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The Dirac-Van Vleck-Serber spin-operator expansion, first ap-
plied by Anderson to the Kramers superexchange problem, is ex-
tended, simplified, and systematized in order to handle all overlap
contributions arising from a number of interacting configurations.
The linear cation-anion-cation (e.g., Mn*t+-O~—-Mn**) four-
electron problem is worked out in detail, taking account of all
contributions from configurations (4) ionic, (B) electron trans-
ferred to right, (C) electron transferred to left. Group symmetry
requirements are invoked; and these, together with a simple ap-
proximation equivalent to perturbation theory, are shown to
reduce the complicated matrix formulation to a single linear equa-
tion. The solution contains terms previously obtained by Ander-
son, by Anderson and Hasegawa, and by Yamashita, and a number
of important extra terms. All superexchange terms are fourth

order or higher in the overlap S. A rough numerical evaluation
with modified Slater wave functions appropriate to MnO-type
crystals yields an effective superexchange integral of the required
size. Brief consideration is given to configurations in which two
electrons are transferred, in particular (D) simultaneous transfer
of electrons to right and to left (Slater mechanism). Unless the
energy required to form this configuration is surprisingly small, its
contribution is probably not so important, although the problem
needs to be investigated in detail. Some consideration is also given
to the linear cation-anion-anion-cation (e.g., Mn**-Br=-Br—-Mn**)
problem; the formal solution for the ionic configuration is worked
out; and it is shown that superexchange terms first appear in the
order S*T?2, where .S is the anion-cation overlap and T is the anion-
anion overlap.

I. INTRODUCTION

N this paper we demonstrate a relatively simple
procedure for handling the formal portion of the
theory of superexchange. We confine ourselves to the
problem of three nuclei and four electrons (such as
Mn-O-Mn). The extension of the method to an anion
surrounded octahedrally by six paramagnetic cations
will be discussed in a subsequent paper.
We consider three configurations and their inter-
actions:

A. The ionic configuration.

B. The configuration in which an electron is trans-
ferred from the anion to the cation on the right.

C. The configuration in which an electron is trans-
ferred from the anion to the cation on the left.

We use electronic orbitals appropriate to the free
ions, but we take account of overlap between anion and
cation orbitals. In the absence of this overlap, there can
be no superexchange effects of any kind. Thus the
overlap is fundamental to the theory, and one must be
careful to include all terms arising from it. Our results
contain superexchange effects which may be traced to

(1) overlap in the ionic configuration (Yamashita
mechanism?);

(2) transfer of an electron to right or to left (Anderson
mechanism?—also treated by Van Vleck?);

(3) interaction between configurations B and C
(Anderson-Hasegawa mechanism?) ;
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(4) additional overlap terms within and between the
configurations, and not previously considered.

Thus we confine ourselves to the ground state and to
states in which a single electron has been transferred.
One may also distinguish the following configurations:

D. The configuration in which one electron is trans-
ferred from the anion to the cation on the left, and at the
same time another electron is transferred from the anion
to the cation on the right. This has been considered by
Slater,® Pratt,® Goodenough and Loeb,” and Nesbet.? It
should be unimportant in halides, but it may be of
significance in oxides and sulfides. In the latter, how-
ever, the large crystalline Coulomb fields will cause the
energy of the configuration D to lie well above the
energy of configurations B and C. We believe, in particu-
lar, that Nesbet has underestimated the energy of D.
However, D may still be important. Pratt® has shown
that if orthogonal orbitals are used, and regardless of
the nature of these orbitals, configuration D must be
included; otherwise the ferromagnetic state is lowest.
This important work first drew attention to the very
serious nature of the orthogonalization problem in
antiferromagnetism.

E. The configuration in which one electron is trans-
ferred from the anion to the cation on the left, and at the
same time an electron is transferred from the cation on
the right to the vacated anion orbital. This has been
considered by Yamashita and Kondo.! Its energy is
fairly high due to the large ionization potential of the
cation; on the other hand, it is favored by the crystalline
Coulomb fields, i.e., it actually lowers the Madelung
energy.

F. Same as E, except all transfers to the right.
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G. Configurations in which one of the anion electrons
is excited to a higher orbital. These have been considered
by Slater’; Pratt® has shown that they are probably
unimportant.

A general discussion of the various proposed con-
figurations has been given by Yamashita and Kondo.!
It should be noted, however, that whereas we shall use
configuration interaction of a number of Slater determi-
nants, Yamashita and Kondo confine their analysis, for
the most part, to a single Slater determinant composed
of molecular orbitals.

Although the contributions of configurations D
through F should not be ignored, we believe that our
analysis of configurations 4, B, and C presents the
salient features of configuration interaction, and in par-
ticular demonstrates the power of our method. The
extension to the other configurations, and to more di-
mensions, will be considered in a subsequent paper.

Our method is an extension of the Dirac-Van Vleck?
vector model in the manner introduced by Serber! for
handling configuration interaction and nonorthogonality
effects. However, we do not explicitly employ the
permutation matrices, or their spurs, as does Serber.
Since we are interested only in the dependence of the
energy upon spin directions, the spin-permutation opera-
tors are retained throughout the calculation, and at the
end are simply replaced by the equivalent product of
spin operators. Somewhat this sort of scheme was used
by Anderson,? but not to the fullest extent and sim-
plicity, and also not to include nonorthogonality of the
orbitals. Furthermore, we introduce the essential sim-
plification—making the three-dimensional problem
tractable—of properly combining the excited configura-
tions so as to satisfy group-symmetry requirements.

II. THE IONIC CONFIGURATION

To illustrate the method we first work out the effects
of overlap in the ionic configuration. To fix ideas, let this
configuration be Mn++-O~—-Mn**. Let the basis func-
tion of this configuration be, in Serber’s notation,

A= (an|71) (aa|72) (3| 73) (s ] 74). 1)

We will call this function « for short, and we will
designate the corresponding functions with orbitals
permuted by Pea. It is to be noted that the a; are the
space orbitals only.

Let ai=as be the orbitals for a pair of O~ electrons,
which may be either 2s or 2p,. Let as be the left-side
Mn*+ 34 orbital with maximum directed towards the
oxygen (i.e., of the form V,° with respect to the
Mn-O-Mn, or z, axis), and let a4 be the corresponding 3d
function of the right-side Mn*+. The overlap integrals

9 J. H. Van Vleck, Phys. Rev. 45, 405 (1934).

( 1R, Serber, Phys. Rev. 45, 461 (1934); J. Chem. Phys. 2, 697
1934).
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will be given by
(e | ay)=S,

(ar|as)==S. @

Here, and in the future, the top of the & sign is to be
used if a;=2s function, the bottom if a;=2p, function.

Serber’s method starts with the Dirac expansion! for
the Hamiltonian:

H44=% p HpA4P, 3)
where
HPAA=(PC¥IH101). (4)

Here H44 and P are ordinarily to be considered as
matrices, the latter being the so-called “regular repre-
sentation” of the permutation group operating on the
space orbitals. Dirac shows that for basis functions of
the form (1) one may replace the matrices P by the spin-
permutation matrices P° as follows:

P—(=)FP, ©)

where (—)7 is — or 4 for odd or even number of equiv-
alent two-function permutations. Furthermore, Dirac
shows that one may think of the P as no longer matrices,
but as operators, and in particular the two-function
permutations may be replaced by

Pijr=3+28:-§;, (6)

where S; and S; are the one-electron vector spin
operators. Higher permutations may be replaced by
pI'OdUCtS of P,‘j"; for example, Pij'= P“.anknr.

If, now, the orbitals are nonorthogonal, Eq. (3) is to
be replaced by

(H—-W)*4=3 p(H—W)p*4P, (7
where
Wptd= (Pa|W|a)=W (Pa|a). (8

Here W is the unknown energy appearing in the secular
equation.

One more important point needs to be considered be-
fore Eq. (7) may be applied to our problem, namely, the
effect of identical orbitals, such as a;=as. As Serber
points out, in this case Pisa=a, or Pis can only have the
eigenvalue +1. To take proper account of this, Serber
divides the entire group of #! permutations into one set
of #!/2 “independent” permutations, and a second set
of n!/2 permutations which can be obtained by multi-
plying each of the first set on the left by P1s. We label
the first set by P, the second set by P1sP. For example,
in the case of three orbitals, P contains Py, P13, Ps3; and
P1oP contains Pis, Pi3s, P1os. (Here Pr is the identity
permutation.) In the case of our four orbitals, P contains
PI} P13) P14, P23; P24; P34, P134; P143; P234; P2437 P13,24;
P14,23 5 and P12P contains P12, P132, P142, P123, P124, P12,34,
Pl342, P1432; P1234, P1243) -P1324; P1423~

If one wishes to handle Eq. (7) as a matrix equation,

1P, A. M. Dirac, The Principles of Quantum Mechanics
(Clarendon Press, Oxford, 1947), third edition, p. 218.
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one must be extremely careful, as Serber points out, to
eliminate from the matrix those rows and columns
corresponding to the impossible eigenvalue —1 for P;,.
Anderson has shown that, if one wishes to handle (7) as
an operator equation, the impossible eigenvalues may be
eliminated by use of projection operators. We discuss
this in the Appendix. However, one need not use the
projection-operator formalism providing one is careful
to evaluate all operators in accordance with the re-
stricting condition, P1s=1. With this condition, the set
PP simply repeats all the P terms in (7), and we have

(H—W)A4=2 S p(=)P(H~TW)pA 4P, (9)

As Serber has shown, this expression is incorrectly
normalized. In going from nonequivalent to equivalent
orbitals the wave function (1) should be divided by V2,
and hence the right side of (9) should be divided by 2. It
makes no difference, however, since we are going to
formally solve for W, in terms of the operators (6), by
setting the right side of (9) equal to zero. Thus our
problem is reduced to simply finding the solution W to
the linear equation

2e(=)P(H—-W)pt4P=0, (10)

under the restriction Pyp7= —1.

To a high approximation we may neglect any overlap
or matrix elements between the cation functions a3 and
as. The anion-cation overlaps are given by Eq. (2).
Thus Eq. (10) becomes

(HAA—=W)— (H1z44A—W.S?) (P15°+ P2s?)
— (H1AL—W.S?) (P14°+ P2s)

+ (H13,00 24— WS4 (P13,24°+ P1a,237)=0.  (11)

In this equation H;; is shorthand for Hp;.
Under the restriction Pi”=—1, we obtain from (6)

P13+ Poy®= P14°+ Poy”=1. (12)
From this we also obtain
P13,24°+ P14,03° = (P13°+ P23%) (P147+ P24%)
— P13°P14"— P93 Py
=1—P14"P3s"— P2s"P3”
=1—P3°. (13)

With the use of (12) and (13) one readily reduces (11) to

HA4— (H 3444 H 4 44) + H 13,2444 (1 —P3%)
1—2524-54(1— Pyy) '

W= (14)

To order S* the spin-dependent part of this energy is
AW=*2S3'S4(H13,24AA—S4H1AA). (15)

Here Hy544 and Hy444 have been dropped as being of
order 5% compared to H;44. We consider the order of a
quantity involving two overlapping functions to be
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given by

(Pa|H|w)=order of (a| H|a)(Pa|c). (16)
The Hamiltonian to be used in Eq. (4) is
H=3%H+3% Gy Q17)
where
Hoi= (p/2m)—€*(Zgi/rigs), (19)
Vi=—e* 22" (Zy/14), (20)
9795

Gij-——ez/Zm]-. (21)

Here Z , is the atomic number of the nucleus at the point
g, 7ig is the distance between the electron ¢ and the point
g, and r4; is the distance between electrons 7 and 7. The
Hamiltonian has been split in the form (18) since

(| Hos i) = (o] i) Eos, (22)

and hence the Hy terms in S*H;44 will just equal those
in Hiz a4

H]AA: 2(&1lH1{a1)+2(a31H3’013)+8(a1(13[Gla10t3)

+2 (o504 | G lass) +2 (o102 | G lenaa) ;. (23)
H13,24AA =Sa[2(a2|H4|0£4)+2(054 | H2|012)]
+Sz[4(a3a1 [ G ’ alag):bS(amzz | G l 0[30(4)]. (24)

Here, as in (2), the 4 sign is to be used for 2s anion
functions, the — for 2p functions.

When (23) and (24) are inserted into (15) the terms in
H, cancel, and we obtain the result given by Eq. (15) of
Yamashita and Kondo' (YK), except for two small
errors in the latter. Their term (BB|G|BB), which is
equivalent to our (aias|G|aiez), should be positive,
rather than negative; and their term (4B|G|BB)
should not be present. It is important to note that YK
calculate the difference in energy between a ferromag-
netic 71 state and an antiferromagnetic 1| state, rather
than between a triplet 171 and a singlet 1] - |I'. Thus for
our result to correspond to theirs we must take S;-S,
=1 for ferromagnet, —% for antiferromagnet.

It is also possible to get an exact solution to the
problem, analagous to Eq. (16) of YK, by inserting the
eigenvalues of S;-S, directly into our Eq. (14).

The method used by YK is an expansion in orthogonal
Lowdin functions. This is extremely tedious, involving
long algebraic expressions. We have checked the YK
result by their method, and have obtained our answer,
but not without first making a number of algebraic
errors of our own.

In contrast, the operator expansion, although it re-
quires careful study of the machinery, produces a result
with a bare minimum of algebra. Furthermore, it has the
considerable advantage of a compact notation, as
witness the simple form of Eq. (15).

The overwhelming advantage of the operator ex-
pansion becomes apparent when more complicated
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problems are tackled. For example, we consider the
problem of superexchange along the row cation-anion-
anion-cation. We number the wave functions from left
to right as, ar=as, az=as, ag. Let the anion-cation
overlaps, as before, be designated by S; the anion-anion
overlap by 7. Then an elementary extension of the
arguments leading to Eq. (15) yields

AW = —285‘SG(H51,23,46AA"‘S4T2HIAA)- (25)

If the anions are identical, 72 may be fairly large, and
this form of superexchange may be appreciable. This
could be an important effect in structures such as MnBrs
which have double layers of anions between cation
layers. Although the ordering pattern of MnBr; is quite
complicated, there is a definite antiferromagnetic cou-
pling along nearly linear Mn-Br-Br-Mn bond linkages.!?
Of course, Eq. (25) contains only the terms from the
ionic configuration; but, as will be seen in the next
section, the other configurations contribute terms of the
same order of magnitude.

Superexchange across two anions may also be im-
portant in B-cubic and B-hexagonal MnS which have
ordering of the third kind.® Here the near-neighbor
cations connect through a single anion, and this is
probably the predominant exchange effect. But the fact
that next-neighbor cations also try to order antiferro-
magnetically indicates that the more complicated kind
of exchange represented by Eq. (25) is probably also
present.

By a simple extension, we see that superexchange
across three identical anions will be proportional to
ST etc.

We next demonstrate the simplicity of the operator
expansion when applied to configuration interaction.

III. CONFIGURATION INTERACTION

The three configurations 4, B, and C, defined in
Sec. I, will now be considered. The orbitals will be
labeled according to the following scheme:

Cation Anion Cation
(a) ® (o)
YA a3 ar=as Qs (26)
YB: B3 B B1=02
A Y1=7Y2 V3 Y4

Actually, all the orbitals in any column are identical.
They are labeled differently in order to facilitate the
permutation problem, as shall be seen.

We note that our calculation is restricted to the case
of identical cation orbitals in the excited configurations.
Thus it may be applied to MnO, but not to an anti-
ferromagnet in which the 3d shell is less than half-filled,
so that the cation electrons can be in different orbitals.
However, our general method can be extended without

12 Wollan, Koehler, and Wilkinson, Phys. Rev. 110, 638 (1958).
8 Corliss, Elliott, and Hastings, Phys. Rev. 104, 924 (1956).
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too much trouble to this case, as will be shown in a
subsequent paper.

With the labelling as in (26), Py, will permute identical
orbitals in all three configurations. Thus the entire
secular equation will contain only the permutations P
and will be of the form

(H=W)44 (H—W)AB (H—W)A°
(H=W)B4 (H—W)B8 (H—W)5°|=0.
(H—W)e4 (H—W)CB (H—W)cC

@7

Here the correctly normalized matrix element (H—W)44
is given by the left-hand side of (11). Let HpB4
= (PB|H|a), etc. Then the other matrix elements of
(27) are

(H—W)P4= (HPA—TW'S)
— (H14BA—=WS) (P1u"+Psy)

+ (H134B4—WS?) (P13.°+Pasa®);  (28)
(H—W)CA=4(H—W)B4; (29)
(H—W)PP= (H—W)¢C= (H*~W)

—(H 1 BB—W.S?) (P14~ P2s)
— (HsPB—WS?)P3”; (30)
(H—=W)CB=(H 3,0 BFWS?) (P13,20°+ P1s,25°).  (31)

Here, as in Sec. I, the upper sign is to be used with 2s
anion orbitals, the lower with 2p; also it is understood
that all operators are to be evaluated subject to the
restriction P1°= —1. The matrix (27) is Hermitian, so
all the elements are given by the above equations. These
equations may be simplified by use of (12), (13), and the
relation

(P34 Pays®) = (P13”+P23“)P34”=P34”-

Let us introduce a notation to show explicitly the
order and the sign of the matrix elements:

hyPA=HB4/(P1B|a)=H"*/S,
h13,24CF = H 13,98/ (P13,24v | B) = d= H 13,248/ S?,

etc. [see Eq. (16)7]. The order of all % will be S°. Let us
further introduce

(32)

(33)

wiBA=pBA_TY, (34)
etc. Then the matrix elements may be written
(H—W)A4= (HAA—TW) — 82 (w1344 +1w1444)

+S%w135,0444(1—=P3s”);  (35)
(}I—W)BA=S3w1BA—SZU14BA+S‘3‘ZU134BAP34”; (36)
(H—W)BB=(H—W)CC=qw,BB
— S (w14 BB4 w3 BB P3”);  (37)
(H—W)B=4S5%03,0B(1— P3°). (38)

The A configuration is gerade (even), as can be seen
from general considerations or from an examination of
(35). This can combine only with the even combination
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of excited configurations,
YO=2"YPLyY). (39)

This means that the matrix (27) factors into a 1X1
ungerade (odd) part and the 2X2 matrix of interest

(H—W)44  (H—W)A44
=0. (40)
(H—W)64 (H—W)ee

The matrix elements are given by (35) and by

(H—W)G4= (285 (H—W)B4, (41)
(H—W)CC=10;BB—S2(w;4BB+ w3 BBPy,°)
+S%w13,0°B(1—Pys7).  (42)

We note that the matrix elements appear formally the
same, when written in this notation, for both (2s)? and
(2p)? anion orbitals.

The exact solution of (40) involves nothing more than
a quadratic equation in W, but the algebra is rather
messy. Since we are interested only in the perturbed
energy of the ionic configuration, and only in those
terms involving S;-Ss, we may make use of a simple
approximation, equivalent to perturbation theory. We
replace the unknown W everywhere but in the term
H44—W by its zeroth-order approximation H;44. This

amounts to a change of
wyBA — g BA=J; BA_[] A4

(43)

etc.!* We then have a simple linear equation in W, the
solution of which is a term not involving S;-S; plus

AW = —25S;- S4{q13,24%4
+2[(q1454)*(g3P5+q13,24°®)/ (q:55)*]

—4(queP 1P/ PP)}. (44)
This is our result. We repeat here the notation:
gp*f=[Hp*¥/(Pa|B)]— H 4. (45)

The first term in (44) is the effect of overlap in the
ionic configuration, and is the same as (15). The term in
square brackets is a generalization of the sum of the
Anderson and the Anderson-Hasegawa mechanisms, as
we shall see in detail in the next section. The last term
in (44) is completely new.

As previously noted by Yamashita and Kondo,! all
configurations first contribute to superexchange in the
order 5%

IV. MATRIX EXPRESSIONS

In this section we exhibit the detailed form of the
matrices entering into Eq. (44). We write all matrix
elements in terms of the orbitals ¢, b, and ¢, as given by
the scheme of (26), and we use the simplest notation
possible. To illustrate this notation, the matrix elements

“ This procedure can be shown to be correct, to order S* in
S;:-S4, by the more general method of expanding W in a power
series in .S everywhere in (40) and equating like powers of S?, .S*,
a,nd 5483 . S4.
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given in (23) and (24) are rewritten as follows:

HpA4=2M "4 2H 1o+ 8G be, be

+2Gac.act2G o505  (46)
H 3,044 =8%2H v,°+2H ;%)
+52(4Gab, 508G r0,0c).  (47)
The other matrix elements are:
H14B4=H .3*+2G e, 56+ 2G ae,av+2G oc, cp
+S(H s+ 2H 00"+ 4G ab,av+2Gac,a0);  (48)

H13484= 852G as, 544G ac,b0)
+SZ(HCbb:EHabeIZIIbaa‘I'ZGcc,bc:*Z4Gac,bc)

+SH .05 (49)
H34BB= 2G ba,a b:l:S (SG be, ‘W_I_IIbaa—*_Ha bb)
+82(2H oo*+2Geoce);  (50)

H13,24CB= 2Gba,cb+S(Habb+Hbaa+4Gaa,ab+4Gac,bc)
+S*(2H oo+ 2G ac,a0);  (S1)

HIBB: Hb bb+3Hccc+ 2Gcc,cc+ 4Gac,ac+6Gbc. bee (52)

In these equations the 4 signs are to be taken when
considering (2s)? anion orbitals, the — signs when con-
sidering (2p)2. From (22) it can be seen that the H,
terms will cancel in all the ¢p*# appearing in (44) except
¢rBB. This latter will contain, in addition to terms in V
and G, a term :
Ho,oo"—Ho,ppb=¢,

(53)

where e is the transfer energy.

From an examination of the matrix elements it can be
seen that, if we neglected terms containing .S explicitly,
the ionic contribution (47) would disappear. Further-
more, H1,84 would become Anderson’s transfer integral
b, except that we have added terms in G; H3®® would
become Anderson’s exchange integral J’; and Hyz, 248
would become the Anderson-Hasegawa exchange inte-
gral J”. Equation (44) would reduce to the familiar
form?:

AW — —=28;-S,[20°(J'+J")/(AE)],  (54)

where AE is the energy difference between excited and
ground configurations. The extra factor of 2 on the
Anderson term comes from adding the contributions of
our two configurations B and C.

V. NUMERICAL CONSIDERATIONS

A rough numerical evaluation of Eq. (44), appropriate
to the MnO problem, will now be attempted. Probably
most of the superexchange comes from the oxygen 2p
orbitals. We express these very approximately as the
Slater functions:

b(r,8)= (6°/m)re~*"P1(cosf) ; (55)
and we use for the manganese orbitals

a(r)= (6%/3r)rebr, © (56)
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with origins a distance == R from the oxygen. We take R,
for convenience, as 4 atomic units; this is very nearly
the observed separation. The value of § is given below.

The functions (55) and (56) are, of course, extremely
crude. They are, however, relatively simple to handle,
and molecular integrals using these functions have been
well tabulated.!® The chief difficulty is that the Slater
functions drop off with distance much more slowly than
the more accurate Hartree functions, and therefore will
give an overestimate of all of our integrals. We may
remedy this defect, however, by picking é so as to give a
reasonable value of the overlap integral .S. For ease in
handling the tables, we choose

§=9/4, (57)
which gives

5=0.04649. (58)
This is reasonable. A determination of the overlap in
MnF,, with use of Hartree functions, yields'® .S=0.060;
and it is probable that the overlap in MnO is close to
this value. ‘

In evaluating the V integrals, we have used an
effective nuclear charge of 4-2 on all ions. This amounts
to treating the metal ions as He*-like, and the anions as
neutral He-like. The three-center integrals have been
approximated as best we could, assuming the overlap
small.

The values are

q13,24AA= - 150,

Q34BB= —0708,
q13484=—1.35;

qMBA: '—0.660;
q13,24B=—1.16;

132 =0.0089+¢.

(59)

Here € is given by (53).
We now evaluate Eq. (44) as a sum of three terms:

(I) the ionic term involving gi3,2444;

(IT) the term in square brackets, which is a generaliza-
tion of the Anderson and the Anderson-Hasegawa
terms;

(III) the remainder involving qi3.84.

Thus we write Eq. (44) in the form

W=—25S;-Sy(I+1I411T)= —2S;-S4J.  (60)
In Table I we give the values of I, II, III, and J for
three different values of e. Elsewhere!® we have esti-
mated e for MnF, to lie between 10 and 15 ev.

Since the Néel point should be of the order of the
number of linear couplings (in this case 3) times J, it is
seen that the values are very good. It should be noted
that all three terms contribute to an antiferromagnetic
coupling and that terms IT and IIT are most important.
In term II, according to (59), the generalized Anderson-

15 Kotani, Amemiya, Ishiguro, and Kimura, Table of Molecular
Integrals (Maruzen Company, Ltd., Tokyo, 1955).

16 Keffer, Oguchi, O’Sullivan, and Yamashita, Phys. Rev. (to be
published).
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TasLE L. Evaluation of the terms in Eq. (60) for different values
of the transfer energy. All values, except where noted, are in
atomic units.

€ I II 11T J
0.184 (5 ev) —150 —21.7 —13.0  1.69X10™* (53°K)
0.368 (10 ev) —1.50 —7.77 —7.79 0.80X10™* (25°K)
0.735 (20 ev) —1.50 —2.38 —4.33  0.38X10™* (12°K)

Hasegawa exchange q13,24¢% is larger than the generalized
Anderson exchange ¢s,52.

We have made the evaluation using only the oxygen
(2p)? orbitals. To this should be added the contribution
from the (2s)? orbitals. The latter orbitals will have an
overlap integral which is only slightly smaller and a
transfer energy e which is very much larger than the
former, at least if MnO is similar to MnF,, for which
careful calculations have been made.!® This means that
the contributions to the three terms from the (2s)?
orbitals, as compared to that from the (2p)? orbitals,
will probably be as follows: about the same or slightly
smaller from term I, very much smaller from term II,
much smaller from term III. The total contribution
from the (25)? orbitals may be of the order of one-fourth
that from the (2p)2.

In a subsequent paper we will consider in detail the
contributions from the other configurations mentioned
in Sec. I. As an example of what happens, we now
discuss briefly the contribution from the interaction be-
tween configurations 4 and D. By second-order per-
turbation, the exchange-like term will be

AW=ZS483'S4(M)2/QIDD, (61)

where M is a matrix element connecting the configura-
tions. By an elementary consideration it is seen that M
is identical to ¢i3,24¢B, the Anderson-Hasegawa term.
[For orthogonal orbitals, from (51), this reduces to
2Gq, b, Which is the integral considered by Nesbet.?]
The contribution of (61) to J will thus be given by

J4P = (1.16)2(0.0465)*/¢PP

=~ (0.063X107%)/¢:P? a.u. (62)

This will only be of importance compared to the terms
in Table I if the double-electron transfer energy e,
which is the principal part of ¢/PP, is less than ~0.37
a.u., or 10 ev. Because of the very large crystalline
electrostatic energy involved in this transfer, we doubt
that e; can be this small. It should be pointed out that
our orbitals are different from the orthogonal set used by
Nesbet,? and no direct comparison of Eq. (61) should be
made with his results. By an orthogonalization process
one automatically mixes into the 4D matrix ‘elements
some of the overlap terms contained in our matrix (40);
and because of this Nesbet’s AD terms might well be
more important than ours. Nesbet does not consider
configuration interaction due to transfer of a single
electron (B and C configurations) because the effects
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‘“vanish to second order in perturbation theory.” We
believe, however, that the important criterion is not the
order of perturbation theory, but the order of the
overlap. It is true that our B and C contributions arise
only in third-order perturbations, but they come in as
S* and are therefore of the same order of magnitude as
(61). Indeed, they are probably larger if our estimate of
€ is correct.

To the contribution (61) must, of course, be added the
terms coming from the interaction of D with B and C.
These contributions, together with those from the other
configurations mentioned in Sec. I, must be considered
in any complete theory.

APPENDIX

In this Appendix we demonstrate various numbering
schemes for handling the configuration interaction. For
simplicity we consider only the ground state ¢4 and the
single excited configuration ¢, and we neglect overlap
of wave functions except insofar as it is involved in
transfer and exchange integrals. We will discuss three
methods of numbering the orbitals.

First Method—This is the same as used in the text,
that is:

a b ¢
VS a3 ar=ay s
YE: B3 B4 B1=0:
The secular matrix is
(HIAA - W) (H14ABP14+H24ABP24)

. (A1)

( (H14BAP14+H24BAP24) (HIBB+H34BBP34_ W)

We define the transfer integral b, the exchange integral
J’, and the energy difference between the ground and
excited states AE as follows:

b= f e (DH(1) ¢ (V)dr;

(A.2)
J'= f 023 s34 01(3) pa@dradrs;

AE=HBB—H 44,

Since H1448=H4B=5, and we can use (12) of the
text, we find by the method of the text that the super-
exchange is given by

AW =—2J"(b/AE)*S;-S.. (A.3)

This is the Anderson term for a single excited con-
figuration.
Second Method.—The numbering scheme is the same

F. KEFFER AND T. OGUCHI

as the first method, except
yh: Ba B3
The secular matrix now becomes
(HA4—=W) (H 13448 P13a+ Ho3448 Pyy)
(H145B4P1ys+HousBAPoss)  (H BB+ H3BBPy— W) ’
(A.4)

B1=Bs.

We note that HiyB4=Hy;3B4=5, and we may use
Eq. (32) since we still have P1s=1 everywhere in the
matrix. We obtain

AW = (bP34'7) (— ZJIS:; . S4) (bP34")/ (AE)2

This readily reduces to (A.3).
Third Method—The numbering scheme is the same as
the first method, except

YB: B3 61 Ba= L.

This is the method of Anderson. We note that P;s=1in
the ground configuration, whereas Pqs=1 in the excited
configuration. We may impose these restrictions by
introducing the projection operators

0:=3(1+4Py). (A.6)

These operators have the eigenvalues 1 and 0 according
to whether P;; has the eigenvalues 1 or —1; that is, the
operators project out only the symmetric space func-
tions, as is appropriate for identical orbitals. The secular
matrix is

O12(HA4—W)O12 Or12(H A8+ H 2448 P2y)Os4
Oua(HyBA+Hy5P4P15)Ora Ony( HyBB+HyyBBPys—W)Ou|
(A7)

We now use HrB4=Hs84=H48=H,48=p and we
obtain

AW=012(1+P24)024024(— 2]’81 . Sg)
X 024094(14 P12)012(b/AE)?.  (A.8)

This also reduces to the result (A.3). However, the
method is more involved than that used in the text. We
note that Anderson, in his paper? and in his lecture at
the University of Tokyo (1953), took the nondiagonal
element of (A.7) as b instead of 6(1+ P1o)=0(1+Psy)
=2b (when properly projected). Thus his numerical
factor is different from ours. .

The projection-operator method must be used, of
course, if the cation orbitals ¢ are not identical, as may
be the case if the 3d shell is less than half-full. The
simple method of the text is adequate, however, for Mn,
Fe, Co, and Ni salts,

(A.5)




