ k)+p„„-(1'~ P-~ k)
+-', P„-p„.„.-p.-„-s(1'- k)). (4.9)

To this must be added

[V(r)—E)x„„=px .g (V„„—Eb„„)b(k'—k), (4.10)

glvlng

(H —E)x„i,
=Qx„g[8 „(k'~ 2P"P )k)+-p„„(k'~P ~k)

+(-', Q -p ~ " p " ™"+V„Eb„—)8(k' k))—
(4.11)

This may be further simpli6ed by noting that the spe-
cial case A =0, k =0 gives

—', Q„p„„-p ", +V„„=c„b„„, (4.12)

where p„ is the energy of the Nth band at k=0. With
this relation (4.11) now becomes

(H—E)x„i,——p x„ i, (I'k'~H —E~iik), (4.13)
where

(e'k'~H~Nk)—=8„.[e„b(k'—k)+-', (k'~P P I k))
+p. . (k)P )k'), (4.14)

1
(k'~ Q) k)=— e '""Qe'"'dr.

(2')'
Further we call

(2m)' t I„p p I„pifr.
0

With these notations we may write

(4.2)

(4.3)

(s'k'~ E
~
ek) =Eh„„8(k'—k). (4.15)

It should be noted that the matrix ( kN'~H~Nk) is
Her mitian.

When we substitute iP, in the form of Eq. (4.1), into
the Schrodinger equation (2.1) we obtain with the help
of (4.13) the following necessary aed slgcient condition
on the coeKcients A „(k):

PaX i,=Pau„pe'~'
=P X„-,„P„-„k-(1"—1)+p„-.-s(k"—1))
=P x„.,-[s„-„(k"

~
p-~ k)+p„-„-&(k"—k)),

(4 4)
and

P P x. ~ (I'k'~H —E~ek)A. (k) =0. (4.16)
n'k' nk

Now in the customary representation theory one infers
from the orthogonality of the basis functions that
(4.16) is equivalent to

gaX geg haik r p (I k ~H-E~Nk)A„(k) =0. (417)
= (1/i) (8/Bk )u„pe"'
=P Xa~ g"8a"„(1l/i) (8/Bka)5(k" —k)
=Q x„","[5„-„(k".~x ~k)).

Now in a uniform magnetic 6eld we can write

Pa pa+Saa'ga'

(summation over repeated indices implied), where

3'.i——c(s"—s"), etc.

y=Q A„(1)x„„ (4 1)

will satisfy the Schrodinger equation (2.1). However
(4.7) the possibility exists (and is in fact realized) that a

In the present case, since the x„k are not linearly
(4.5) independent, the situation is different:

(a) Any set of coeKcients A„(k), satisfying (4.17)
will also satisfy (4.16) and hence the corresponding
wave function,
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nonvanishing solution A„(k) of (4.17) may give rise to
an identically vanishing wave function &P. Equivalently,
two different solutions of (4.17) can give rise to the
same f.

(b) The totality of solutions of (4.17) give rise-
via (4.1)—to the totality of solutions of the original
Schrodinger equation (2.1). This result is demon-
strated in Appendix A. It is not entirely trivial, since
solutions of (4.16) may (and do) exist which are not
solutions of (4.17).However, these solutions are equiva-
lent (in the sense of giving rise to the same tp) to other
solutions of (4.17).

In view of this situation, the problem of finding all
solutions of (2.1) can be divided into two parts: We
first determine all solutions of (4.17). Then we con-
struct the corresponding &p's by means of (4.1) (some of
which may vanish identically) and select from these a
linearly independent set in terms of which they all can
be expanded.

S„&"(P)=D„~ I' . (5.8)

Expanding the right-hand side of (5.7) in powers of
S&'& (P) gives

H &'& (P)=H(P)+ [H(P),S&'& (P)$
+l[[H(P) S"&(P)j,S"'(P)3+ (5 9)

In this expansion the terms linear in P have the matrix
elements

where
(p„„+co„„D„„")I', (5.10)

higher and higher order in P, the oG-diagonal elements
of H(P) which involve the band m.

As a first step we write

H "&(P)—=exp[—So& (P)jH(P) exp[S&'&(P)g, (5.7)

where S& &(P) is an anti-Hermitian matrix operator,
which is taken to be linear in P:

5. Elimination of Interband Matrix Elements
~nn'= &n &n" (5 11)

We now turn to the problem of solving Eq. (4.17),
which on interchange of the primed and unprimed
variables becomes

P (ekiHie'k')A„. (k') =Ed„(k); (5.1)
n'k'

here the matrix (mk~H~n'k') is given by Eq. (4.14).
This equation is an integral equation in k space and a
matrix equation in the band index. Our first aim is to
eliminate by a series of canonical transformations the
interband matrix elements in (5.1) which connect the
band in question, ns, with other bands and thus to
transform (5.1) into an equation of the form

&'(k IH-I k')~-(k') =»-(k) (5 2)

In order that Ho&(P) have no linear interband matrix
elements involving the band m we must choose the
coeScients D„n so that

p „+(u „D„„=O, N/m, (5.12)

and, because of the anti-Hermitian property of 5&'&,

n — (D 0.)4 (5.13)

Obviously these requirements still leave us considerable
freedom in the choice of the constants D„„.The
simplest choice would be D „=—(D„")*=—pm„ /
co „, for e/m, and all other D„n =0. However for
reasons which will become apparent later on we make a
slightly more general choice, namely

nn' n'n n'n (5.3)

First some preliminaries. As we have chosen the
functions N„o(r) to be entirely real [see Eq. (3.4)j it
follows that all matrix elements p„„,Eq. (4.3), are
purely imaginary and that and

Dmn ~mn&Cm (1 ~mn) pm+ /~mnj,
D m (D ~)Q.

D„n =0, e@m and n'&nz.

(5.14)

(5.15)

(5.16)

in particular,
a —P (5.4)

(nk~ H~N'k') = (k)H„„(P)
~

k'). (5 6)

Now we see from (5.5) that H(P) consists of a part
diagonal in n, of zeroth and second order in the opera-
tors P', and an oG-diagonal part linear in P". Our
next program is to regard P" as formally small and, by
successive unitary transformations, to remove, to

Further, it will be convenient to define the matrix
operator H(P) whose elements with respect to the band
indices e are given by the operators

H„„(P)=8„„)e„+', f'& &'P"P—& &+(1 8„-„)p„„P. (5.5—)

By comparison with (4.14) we have

e P-n' n'tn I' I'&+II„„&'&(P)=t&„„e„+—,'8 t'+Q
n' &mn'

+(1—8 „) —iC„p „t'+Q
n'

a P-n' n'n
I' I'&+

H„-o&(P) =[H„„~'&(P)jt.
(5.17)

(5 18)

Thus by our construction H „&'&(P) contains, for num,
only terms of second order in P". To emphasize this

Here the C are real numbers, for the time being quite
arbitrary, so that iC P is properly anti-Hermitian.

The matrix elements of H&'&(P) involving the band
m are now, by Eq. (5.9),
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where

, i2) (P) —D, aPPnPP (5.21)

C„-P—(1—~„„)Q„„-P/~„„; (5.22)

D ap — (D ap)4.

D &=0, mWm and e'~m.
(5.23)

Here the constants C I' are for the time being largely
arbitrary, except that in view of the anti-Hermitian
nature of S"&, C &P' P'& must be Hermitian:

(C„P )*P PP=C„PP PP. (5.25)

feature we write H „"'(P) in the form

8„„"'(P)=8„H &'&(P)

+(1—8 „)(Q „PP PP+ . }. (5.19)

Ke now make a second unitary transformation and
define

H &'i (P)—=exp[—S"'(P)]H~"(P) exp[S&'& (P)7, (5.20)

where S&'& is of second order in P and so chosen that
H „&') has, for eQni, no terms of lower order than the
third in P . Proceeding as before, this may be achieved
by taking

of this procedure. However, in Sec. 10 we shall estimate
the error of the solutions obtained.

6. Commutation Expansion of H (P)
We now wish to write H (P) in a series of terms each

of which is "effectively" smaller by a factor s(=K/c)
than the preceding one. Since, by (4.6),

P =p +s 'x"',

one's first inclination might be to order the series (5.33)
in powers of s. However, in such a series successive
terms are not eGectively smaller by a factor of s. The
reason for this can be most easily seen in the free elec-
tron case. Here

8(P) —1papa —&

papa+�san�'

(p axa'+ xnpa')
+s 's "x 'x ". (6.1)

If we now consider solutions of (approximately) fixed

energy, then as s —+ 0, the dimensions over which the
orbits extend behave as s ', so that terms of the type sx
occurring in (6.1) are in fact independent of s.

A more appropriate procedure is to make what we
call a commutator expansion of Eq. (5.33). Let us
begin with some preliminaries. First we define

Clearly, this procedure may be continued so that
after the tth transformation we have

(P' P ')A (6.2)

H „&t&(P)=8 „H„&ti(P)

+ (1 tI „)[Q nl. «+tpat. . .pat+1+. . .j (5 26)

The subsequent transformation is then given by

, (2+ii(P)=D, al' nt+1Pal. ~ ~ Pat+1 (5 27)
where

as the average of P ' ~ P ' over all possible permuta-
tions of the factors. Since far s=0 the P 's commute,
it is clear that the difference between P ' ~ P ' and its
average must be at least linear in s. For example,

P.1P.2-(P 1P 2)„„=-'(P.1P.A-P.2p.l)

1j(Snln2 Sn2nl)

D crI ~ «+I — D txI a &+Z ~

nm tnn (5.29)

nI" at+I —g Zg ~I "at&+i
mn mn m

—(1—~ )Q " "'/~-t (528)
2S patn2 Stt2ttl)

2E s )
(6.3)

D~~ ''' + =0) 0+A and g Q~) (5.30)

and the numbers C '" &+' are arbitrary, apart from
the requirement that

al nt+lpnl. . .pat+1 —C at+1 nlpal. . .pat+1 (5 31)

where the factor in parentheses is independent of the
magnitude of s. In general, we can write

P 1 P t=(P 1 P t)A„+sD„ (6 4)

where A~ is a linear combination of products of P, each
of order (P )' '. Now we define 6„+2 by the equation

From the power series of exp( —S"+"H&"exp(S&'+'&)

we see that Sh,~i ——6,—(6,)A21 (6.5)

H„&t+"(P) =H &"(P)+O(p'+'). (5.32)
Then clearly we can develop P ' ~ P ' in a series of
the form

Thus all H &" for t &~ ttt are identical up to order (Pn) "+'
inclusive. We now define H (P) as the formal limit of
H &'& as t —+ ~. It can be written in the form

pnt. . .pat —(pal. . .Pnt)

+s(t."ii)At+ s &'"~(6 it)2))A„, (6.6)
where

Hm(P)=&m+&mat 'P 'P '
+g ala2atpalpa2pa2+. . . (5 $3)

[t/2]= t/2 for t even,

= (t 1)/2 for t odd. — (6.7)

where in view of (5.32) E„'"at can be obtained by
calculating B &'—').

We shall not discuss hqre the question. gf convergence

Such an expansion we call a commutator expansion.
We now develop each term of the power series (5.33)

of H (P) in a commutator expansion and then collect
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nr &mn'

pm'' pn'm pmn' pn'm
H, , (k) = ——Q

g n'

+ . (6.10)

The deficiency of this formalism, as developed so far,
is then that it is restricted to sufficiently small k-
vectors for which these series converge adequately.
One of the main objectives of Part II of this paper is to
obtain expressions for the functions H, ;(k) without
recourse to power series expansions.

PART II

To obtain explicit expressions for the functions
H ., ;(k) we shall be following a rather complicated
procedure. It may therefore be helpful if we give here
a brief outline.

In Sec. 7 we show very easily that H, ,(k) is just the
energy band function o (k). This has the well-known
periodicity property

o (k+K)=o„(k),

where K is a reciprocal lattice vector.
This suggests that also the functions H .,(k) for

i&0 might have this property. However, these func-
tions depend on the as yet largely arbitrary coefficients
C '" ' occurring in the canonical transformations
S&'& Lsee Eqs. (5.28) (5.31)).In Secs. 8—14 it is shown
how these constants can be chosen so that (a) the
H, ;(k) can be evaluated in terms of the Bloch waves

q „k and without recourse to power series expansions in

all terms corresponding to a given power of s. This
results in the commutator expansion of H„(P) which
has the form

H~(P) =H, o(P)+sH, i(P)+soH ,
.o(P)+ ~ ~ ~ . (6.8)

Each term H . ,(P) in this expansion is a linear combina-
tion of completely symmetrized products of the P .
We shall see later that in general all H, ,(P) are of
similar magnitude so that (6.8) is a suitable expansion
for su%ciently weak fields.

I.et us now recall that any completely symmetrized
operator 3I(P) is completely defined by the furiction
3f(k) to which it reduces when the operators P~ are
replaced by the c-numbers k .' Hence each of the
Hamiltonians H, ;(P) is completely characterized by
the corresponding function H„,;(k). The procedure
which we have followed gives us power series expansions
for these functions. For example, from (5.17) and (6.8)
we see that"

mn' n'm

H„,.o(k)=o„+ —,'8 s+Q k k~+, (6.9)

7. Discussion of the Leading Term H„,o(P)

In this section we shall derive very easily an explicit
expression for H .o(P) which makes evident the im-
portant periodicity property

H;o(P+K) =H„,o(P), (7.1)

where K is any reciprocal lattice vector. In subsequent
sections, we shall discuss the higher order Hamil-
tonians, H., ;(P) with i)0.

When the magnetic field is switched o8, clearly

H (P) ~H;o(p). (7.2)

Now the eigenfunctions of H .
, o(p)—as those of p

itself —are plane waves exp(ik r) and the corresponding
eigenvalues are H o(k). Hut these must be just the
energies of the Sloch waves y .k so that

H„,.o(k)=o (k). (7.3)

We recall again that a completely symmetrized
operator M(P) is uniquely determined by the function
M(k) to which it reduces when P is replaced by k. In
particular, if

(7 4)M(k) =Q A(R)e~ ",

k, (b) they have the periodicity property

H„, ,(k+ K) =II„,;(k).

This is accomplished in several steps. In Sec. 8 it is
shown that, when s= 0, the C ' " ' can be so chosen
that the new basis functions generated by the unitary
transformations 5&'),

oo„o——Q x„.o.(N'k'
~

exp(S~'&) (expS&'&)
~
mk),

have the property of being real at the arbitrarily chosen
origin r=0. This fixes the phase of these functions—
which are just Bloch waves —so as to assure their
periodicity in the sense that

Pmk+K ~ Pmk

In Secs. 9, 10, and 11 the same results are obtained
when sWO. The new basis functions,

g„„=QX„.o.(n'k'~exP(So&) exP(S&'&) ~mk),

are constructed so as to be real at r=0, and they are
periodic in the same sense as y k. Furthermore the
unitary transformation matrix connecting q k with
X„.k is constructed without recourse to a power series
expansion in k .

In Sec. 12 the algorithm for constructing the functions
H, ,(k), having the properties (a) and (b) above is
developed; and in Secs. 13 and 14 it is applied to con-
struct the first few H,.;(k) (i=0, 1, ) for crystals
with and without a center of inversion, respectively.

"The function k "1~ ~ k & de6nes uniquely the operator
(&" . &")Av.

'9 It so happens that the leading term of order k0, which is here
given, vanishes.

then
3E(P)=P A(R)e'"' . (7 5)
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This fact may be applied in the present situation.
For e (k) is a periodic function of k and hence may be
written as a Fourier series of the form

(k) =Pi &zo&'& exp(iR&" k), (7.6)

where the R&'& are the lattice vectors of the crystal.
Therefore we have

H, o(P)=g«zo&'& exp(iR&'& P). (7.7)

From this form we see at once that H„,o(P) has the
important periodicity property (7.1), analogous to the
periodicity of e (k).

It is sometimes a convenient notation to write

H„., o(P) =(e„(P))A„

where e (P) is any function of the operator P which
reduces to e (k) when P is replaced by k.

We wish next to draw attention to the Neigleness of
H,.o(P), in spite of the fact that the sequence of
unitary transformations S&'& leading to H (P) con-
tained a great deal of arbitrariness [see comments after
Eqs. (5.13) and (5.30)$. How this uniqueness comes
about may be understood as follows. Suppose we con-
sider a diferent sequence of canonical transformations
S'('& which also uncouple the band ns from the rest.
The resulting effective Hamiltonian H '(P) must then
be related to H (P) by a unitary transformation,
expT (P). Thus

H '(P) =exp[ —T~(P) jH~(P) exp[T~(P)]
=H (P)+[H (P),T„(P)]+

When we now make a commutator expansion of H '(P)
only H (P) in (7.9) can contribute to the leading term
H ., o'(P). For all the following terms, because of their
form as commutators, contain one or more factors of s.
The identity of H„,o'(P) and H,.o(P) is now obvious.
On the other hand, the higher order terms in the com-
mutator expansion (6.8) do depend on the particular
choice of the transformations S('&.

8. Periodicity in k of Bloch Waves

We have just seen that for i&0, the functions
H, ;(k) depend on the choice of the coeKcients C ~' "~'.
We shall Gnd it extremely useful that they may be
chosen in such a way that, in a certain gauge, the new
basis functions are real at r=o. These functions can
then be shown to be "periodic" in the variable k. We
begin by demonstrating this in the absence of a mag-
netic Geld.

For A=O we have of course P= y, and therefore the
Hamiltonian (4.14) is diagonal in k:

(zzk I
H

I
sz'k') = li(k —k')H„„(k). (8.1)

Consequently the solutions of the Schrodinger equation
(5.1) are of the form

(8 2)

and the corresponding eigenfunctions of H are just the
Bloch waves rp &,

e associated with the vector k'.

q„&,I=+„.A„.&"&(k)x„&,

=exp(ik'r) P„.B„.&"&(k')N„.o(r) .(8.3)

In this case, where the Hamiltonian is already initially
diagonal in k, the removal of the interband matrix
elements leads to a complete diagonalization. Therefore

9„&——(exp[S ' (y)] exp[S" (y)j. )&&„&, (8.4)

where q ~ is a Bloch wave associated with quantum
numbers z&z and k. We say &z Bloch wave, because its
phase will depend on the disposition of the arbitrary
constants in the transformations S&'~.

We shall now show how the C &'" & can be chosen
to make

Im[p„&,(0)$=—0. (8.5)

where the functions I '" ' are periodic in r. We must
now show that &z &, "&(0) can be made real for all t.

To lowest order we have

&o &, &o&(0)=[I o(r)e'~'], o, (8.8)

and this is clearly real.
To first order we obtain, with the help of Eqs. (5.8),

(5.14), and (5.15),

e'"' I o(r)+k I
iC I o Pzz o—

=u, o(0)+k I
iC I o(0) —g N„o(0) I. (8.9)

'0 This assumes of course, without proof, the analyticity of p
as a function of k. For one-dimensional Bloch waves this analytic-
ity has been established under mild restrictions by W. Kohn,
Proc. Phys. Soc. (London) 72, 301 (1938),and to be published."If e 0(0) should accidentally vanish, we choose another origin.

The procedure will be to assure the property (8.5) up
to any power of k», from which the reality for all k
follows by analytic continuation in the variables k&'~,

k~2&, and k&'&.20

We have previously chosen the functions N„o(r) as
real. Let us now further assume that I o(0))O.st Next
we write

=~ ~n~'(~)=~
)& (zzk'

I
('exp[S&'& (y)j exp[S "&(y)] j, I zzzk), (8.6)

where the notation f }& implies a power series expan-
sion of exp[S&'&] exp[S&s&j in powers of p~ up to
order (p ) ' inclusive. Clearly &p &,

&'& has the form

q &'&(r)=e'"'[I o(I)+k I ~(r)

+ .k & k ~N„r &(r)j", (8.7)
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As u o(0) and u„p(0) are real, and the p„a are imagi- C ai"'a' can be so chosen as to make
nary, this can be made real by choosing

ImL v~k ' (0)j= 0 (9.3)

where
r„—=u o(0)/u o(0).

(8.10) for all values of t. Since the phases of the p„k depend
on the gauge of the vector potential, we must settle on
a particular choice. It is convenient to take

(8.11)

It will be seen that C, defined by (8.10), is real as
required. LSee comment after Eq. (5.16).j

Proceeding in this manner it is easily seen that
k&'& (0) can be made real by an appropriate choice of

real coefficients C '" ', which may be taken as in-
variant under permutation of the indices o.1 . o.~.

It may be mentioned in passing that if the crystal
has a center of inversion at r=0, the C '" & can be
taken as zero.

This procedure defines y k(r) in terms of a power
series in k of the form (8.7). By analytic continuation
this function is then defined for all k. It clearly satisfies
the following conditions: It satisfies the wave equation;
it is normalized; it is real at r=0; and it has the quasi-
periodicity property

q~k(r+R"&) = expfik R"&$q~k(r). (8.12)

These conditions define p k uniquely, apart from sign.
Consequently it must have the following "periodicity"
property, as a function of k:

where for a given crystal and band index ns, 0=~1 de-
pending on the vector K. Examples show that both
signs do in fact occur. However for simplicity of writing
we shall assume in the following that 8=—1, so that

A=-,'(SCXr);

in this gauge we write s '=sr ', so that

Pa —pa+ &aa'+a'

and
app= —p.op=Xi/e, etc.

~11—~22 ~33—0

(9 4)

(9.5)

(9.6)

(9.7)

Our final results will, however, be gauge invariant.
The procedure of removing off-diagonal elements to

higher and higher order in P, which was described in
Sec. 5, gives us p„1,(') in the form of a series

(9.8)

where w„k&'& is of order (P ) '. Let us begin by study-
ing the first two of these, for e=m.

Clearly for t'= 0 we have

w k~o&(r)=x k(r)=u p(r)e'"', (9.9)

and since all u„p(0) are real, so is w kl'(0). The next
term is, in view of Eqs. (5.8), (5.14), and (5.15),

w„ko&(r) =Q u„p(r)
XLiC t&„—(1—t&„)p„„/p&„jP e'"', (9.10)

p k+x(r)=q k(r). (8.14) whose imaginary part at r= 0 is

Where the case 0= —1 leads to significant differences,
they will be explicitly mentioned. Imw ko&(0)=u p(0)~ iC Pr — ~k; (9.11)

nA~ O&n~ ]
9. Expansion of the New Basis Functions

in Powers of P

The canonical transformations 5(') 5 ') ~ dis-
cussed in Sec. 5 de6ne a new set of basis functions which
we shall denote by g 1, .'

Pnk Z Xn'k'

X(e'k'~expfS"&(P)g exp@'"'(P)7 I«) (91)

For A=O these were just the Bloch waves q „k discussed
in the preceding section. In this section we begin a
study of the g„1, in the presence of a magnetic field.
We shall first show that if we define

ink =~ Xn'k'(~)=~
X (u'k'

~ (expLSo&(P) j expLS" & (P)j ), ~
mk), (9.2)

where the symbol ( ), denotes the truncated power
series of the argument up to (P )', the constants

AI ~ ~ ~ At

&I ~ ~ ~ ~tptxl. . .Pot t
m (9.12)

is Hermitian Lsee Eq. (5.31)j, and are real for odd t and
imaginary for even t.

We give a proof by induction. Suppose we have
chosen appropriate constants C ~' - . Cm ' "~' '. Then

where r„ is defined by Eq. (8.11).This may be made to
vanish by the same choice of C, as in the absence of
the magnetic field Lsee Eq. (8.10)j.

So far there has been no significant diGerence between
the cases of nonvanishing and vanishing magnetic fields.
But in higher orders (t'~& 2), the noncommutativity of
the components of P does introduce such differences.
We shall now show that nevertheless there exists a set
of constantsC a', . C '" &which willmake y k&'&(0)

real for arbitrary t, that these constants satisfy the
requirement that the quantity
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zvm~&'~ has the form

u „k&4&=Q is„() Q (it'3„„C,„' "3+Q„„''.4)

n a] ~ ~ r a g

We now choose

gm/ m (9.23)

)(p l. . .pa34/sk r (9 13) By (9.22) we have

where the constants Q„n'"n' are real if t is even and
imaginary if t is odd. Let us take the case of even t.
From (9.13) we have, at r=0, =i P R l"'3(P l P /)& (9.24)

a1 ~ ~ ~ ag

w k" (0)=u 0(0) p (iC~" '3+"E„" "")"
a1 ~ ag

/

and this is properly Hermitian. Furthermore this

p l p k j (9 14)
choice gives, by (9.14)

where
al, ' ' 'ag=W /2a ~ a1' ' 'ag—~n ~ n~nm

w„k"&(0)=u„p(0) Q R„"' "
(9.15) al "ar

is real. YVe want to choose the C '" ' to make

Im(33/„k~r&) =0. (9.16)

Now the product P ' .Pag may be divided, in a
gauge-invariant manner, into a Hermitian and anti-
Hermitian operator. One way of effecting this division
is by a commutator expansion. For example, Im[(P ' P 4)p,e"' 'j, 0

——0. (9.26)

X[(p ' 'P ')Iles 'j —p (9.25)

It remains to verify that, in the gauge (9.4), the
imaginary part of (9.25) vanishes. Since the R
are real, inspection of (9.17) and (9.19) shows th'at this
will be so provided that for arbitrary t

since

palpa2 —(palpa2) + (palpa2 —pn2pnl)

= (P"P")4+(i/2)~""
=(p- p-) +(p- p-)

To establish this fact substitute in the product Pa1 p '

the expression (9.5) and pull all factors x to the right of
all factors p. This results in

aa'ar=
2
3(Sn'ar $nr ')—= (1ji)[pal Pn'j (9.18)

and is gauge invariant; the subscripts B and A denote,
respectively, the Hermitian and anti-Hermitian parts.
Similarly

pa1pa2pa3pa4
—(pnlpnrparpn4)„

+i(0alar(parpa4) +&alar(parpa4) +0ala4(p/r2par)

+~a2a3(palpn4) +~a2a4(palpar) +~a3a4(pnlpn2) )
0 ala20 a3a4 0 ala30 a2a4 0 ala4g a2a3

(PalParParPa4) + (PalParPI13PI34) (9.19)

where the Hermitian part contains all terms even in r,
and the anti-Hermitian part all terms which are odd
in o-. The general product Pa1 Pag can be similarly
decomposed.

We can therefore write R n'"n' as the sum of two
terms,

[(pn' ~ pn') 4,'sk'j = =kn' k"' (9.28)

which proves (9.26).
When t is odd an analogous demonstration can be

given.
We have therefore succeeded in constructing func-

tions of the form (9.2), or equivalently of the form

rtrrrk Z ur//0&/3/43+2 Grr/33 P +

+ g G, al ~ ~ n/Par. . .Par js/sk r

a1 ~ ~ ag

[(Pal. . .Par)(sk r]
k l. . .k 3+so 3 rk 3. . .k /+. . . (9 27)

When we now perform the operation ( )ar on (9.27),
all terms containing one or more factors o. I' vanish be-
cause of the antisymmetry of 0 &. Hence we have

a1 ~ ag —D' a1 ~ agM A a1 ~ ~ agEm +~ m (9.20) =P X„,(k'~g„.„+PG..„.lp.l+

a1' ' 'ag

and

a1 ~ ~ ~ ag

a1 ~ ~ a gpa1. . .Pa g
m

a1 ~ ~ ~ ag

nl. ~ nlpnl. . .pnr

E ' '(p ' p ')Is ("9.21)

+ p g ~ nl «pnl ~ "p. «
~
k) (9.29)

a1 ~ r ~ ag

which for n, =233 have the property (9.3).

10. Commutator Expansion of the New Basis
Functions; Degree of Decoupling

a1 ~ ag
It. l .'3(p l .P 3)~ (9.22)

both B a'"a' and A a'"ag are real.

The expansion (9.29) has the drawback of converging
only for small values of k. Our previous experience sug-
gests rearranging the terms in (9.29) in a commutator
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expansion. We therefore write formally

+P G, ~iP~i+ P G, ai~oP~iP~o+. . .
a1ag

= U~.;o(P)+sU~ ~;i(P)+s'U ";o(P)+, (1o 1)

, where the operators U„„„(P) are completely sym-
metrized in the P . Because of this property they can
be completely characterized by the functions U„„,,(k)
of the e-numbers k . For example, we see from (10.1)
that

U (k) —$ +Q G el/~i+ Q G, &1~2$&lp~o+ ~ ~ ~

order s'. Then clearly we must have

H.„(P)( 'ILe p[S&'&(P)] e p[S&"(P)] "];l~)
—(n I

[exp[So& (P)] exp[S&'& (P)] ],I m)
X[H (P)],=0(s'+'). (10./)

Now let us denote by p„&,, the series (10.5) truncated
after the power s':

p„&, ;=[F„,.o(r; P)+ s'F„., ;(r; P)]e'"'
=g I o(&o I

[exp['S "&(P)] exp[S"' (P)] ~ ],I e)
Xe'" ' (10 8)

Then (10.2) can be rewritten as

Hg Q;
' Q g' k;,(k'IH~, o(P)+ "+s'H- (P) I k)

U„,„,,(k)= p ( ~o. .i/o2 )sG„. i"+
aj,ag

(10.2)
+O(s'+'). (10.9)

etc. The functions U„.„,,(k) are defined by their power-
series in k where these converge, and by analytic con-
tinuation~ elsewhere.

Combining (9.29) and (10.1) gives the following
formal expansion for g„»'.

p~& (r)=Z I 'o[U ':o(P)+sU ';i(P)
+s'U„,o(P)+ ~ ]e'"' (10.3)

=P X„&,.(k'I U„„., o(P)+sU„„,. i(P)+ I k).

This answers our question concerning the degree of
decoupling: g ~., ; is decoupled up to order s' inclusive.
Consequently, if we solve the one-band equation

Q(kl [II (P)];Ik')A (k') =EX„(k), (10.10)
QI

where

[H (P)],=H, o(P)+sH, i(P)
+ s'H„., ;(P), (10.11)

For some purposes it is convenient to de6ne

F„,,(r; P) =—P„m„o(r)U„„,.;(P). (10.4) f=Z~ (k)o-» (10.12)

the energy E and the corresponding wave function

They are functions of r and completely symmetrized
functions of the operators P . As the definition (10.4)
shows, the P are to be thought of as on the right of
the r, i.e., not acting on it. With the help of these ob-
jects, we can rewrite (10.3) also in the compact form

o „&,(r)=[F„., o(r; P)+sF„,i(r; P)
+s'F„,o(r; P)+ ~ ]e ~'. (10.5)

will have errors which vanish with s like s'+'.
It may be remarked that if we define

F„(r)—=Q A„(k)e'~',

then (10.10) is equivalent to the equation

[H (P)],F„(r)=EF (r).

(10.13)

(10.14)

So far our entire development has been purely formal.
We are now in a position to examine to what extent the
functions q ~ have in fact been "decoupled" from the
g„~ with n/es.

Let us first note that the transformation functions
S&'&(P) have been so constructed that the equation

H» (P)(n' I exp[S&'&(P)] exp[S"'(P)]
I e)

—(e I
exp[S&'& (P)] exp[S&'& (P)] ~

I m)
XH.(P)=0 (10.6)

is a formal identity when both terms are formally ex-
panded in powers of P . If now these power series are
regrouped in a commutator expansion, (10.6) is also
clearly a formal identity to all orders of s of this ex-
pansion. Let us now denote by [Q(P)];the commutator
expansion of any function Q of the operators P up to

~ Again the analyticity is assumed without proof; see reference
20.

F„,.o(r; k) =N„&,(r), (11.2)

where, by our construction, Im[N &(0)]=0.

11. Analytic Continuation of New Basis Functions

In the preceding section we have seen that the new
basis functions p„&,(r) can be developed in a commuta-
tor expansion of the form (10.5). As the operators
F„,,(r; P) are completely symmetrized in the com-
ponents of P, they are uniquely determined by the
functions F„,,(r; k). The procedure of the previous
section gave us a series development of these functions
in powers of k . In the present section we shall show
how they can be obtained for arbitrary k without re-
course to a power series.

To determine F., o(r; k) we first consider the case
s=0 which has already been treated in Sec. 8. Here
one finds

g„„=p„„=F„,o(r; k)e'"',
so that



BLOCH ELECTRONS I N MAGNETI C F I EL D 1471

This gives us at once the result that in the presence
of a magnetic field

g„~(r)=I p(r)e'"'+O(s), (11.3)

where P does not act on the argument r of N„p, and the
operator I p is considered completely symmetrized in
the components P . Now since

transformation exp[S&'& (P; g)]:

(11.12)

Ke take S&'& of the form

&"'(P; C)=--p[-S"'(P; ~)X(P; C) "PLS' (P; C)]
=&(P; ~)+[&(P;C),S"'(P; lf)]
+

I p(r)e'"'= N~, ~+ &~~,~~&,& (r)e'"'+O(s), (11.4)

we can also write

S '"'(P' g)=D ' (g)P

where the D„„(g)must satisfy the condition

(11.13)

p~jg (z) Qfg Q+ (J/g)g (f) (r)e' '+0 (s)
= p„,~+&&~,&~&,~(r) exp[ i(1—/c)A(r) r]

+O(s). (11.5)

Ke now turn to the higher-order terms in the com-
mutator expansion of g ~. As we are interested in the
case of small s but arbitrary values of k, it is natural to
try and discuss the whole problem in a new representa-
tion based on the Bloch waves at an arbitrary point g
in k space, rather than the X„~ representation which
was based on the Bloch waves N„o at k=0. In analogy
with (3.1) we therefore define the following new basis
functions:

X„h(r; g) =—p„,(r) exp(ih r),

where the phases of the q„, are so chosen that

Imp „g(0)=0,

(11.6)

(11.7)

and the sign of Re@,(0) is that which one obtains by
analytic continuation of p & from k=0, under the con-
dition (11.7). For elm the sign of y„, may be arbi-
trarily chosen. In complete analogy with Eqs. (5.5) and
(5.6), we find that in this representation the Hamil-
tonian matrix is

and
P (g)+co (g)D „(g)=0 NWm, (11.14)

here

Ke choose

D.."(a)= -LD"-.(C)]* (11.15)

(11.16)

D a (D a)4

D„„=O, elm and e'/m
(11.18)

(11.19)

&-.(a) =
v-g(0)

p- (a)
Im P q „,(0) . (11.21)

num (g„(g)

[see Eq. (5.14) 8].As before, we choose the real con-
stants C (g) so as to make the new basis functions

~-h"'(r; 0) = Z x-h (r; c)
n, h'

X (Nh'~ 1+S&'&(P; g) ~
mh), (11.20)

real at r=0, to first order in P~. This requires

where
(nh)H~e'h') =(h)H„„(P;g) ~

h'), (11.8)
Continuing in this manner we construct, in analogy

with Eq. (9.29), the functions

(2s)' t.
Pen, ' (g) = png P pag~r. (11.10)

As before, we shall now eliminate the interband matrix
elements of (11.9) and in this way be led to new basis
functions p„h(r; g). For m=e it will be shown that
these are related as follows to the functions g ~(r) of
Sec. 10:

(11.11)

This connection will enable us to construct the function
F,.;(r; k) of Eq. (10.5) as well as the functions H, ,(k)
of Eq. (6.8) without recourse to power series expansions
in k~.

We begin by eliminating the first-order oG-diagonal
matrix elements of H„„(P;g) by means of the unitary

&..(P; C) =~- L -(C)+p- (C)& +l~'& ~']
+(1—&- )P-"(0)& ' (11 9)

here e„(g) is the energy of band I at wave vector g
while

h=k —g, (11.24)

and use the following identity, valid for any function
Z(P):

Z(P) exp[i(k —g) r]
= exp[ ig r]Z(P ——g) exp[ik r] (11.25).

~-h'"(r; 0) =2 v - g9- -+E G- -"(CP'"
n1

+ "+ Z G--" ""'(0)&""&"]
C], ~ ~ ~ Cg

Xexp(ih r). (11.22)

These series may be rearranged in a commutator series
leading to an expansion analogous to Eq. (10.3)

p- (r'C)=Z v-'[U -;o(P;a)
+sU„„,~(P; g)+ ~ ~ ]exp(ih r), (11.23)

where the functions U„„,,(P; P) are completely sym-
metrized in the P .

Now let us set



1472 WALTER KOH N

p„, exp( —ig. r) =P„"as„"p(r)C "„.(g),

(2~)' t.
C„"„(g)= u„"p*n„.,dr,

eel 1

(11.27)

where C„"„is a unitary matrix. 8 we now define

This allows us to re-write (11.23) as

p —('r; g) =Z p ~ e p(—'g r)LU; (P—g; g)
1s U„„., g(P; g)+ . .$e'k' (11.26)

Next we observe that the functions q„,exp( —ig r)
=N„,(r) are completely periodic in r, so that we can
write

FinalIy-, since- the original Hamiltonian II has -no
interband matrix elements connecting g k(r) with
p„k(r), NWm, or connecting pmk g(r; g) with ink g

&&(r; g), NWm, it follows that pp k k(r; g) must be a
linear combination of p k (r) with the same m. Thus

and we have
W„„,,(P)=b„„w;(P), (11.36)

peak —g(rj g)=Q peak'

X (k'l1+swi(P)+s'Wp(P)+
l k). (11.37)

Now let us turn to W&(P). From the unitary property
(11.35), it follows that

U---,'(P; g)—=2 C--- (g)U"-, .(P-g; g), (» 28)

Eq. (11.26) assumes the form

Wg(P)+ Wg*(P) =0.

Setting s=0 gives

(11.38)

p„k,(r; g)

=XI-oLU--;o(P; g)+»--; (P; g)+" 3 ""
=p x„.k (k'l U„.„,p(P; g)

+sU„„,.i(P; g)+ l
k). (11.29)

Wg(k)+ Wg*(k) =0, (11.39)

so that W&(k) is purely imaginary. Next let us use the
reality of y k, (r; g) and pp k(r) at r=0. This gives

ImLQ pp„k (0)(k I w~(P)
l
k))=0. (11.40)

These expressions have the same form as those occurring
in Eq. (10.3). We shall now show that, for n, =m,
g k p(r; g) and g k(r) are in fact identical.

We begin by inverting the power series expansion
(9.29) and rearranging the inverted series in a commuta-
tor expansion of the following form":

Now letting s ~ 0 gives

ImLWg(k) j=0,
so that W, (k) is purely real. Hence

w, (1 )=—0.

(11.41)

(11.42)

w„.„,,(P)==&.. (11.33)

Furthermore the transformation matrix

W„„(P)=W„„,p(P)+sW„', g (P)+ . (11.34)

Xn'k' Q Pn" k"
&&(k"lX. .;p(P)+»-"-', ~(P)+" lk) (» 30)

Substituting X„k from (11.30) into (11.29) and re-
grouping in a commutator expansion gives an equation
of the form

P.k—.(r; g)=Z ~-'
&&(k'Iw. .., p(P)+sw„„,(P)+ . .

l
1 ). (11.31)

Now for s=0, and a=m, we have by construction

peak —g(r~ g) ppmk(r) peak(r)q

where the phase of the Bloch wave is in accordance
with (11.7) ff. Hence

In the same way one shows next that, W&(k) vanishes,
etc. This gives finally the required result

v-k-. (r; g) = p-k(r), '(11.43)

p-„k(r; K)=sp k(r) (11.44)

Lsee Eq. (8.13)j, it follows from (11.43) that

pmK~k (r) =8 pmk (r) . (11.45)

Thus, also in the presence of a magnetic 6eld, the new
basis functions have the quasi-periodic property (11.45).

It is obvious how (11.43) can be used to obtain the
analytic continuation of pp k(r) for arbitrary k. Setting
g= k, (11.43) gives

which is equivalent to (11.11).
One important consequence of this result is the fol-

lowing. Since by construction

is formally unitary, i.e.,
g„k(r) = pp p(r; k). (11.46)

P„~ W ~ "t(P)W - ~ (P)=8

where ~ denotes the Hermitian conjugate.

(11.35)
Now by Eq. (11.29) we have

g„p(r; k) =g x„.k. (k'l U„„.p(P; k)
+sU„.„,,(P;k)y" lk), (11.47)

23This is of course again a formal expansion which has the
following property: If p„~ &- is expressed as a formal commutator
expansion, according to (10.3), substituted into (11.30) and the
resulting terms regrouped in a commutator expansion, (11.30) is
an identity to all orders in s.

while by (10.3)

&-k(r) =~ x- '(k'l U- -;p(P)
+2U...~(P)+ "

l k). (11.48)
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On subtracting and using (11.46), we get determined by the functions H, ,(k). In fact, if

O=g X„g (k'i [U ~,o(P) —U„,o(P; k)]
+s[U„., i(P)—U„„., i(P; k)]+ .

i k). (11.49)
then

II .„(k)=PB(R)e"R ~, (12.2)

and

U„„,o(k)= U„„., o(k; k),

U ';o(P) = U ';o(P; k).

(11.51)

(11.52)

Now, by using (11.52) in (11.49) and dividing the
latter equation by s, we get

O=g x„g.(k'~ [U„„., i(P) —U„., i(P; k)]
+~[U--;2(P)—U. '.o(P; k)]+ "I&) (1153)

As the X„1, are not orthonormal, we cannot immedi-

ately conclude that the coeKcients of X„1, vanish.
However, this fact may be established as follows.
Set s=O in (11.49), which then reads

0=Q ~ X„~[U ~,o(k) —U„„,.o(k; k)]. (11.50)

Hence

H„,(P) =Q B(R)e'" ~. (12.3)

However at the stage of Sec, 6, we had only expansions
of H, ,(k) in powers of k . We are now in a position to
calculate these functions explicitly for arbitrary k.

Let us begin by writing Eq. (10.3) for u=m in the
form

where
o -~(r) =2 x- ~ (&'&'I U(P) Imk), (12.4)

U„.(P) = U„.„,(P)+sU„.„,(P)+ "
= (e'

~

exp[S&'~ (P)]exp[S&'~ (P)] ( e). -(12.5)

Similarly, (11.23) can for +=m be written as

g„,(r; g) =P„.x„.„(r;g)(N'h'~ U(P; g) )mh), (12.6)

where

Now set s=o and obtain

U„. , i(P) =U„., i(P; k),

etc. Thus we see that for all i,

U„. ,(k) = U„.„,;(k; k).

Finally, by (11.28), we have

(11.54)

(11.55)

U-- (P; g)
=U ~;o(P g)+ U--; (P;g)+. .
=(I'iexp[S" (P; g)]exp[S" (P; g)] ie). (12.7)

By (11.5) and (11.28), U(P) and U(P; g) are con-
nected by the relation

U---(P) =r. C--- (g) U- -(P—g; g) (12 8)

U„' .„(k;k) =Q C„„(k)U„"„,(0; k). (11.56)

But at h=0, each coeflicient U„" .,(h; k) can be
evaluated explicitly in terms of a finite number of the
coeKcients of the power series (11.22). Thus

Ke shall now prove the following identity. Let

H (P) = U„„'(P)H„„(P)U„(P), (12.9)

where U„„(P) is defined in (12.5) and

H„„(P)=8 „[e„+,P P ]+p „P;-(12.10)
U„„„,,(0; k) =S„-„, (11.57) and let

U„„„.,(0; k) = P G„-„.i.~(k), (11.58)
cia Q 2$

etc. We see then that for example to obtain U„~,i(k)
we require a knowledge of G„~ ' '(k) which may be
obtained by two canonical transformations. This should

be compared to Eq. (10.2) which required the summa-

tion of an infinite power series in k, i.e., the perform-

ance of an infinite sequence of canonical transformations.

12. Explicit Construction of the
Effective Hamiltonian

In Sec. 6 we saw that the effective Hamiltonian H (P)
could be expanded in a series of the form

H (P)=H, o(P)+sH, i(P)+s2H, 2(P)+ ~ - ~ . (12.1)

We have already remarked that since the H., ;(P)::are

completely symmetrized functions of the E',
, they are

H (P)—=H (P—g; g). (12.13)

We first transform (12.9) with the help of (12.8):

H-(P)= U- '(P—g; g)C-- '(g)
XHN a" (P)Cm- n (g)Ua m(P —g; g) (12 14)

Next we note the identity

h„"„"e„"=(u„o,(p'/2m+V)u„" o). (12.15)

This allows us to write

(g)$~rr rrrrre&rrC&r rr~r (g)
= (u~, &u~ o)(u~"o, (p'/2m+ V)u„" o)(u„„u„,)
= (p„~exp ( ig r), (p'—/. 2m+ V) q „,exp (—ig. r) )

+ g )~ ' p ' (g)C (1216)

II„(P;g) = U „-(P; g)H„„.(P; g) U„.„(P;g), (12.11)

where U„„(P;g) is defined by (12.7) and

H„„(P;g) =8„„[..(g)+-,'P.P.]+p.„"(g)P.. (12.12)

Then
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Similarly

c..-- (g)p„-„-.-c„-.(g) =p..-(g)-g-~.. (».»)
lattice, so that we may write

H, (k)=P 4s &'& exp(iR&'& P) (12.27)

Therefore (12.14) gives

H„(P)=V„(P—g; g)
&&(&- 2 -(g)+l(I"-g )(I' -g )
+p-"()(I' — )j)U -(P—g' g)

=H„(P—g; g), (12.18)
as was to be shown.

This relation allows one to calculate explicitly the
functions H, ,(k) which determine the successive terms
of the commutator expansion of H„(P). We make a
commutator expansion of both sides of (12.18),

43( & (s) = ap(4&+ set(i& 1s 4s (3)+ (12.29)

Denoting by r the volume of the fundamental Brillouin
zone, we have

1
ap&'& =- e„(k) exp( —ik R&i&)dk,

zone
(12.30)

where the R&'& are the lattice vectors of the crystal.
Hence the eGective Hamiltonian can be written in the
form

H (P)=oils&'&(s) exp(iRt'& P) (12.28)
where

H„., p(P)+sH ., i(P)+
=H~ p(p —g» g)+sH42 i(P—gi g)+ . (12.19) & (3& (jsaln2/s)E ala2(k)

We equate corresponding terms, setting P=k and g= k.
This gives

(12.20)H„,(k) =H„,,(0; k).

H~(P; k) = e„(k)+E„nl(k)Pnl+E nla2(k)I' lI'n2+

+E„n'"n4(k)I' ' P '+ . (12.21)

This may be rearranged in a commutator expansion

H (P; k) =II,.p(P; k)+sH„,.r(P; k)+, (12.22)

where

II„,p(P; k) =e„(k)+E l(k)(I'")A,

+E„.l"(k)(I' iI'")A4+ ~ ~, (12.23)

Now suppose that H (P; k) has the following Power
series expansion in I'"

7 ~ zone

&&exp( —ik R&'&)dk, (12.31)
etc.

Equation (12.28) has as a consequence the important
periodicity property

H (P+K)=II (P), (12.32)

where K is an arbitrary reciprocal lattice vector.

13. Application to Crystals with a
Center of Inversion

Using the methods of the preceding sections, we shall
now work out the first few terms of the commutator
expansion of the effective Hamiltonian H (P) for
crystals with a center of inversion.

For such crystals it is easily shown (Appendix 8)
that with our convention of

0 &l&S

H„.,(P; k) =2 P E.- - (k)+O(I'-),
&ltx2 S

Im/p „,(0)i=0,
(12.24)

one has the result'4

(13.1)

alas a3a4+g ala3g asa4+g ala4g a2a3 ImLp, „" (g)j=0. (13.2)
II (P k)=—

txltx24x3tx4

Hence by (12.20)

H„., p(k)=e (k), (13.3)H(P; g) =Hp+H'2+Hs,

(H.)-.=~-'.(g),

(H )..=&-"(g)I'.,
(Hs) .=-', h .I' P .

where

(13.4)

(13.5)

(13.6)

aln2(k)

lrnla24r n3a4+lrala3&a2n4+g aln4g asa3

„II,,(k)=i Q
S

II„,,(k) =—
S2ala2a3n4

To this II we apply a sequence of unitary transforma-
tions expt5 "&(P; g)) to eliminate oG-diagonal elements
to higher and higher order in I' . YVe take 5"~ to be of

ala2a3a4(k)

S2 This results in the vanishing of the terms of odd degree
in s in the commutator expansion of H„(P).

l 2 3 4(k)+0(I ). (12.25) Working in the representation of the X„h(x; g), we
begin with the Hamiltonian

etc. These functions can all be explicitly calculated.
Now by construction of H„(P; k) the coefficients

E aln2'"(k) have the periodicity of the reciprocal

"For isolated values of g, for which pl„s{0)=0, {13.1) does not
6x the phase of q, . In such cases we de6ne q„~=limg
With this understanding, {13.2) holds also at such points.
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order (Pn)'. Then, up to order (Pn)4 we have

H(P; g)
exp( —S&'&) exp( —S&")H exp(S"') exp(S"')

0

+{H~+[Hg S"']}
y {H,+[H„S&»]+-;[[H„S«&],S&»]+[H„S&»]}
+{[H„S' )+[H,S ' )+[[H„S"'),S"]
+l [[H~,S"')S"')+-'[[[Ho,S"')S"')S"')
+[H„S ]}+{[H„S)+-', [[H„S ],S ]
+[[Hk,S "),S"')+-',[[H2,S "),S"')
+&[[[HoSo&) SO&] S&2&]+&[[[H~So&] So&] SO&]

+ (1/24) [[[[HoS"&),S"&),S"&)S"']
+[[H&&,S"'],S ' ]+[Hk,S"')+[Hg,S"']}

Now,

[g(S"&).x «].=0

=go g(o) 2
.a . Pmi im

mi im
[P P&'exp(ih r)], p

=—''j', (0) P [(P P ), exp(ih r)],i~ &mi im

m.
=-', &i„,(0) g h hp,

i&m mi
(13.16)

and this is clearly real. The second term in (13.15) gives

~ ~ ~ (13 7) LS"'x-«).=o= «-g(0) LS-"'(P) exp(ih r)].=0

The first-order oG-diagonal elements are eliminated
by the choice

1 1
+Z Pig(0) ' (Pii Pim Pim Pmm )+ Pik Pkm

S;&'&= —(S&'&), t= —(p„;/k&,)p, i~m
(13.8)S„„&'&=0, all other n', e".

imam &im &im

X[P Pj'exp(ih r)], o. (13.17)

Here we write p„„"and co„„short for p„„(g) and
co „(g). Because of (13.1) and (13.2) we see that the
corresponding new basis functions,

kg~«= exp(S&'&) exp(S&'&) ~ x„«——(1+S&'&+ ~ )x„«
=ip g exp(ih r) —Q; y,g(p, /k&; )P exp(ih r)

+ (13 9)

have to first order in P the required property

[P Pj' exp(ih r)], .
o h=hj——'+is j'

Therefore, if we call

j' g:v'g(0)/v' g(0)

then condition (13.15) requires that we choose

(13.18)

(13.19)

Im[g„,+«(0)]=0. (13 10)
Smm (P) = P &ig(0) (Pii Pim Pim Pmm )

imam &im &im

The second transformation matrix S ' must be
chosen to eliminate the second-order off-diagonal ele-
ments from H(P; g). By (13.7), this requires that

{Hg+[H»S"')+ g [[Ho,S"'),S"')+[Ho,S"']}-=o,
imam, (13.11)

1
+ P;k Pk ' ', [P",P']. (13—.20)

Similarly we construct S('). The result is

or

{p- (—p-'/ -)+(p-'/ )p "}pp'
+co g,&'&(P) =0, imam (13.12).

where

S; (»=D;.-»P-P6", (13.21)

S„,.&2&= (S,.„& &)t=D„,. &&P P&&, (13.13)

Here the band index j runs over all values except ns.
This equation can now be solved for S,"&. Recalling
the anti-Hermitian property of S(2~, we 6nd

X Pij (Pij Pjm Pjm Pmm )+ Pjk Pkm
. 2

-&pm q'ma'am

where

D "=(1/~-) {(1/~-)P- P-' —(1/~- )P-'pj"},
i0m (13.14).

1
ii im im mm

2-+im
Pik Pkm Pmm

&imI m

Im{[-', (S&'&)'+S&'&]x„„},,=0. (13.15)

All other oG-diagonal matrix elements of S(2) can be
taken as zero. 5 (2& is chosen so as to satisfy the con-
dition (13.10) up to second order in P . This requires
evidently that

pim pim
+hap )j&v

1+ f + /p, p;sp; I, imam
3 4(aim&1&jm ~jm ~

(13.22)
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while

S,(P& (P)

~1 p'-, p-i".p~-'z;,I-
L 6 p&im p&mj p&jm

pim~

&& (pLP' P'3"+'LP, I"-3"+ 'LP P-'3") (13 23)

The transformation 5'4' is not required for computing
the m-m block of H(P; g) up to fourth order in P~
Lsee Eq. (13.7)$.

Substituting our results for 5"&, S"', and 5") in

Eq. (13.7) gives the following result:

H (P; g)=H ,.p(P; g)+sH ,. (P; g)
+s'H„.p(P; g)+, (13.24)

choose the phases of the q„, in accordance with the
reality condition (13.1). But now, in contrast to the
case of an inversion center, we have

p-"(g) =v-"(g)+«-"(g), (14.1)

where q and t are real and in general neither vanishes.
We make the transformation (13.7) and find, as

before, that

,m
g-h(0 g)=p-. (0)y I

—2 p*.(0)
&im

S "&=—(S&'&) t= —(p, /p&;)P~, imam (.14.2)

However 5 ('~ does not now vanish. Instead, since

where

H„,p(0; g)=p „
H„,(0; g) =0,

H.., ,(0; g)=- P
$2

(13.25)

p„,~&&v p (g)

+&p„,(0)S "'(P)
~

exp(ih r) + (14 3)
- r=0

(14.4)

the reality requirement leads to

S„&'&(P) =D„„E,
where

and

Em ~ (g) pmm pm' pmi pim

D m = —pZrg
imam

(14.5)

+mi &mq &mi

1( 1 1
mi im mk km

.2 22( „,

pjm pmm pj lc pram
mq' &ma

1 1

,(p-'p'-'p" 2p-'~"p'-'—+&'p-"p'-')
4 (dmi

H-(P; g) = -(g)+p- "P.
+h~'+ p-'p'-'l~-

i(Dmm pmm pmm Dmm ))P P
+ . .

H„,p(k) =H„., p(0; k) = p„(k),

(14.6)

This is enough to determine H (P; g) up to second
order in I'~, which is as far as we shall go. By (14.7)
we find

&6~;„~; ~;
'Y

'bm

+D;p p„'. (13.2—6)

H-;~(k) =H-;~(0; k) = (p-'p'-' p-"p'- )—
2mi

i(D- p-' D—-'p- ) —(14 7)

&im—

The coefficients D; ~ and D, » are defined in Eqs.
(13.14) and (13.22).

Finally, using (13.25) and (13.26) in (12.26), we

have now explicit expressions for H„,,(k) for i=0, 1,
and 2.

The absence of a term linear in s will be noted. It is

easy to see in general that for the case of a crystal with
a center of inversion, our construction leads to an ex-

pansion in even powers of s.

14. Application to Crystals without a
Center of Inversion

In this section we construct the effective Hamiltonian
for a crystal without a center of inversion. We again

It will be noted that B .~ does now rot va, nish. In
general it cannot be removed by any unitary trans-
formation. This fact is of importance for the location
of the energy levels in the presence of a magnetic field.
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APPENDIX A. DEMONSTRATION THAT NO
SOLUTIONS ARE OMITTED

In Sec. 4 it was stated that the solutions of Eq.
(4.17) give rise, through Eq. (4.1), to all solutions of
the original Schrodinger equation HP=EP. As k was
taken to be a continuous variable, the dimensionality
of the Hilbert space spanned by the X„k is nondenumer-
able. To avoid the associated mathematical difFiculties,
we shall here prove the corresponding result for a
vector space of 6nite dimensionality and assume that
it can be generalized to a Hilbert space of the above
type.

Consider then a vector space of dimensionality D,
spanned by the orthonormal basis vectors

In view of (A.7), the corresponding vectors

ND
p&"= Q A &')e, l=1, 1VD (A.11)

satisfy the equation

II q i'~=Eq &'& l=1, SD. (A.12)

Clearly, because of (A.1), at most D of these can be
linearly independent.

We next show that also at least D of these g&') are
linearly independent. For, from (A.10) follow the re-
ciprocal relationships

ea) o.=1, 2, D

e e =b, e, n'=1, . D.

(A.1)

(A.2)

ND

P A &')*A,.&') =8 ~; n, n'=1, ED. (A.13)
l=l

Now multiplying (A.11) by A &'&* and summing over t
from 1 to XD gives, by A.13,

space, with matrix elements (n'[H [n) defined by

He = P e (n'[H[o, ), n=1, 2, .D. (A.3)

ND

e =Q A i')"q&') n=1, ~ SD.
l=l

(A.14)

This operator has D orthonormal eigenvectors P "&:

Hg(') =pi')g(') i= 1 . . .D

q(o *g(~') —t&, z) z 1) Do

In particular therefore the D independent vectors
el, , eD can be expressed linearly in terms of the

(A4) p&&). Hence the latter must contain a linearly inde-
pendent subset of D independent vectors, say

Now consider a redundant set of normalized vectors
&(&I) . . . , (&D) (A.15)

e, o.=i 2, AD (A.6)

ND
o=1, . "yD.

the first D of which are identical with the basis (A.1).
Iet the eGect of operating on these e with H be de-

scribed by a matrix (0.'[H [n), such that

Since the q&'~' are D independent solutions of the
same eigenvalue problem (A.12) as the Q&'), each Q&'&

must be a linear combination of the &pi'&'). (If there is
no degeneracy there must in fact be a one-to-one cor-
respondence. ) It follows a fortiori that each g&'& is a
linear combination of alt the q'" (/=1, ~ XD) ob-
tained from the solutions A ~') of Eq. (A.9). Thus by
solving (A.9) no solutions of the original eigenvalue
problem (A.4) are lost.

Because of the redundancy of the e, the matrix

(a'[H[n) is not completely defined by (A.7). But, in

view of the completeness of the e, souse matrix
(n'[H[n) certainly exists for which (A.7) holds. Fi
assume that the matrix (u'[H[n) is Hermitian:

APPENDIX B. REALITY OF MOMENTUM
MATRIX ELEMENTS

(n'[H [e)*=(n [H [n').

nally Consider a crystal with a center of symmetry at r=o.
Let g be a general point in k space and choose the

phases of the Bloch waves p„„such that
(A.g)

This corresponds exactly to the situation of Sec. 4.
Now consider XD solutions of the eigenvalue problem

Q (cx[H[n')A &')=E&')A &'), n=1, SD. (A.9)
e'=1

These may be taken as orthonormal in the sense

ND

Q A "'"A ")"=l»i, t, /'=1, XD. (A.10)

ImLq „,(0)]=0. (8.1)

Let us first assume that at g none of the set of Bloch
energies e„(g) coincide and that none of the q„,(0)
vanish. Then if the function

y„g(r)=m„g(r) exp(ig r) (8.3)

We shall then show that the momentum matrix ele-

ments are all real:

(8 2)
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satis6es the Schrodinger equation and periodicity con- But as the operator
dition described by g, so does p-= (1—/i) (~/»-)

is odd under inversion we havep„g (—r)*=u„g*(—r) exp(ig. r).

(8.5)

From the assumed nondegeneracy of the e„(g) we p, l(g)
conclude that

(2g)s r

u„,*( r—)=Cu„,(r), cpu~, gr

(8.10)

where C is a numerical constant. Setting r=0, we see
that C=i, so that (2g.)s r

,ga+ u„g p u„lgdr

u„g(—r)=u gg(r). (86)

u g(r) =s„g(r)+iw„g(r). (8 7)

Now let us divide u„, into a real and imaginary part:
(2s-)s i.

=5„„1g+ (vggp sw~lg —zw~gp v~ g)rr'r, (8.11)
a ~

Then, by (8.6) we have

v„,(—r) =n„,(r),

w„,( r) =——w„,(r).

and in view of (8.10) this is clearly real.
At special points g, where either of the conditions

mentioned after Eq. (8.2) fails, the property (8.2)
will still hold if one chooses q„, as the limit of q„~

(8.9) where g' ~ g.
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Self-Diffusion and Nuclear Relaxation in He'
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Direct spin-echo measurements of diffusion coetlrcient (D) and spin relaxation time (Tr and Ts) have
been performed on He', with an accuracy ~2% in the range 0.5'K to 4.2'K and at pressures to 67 atmos in
the liquid, the solid, and in dilute solutions of He' in He'. Unactivated diffusion is observed to the lowest
temperatures in the liquid, but not in the solid. By measurement of D at 19 atmos we 6nd an activation
energy of 13.7'K for the production of scatterers in He II. There is an extended discussion of experimental
details.

I. INTRODUCTION
' 'N order to resolve some questions raised by thermo-
s ~ dynamic measurements, ' we began some time ago
an experiment to measure by the spin-echo technique
the nuclear susceptibility of pure liquid He' and so to
exhibit the expected Fermi degeneracy. By the use of
spin echoes' it is possible to obtain, in addition to the
nuclear spin susceptibility, accurate values of the spin
relaxation times, transverse T2 and longitudinal T1, and
also of the diffusion coefficient" of a He' atom among
other identical He' atoms or in He'. It is on this last
that we concentrated after the cw resonance measure-

ments of the spin susceptibility appeared. 4

In addition to studying the diffusion of a purely

' Weinstock, Abraham, and Osborne, Phys. Rev. 89, 787 (1953).
2 K. L. Hahn, Phys. Rev. 80, 580 (j.950).
s H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954);

hereafter referred to as CP.' Fairbank, Ard, and Walters, Phys. Rev. 95, 567 (1954).

quantum particle among its identical neighbors, we
expected to find for dilute solutions of He' in He' that
the He diffusion coefficient (under isothermal condi-
tions with uniform concentrations) would increase
rapidly with decreasing temperature below the A point, '
and we wanted to exhibit the absence of scattering of
He' by He4 at low temperatures.

Since both the actual diffusion coeKcient and the
spin relaxation time (both in liquid and in solid) are
measured accurately ( 2%%uo) and independently in this
experiment, we have also some information of interest
in the general mechanisms of nuclear spin relaxation. '

Some examples of qualitative (and hence interesting)
questions we hoped to answer are:

Garwin, Kan, and Reich, Proceedings of the National Science
Foundation Conference on Low-Temperature Physics and Chem-
istry, Baton Rouge, Louisiana, 1955 (unpublished).

Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948);
hereafter referred to as BPP.


