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Statistical Mechanics of the Steady State
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The description of steady-state phenomena, near equilibrium, in terms of Gibbs ensembles is discussed.
The Liouville equation is modi6ed to include external nonconservative forces which prevent the system
from reaching equilibrium. The steady state ensembles are then obtained as (approximately) time-inde-
pendent solutions to the Liouville equation; such ensembles depend linearly on the thermodynamic pa-
rameters which characterize the deviation from equilibrium. With the aid of the steady state ensembles
the linear relations between the thermodynamic fluxes and forces are obtained.

1. INTRODUCTION

HK description of transport phenomena in gases
at low density may be based on the Boltzmann

equation. ' Discussions which are applicable to gases at
higher density and to liquids have been given by a
number of authors. In particular, Born and Green, '
Bogoliubov, ' and Kirkwood4 have obtained kinetic
equations which provide a generalization of the Boltz-
mann equation, and Green' and Hashitsume' have
discussed transport phenomena from the point of view
of MarkoR random processes. The methods of Kirk-
wood4 and of Green' have been carried to the point of
yielding explicit formulas for such transport coefficients
as the thermal conductivity and viscosity; however,
general methods for evaluating these formulas have
not been given.

The discussions of Born and Green, Bogoliubov, and
Kirkwood are based on the distribution function
method, the quantities of basic interest being the
molecular distribution functions of low order. In the
treatments of Green and Hashitsume the time de-
pendence of the pertinent macroscopic variables is
discussed directly. It is expected that some formal
advantages may be oGered by an approach to non-
equilibrium phenomena in which the Gibbs ensemble
plays a more prominent role. Here we wish to discuss
the construction of Gibbs ensembles for the description
of the steady state, near equilibrium; some comment
will also be devoted to nonsteady phenomena. It will

be seen that a steady-state ensemble can be simply
expressed in terms of the external forces which maintain
the deviation from equilibrium. With the aid of the
steady-state ensemble one can obtain linear relations
between the thermodynamic cruxes and forces, the
coeScients in these relations being the transport
coefficients.

Certain of the methods used here have also been
applied by other authors. In particular we mention the
work of Kubo, " Kohn and Luttinger 8 Lax,9 and Block'0
on electrical conductivity, and of Mori" on transport
phenomena in fluids. In addition Bergmann and Lebo-
witz" have given a discussion of the steady state which
in some respects is similar to ours.

2. LIOUVILLE EQUATION INCLUDING
EXTERNAL FORCES

We consider first a classical system, surrounded by
and interacting with. external reservoirs and mechanical
devices; the system and surroundings collectively will

on occasion be referred to as the universe. We suppose
the surroundings to be large compared to the system
so that an approximate steady state can be attained in
which variables referring to the system change slowly.
We assume the Hamiltonian for the universe to be
separated as

H =H+II,+V,
where JI and H, depend on variables referring only to
the system and surroundings, respectively, and the
energy of interaction V is independent of the momentum
variables. A Gibbs ensemble for the universe is described
by a distribution function p satisfying the Liouville
equation

r)p/r)1+{p, H„)=0,

where the curly brackets represent the Poisson bracket.
An ensemble for the universe entails one for the system
and surroundings separately, according to

f=~ de P, g=

Here the integrations are taken over that part of phase
space referring to the surroundings and to the system,
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respectively, ig and dpp being the corresponding
elements of volume. If p is normalized,

and the effect of the extern;~1 forces cannot be included
in the Hamiltonian formalism. We note that in such a
case f= 1 i—s not a solution to the Liouville equa, tion (8);
as a consequence the principle of equa, l u priori proba-
bilities is not valid, in the system phase space.

then it follows immediately that f and g are normalized, 3. STEADY-STATE SOLUTION TO THE
LIOUVILLE EQUATION

If we write

df g=1.

p = fg (1+x),

Our problem is now to obtain solutions to the
Liouville equation (8), under the assumption that F,
and f are nearly time-independent. We further assume
the F, to be small in the sense that the steady-stat. e
solution is near equilibrium, that is, tha, t

Bf/Bt+{fH)+ dP{p H, )+ dlP{p, V) =0. (7)

The integrand in the third term above is a divergence
in the phase space of the surroundings; the integral
then vanishes if p is assumed to vanish sufficiently
rapidly in the remote regions of phase space. The last
term may be transformed to give

Bf/Bt+{f H)+BfF,/Bp;=0, (8)

then x is a measure of the statistical correlation between
the system and surroundings.

We now wish to obtain a Liouville equation for f.
Integration of Eq. (2) over the phase space for the
surroundings yields

where Art is small and fp corresponds to an equilibrium
ensemble. We 6rst choose for fp the canonical ensemble,

(12)

the grand canonical ensemble will be introduced below.
Here P=1/kT where k is Boltzmann's constant and T
the Kelvin temperature, and n is 1/kT times the
Helmholtz function.

The equation for the determination of Ap is

Odist/Bt+ {Art H) PF,BH/Bp, +—BF,/Bp, = 0,

where terms containing the product of Ag and F, have
been neglected. Rewrite this equation as

where
where

BtIg/Bt+{Aq, H) =h, (13)

F,= — dP g(1+x)BV/Bq, .

The q, and p; here are the coordinates and momenta of
the system. We have used the summation convention
that terms containing repeated indices are to be
summed; the number of terms in the sum will be
evident from the context.

The F; are effective external forces representing the
eGect of the surroundings on the system. They are in
general time-dependent, if the universe is not in
equilibrium. However, if the surroundings are large
compared to the system we expect that in some situ-
ations the time dependence of the F,. will be sufficiently
slow that over long periods of time they may be treated
as constant; we further assume that under such condi-
tions the system will attain an approximately stea, dy
state in which its distribution function is substantially
constant.

If p=0, tha, t is, if the system and surroundings are
uncorrelated, the external forces are conservative. Their
effect may then be described by adding a suitable term
to the system Hamiltonian; this will simply lead to a,

modification of the equilibrium properties of the
system. In general, however,

or
F;(t) =e"E~'

h(t) = e"hp.

Here e is sma, ll, that is, 1/e is large compared to the
time necessary for the system to attain a steady state.

With the assumption (15) for h, a solution to Eq.
(13) is

t

Art(P, t) = ~ e"'hp(P;, )dt'.

h= pF,BH/8p, —BF,/Bp, . (14)

We solve Eq. (13) by introducing an adiabatic
turning-on of the external forces. That is we imagine
that in the remote past (t = —~ ) the system is in
equilibrium without interaction with the surroundings.
The external forces are then slowly turned on (for
example by the removal of adiabatic walls), reaching
their full value at t=0. If the turning-on is sufficiently
slow we expect that the system will at all times adjust
itself to the instantaneous values of the external forces,
reaching the desired steady state at t=0. Presumably
the results will be independent of the particular manner
in which the forces are increased; we will make the
choice

BF,/Bp;WO, (10) Here P denotes the position of a point in phase space
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and I'& is the position at time t of that point which was
at I' initially. At t=0 we have

(16)

where 5' is the rate at which work is done by the
system.

In the presence of both reservoirs and mechanical
devices

k =Q, (p —p„)q, —PW. (20)

and the steady-state ensemble is

f= fp 1+) e"'ko(F()dt' .
—00

(17)

For any particular system, q„and 8" can be expressed
as functions of the q, and p, ; the specification of k is
then complete.

3,3.aintenance of a steady state requires that, on the
average, the energy of the system be constant, or

where 1/kP„ is the temperature of the reservoir. Substi-
tuting this expression into the Liouville equation (8)
(with only the forces F," being included) we find the
condition

or
()gi Pra)F r/gp — 0

BF,"/Bp, =p„F,"BFI/Bp, (18)

In the presence of more than one reservoir the quantity
k of Eq. (14) is

k=g„fPF,"BII/Bp, BF,"/Bp, j-,
which reduces with the help of Eq. (18) to

k=p (p p)F "aII/ap—.

4. SPECIFICATION OF THE EXTERNAL FORCES

To proceed further it is necessary to specify the
external forces, or ho, in more detail. For this purpose
we consider erst the interaction of the system with a
single reservoir. We suppose the forces Ii," due to this
reservoir to be such that the system can reach an
equilibrium state described by a canonical distribution

~(n—PyH)

P,.(q,)—(W) =0,

where the angular brackets denote an average taken
with respect to the steady state ensemble. Thus

(&)= —2 P.(v.)

This is just 1/k times the entropy production 0 familiar
in nonequilibrium thermodynamics, "

(k)=o/k.

The formalism has so far been restricted to closed
systems. For the treatment of such phenomena as
electrical conduction and diffusion it is necessary to
consider open systems, able to interchange particles
with the environment. We will defer the discussion of
open systems, as they are somewhat more easily handled
in the quantum theory. It will be shown below that the
quantity h for an open system is

k=2, (~ ~,)~, ~-W E-.(~. -~;,)J' -(»)
Here j, is the rate at which particles are added to the
system from the rth reservoir; p and p„are the chemical
potentials for the system and rth reservoir. The average
of his

(k) = —2 P'(C.)—Z.(P~—P.~.)(i.),
Now F,"BII/Bp, is the rate at which energy is trans-
ferred from the rth reservoir to the system. Denoting or, for the steady state,

this quantity by q„, Z.b.)=o,

we have
q„=F BII/8p, ,

&=K,(~-~,)~'
Consider next the interaction with an external

mechanical device. For concreteness we may imagine
the system to be a fluid enclosed in the annular region
between two concentric cylinders. A relative rotation
of the two cylinders will produce a transport of mo-
mentum across the Quid. Evidently for such mechanical
devices one can choose the external forces to be mo-
mentum independent,

BF,/Bp;= 0.

(However, the forces are still nonconservative and
cannot be represented by a potential added to the
Hamiltonian. ) Their contribution to k is simply

pF;BII/Bp, = —pW,

and
(k) = —Z.P.&V.)+E.P. .~.(J.)

This is again 1/k times the entropy production o..

5. LINEAR RELATIONS BETWEEN
FLUXES AND FORCES

The quantity h can be written in the form

h=(1/k)Q X J, (22)

where the I are thermodynamic forces representing
the deviation from equilibrium, and the J (F) are phase
functions whose averages are the thermodynamic Quxes.
Combining Eqs. (17) and (22) gives for the steady
state ensemble

"S. R. De Groot, Thermodynanzics of Irreversible Processes
(Interscience Publishers, Inc. , New York, 1952).
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where ( )p denotes an average taken with respect to
the equilibrium ensemble fp. Since the fluxes vanish in
equilibrium,

~0

( )=-Z - '
" ( (P) -(P)) (23)

With Eq. (23) we have derived the familiar linear
relations between fiuxes and forces,

With the help of this ensemble we find for the thermo-
dynamic fiuxes

p0

(Je)=(je(p) 1+-Xx e"J ep)de

6. NONSTEADY PHENOMENA

The above formalism is readily modified to include
slowly varying time-dependent phenomena. Supposing
the external forces to depend on the time, we consider
a single Fourier component. Including also the adiabatic
factor, we have

X (t) =e'"+ )e'X o

The frequency ~ must be assumed to be suQiciently
small that the system can at all times adjust itself to
the instantaneous values of the external forces, that is
1/pp must be large compared to the relaxation times
characteristic of the system. As in the previous discus-
sion, we then find the ensemble

(Jp) =P.Lp.X.,
with the transport coefficients being given by

(24)

0

f(P)=fo(P) 1+-2X oe'"' e""+"J(P)«

The linear relations between Quxes and forces are
p

Lp. e"——(J—p(P)J.(P,))pdt.
epee Oo

(25)

It follows from invariance under a translation of the
origin of time that

(J-(P)J-(P )) =(J-(P)J-(P -))o

and therefore

~0 ~0

I= e"dt) e'"dt'(J. (P)I (Pi,))o

&0 r

e "dt 1 e'('+')ds(J (P)J~(Pe))o.

An integration by parts yields

0

I= )e"(J (P)J (P)))odt.-

Consequently,
= pI/tp)~0.

Thus the diagonal elements of I. are non-negative, in

any representation. This has the result that the entropy
production, which can be written

Onsager's theorem" is an immediate consequence of
Eq. (25) and the reversibility of the mechanical
equations of motion.

The positive-definite nature of the entropy production
is readily demonstrated. Consider the inequality

0 -2

I e "7 (I',)de ) )0. .
~ )X) 0

(Jp) =Z- Lp. (~)X-

with the frequency-dependent transport coefficients
being

(26)

'j. QUANTUM THEORY

We consider next the modifications necessary for
quantum mechanical systems. An ensemble for the
universe is described by the density matrix p, satisfying
the Liouville equation

8p/Bt+ [p,II„ I
=0—

ik

Let q' and Q' be the eigenvalues of a complete set of
commuting variables referring to the system and
surroundings, respectively. Then the density matrix f
for the system is given by

(v'I fir")=&o (v' Q'I pie" Q'&.

Assuming the Hamiltonian operator for the universe
to be separated as in Eq. (1), we find the Liouville
equation for f

Here Ts denotes a trace taken over the eigenvalues of
variables referring to the surroundings, that is

(v'ITs~ lv")=Z (v',Q'l~ lq",Q')

If we define X by
p= I,

we have

is non-negative.
g=g, pX L pXp,

1
~f/~t+ Lf,IIj+ »LfX,—Uj=o—

ik ih
(27)
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Proceeding now as before we assume f to be close to
an equilibrium ensemble

In order to treat open systems we choose for fo a, grand
canonical ensemble,

—&e—PII+P p, n
)

where p is the chemical potential and e the number of
particles. (For simplicity we consider systems con-

taining one type of particle only; the generalization to
a variety of particles is immediate. ) We then find the
equation for d,g

p f,{(p,—p) Ts[H, V„)X„
ihf() ~ —(P,p, Pzz)

—Ts[n, V„]X„),
1

Burl/Bt+ [Drj,H) =—h,
ih

(28) or, putting f„=fo in lowest order,

that is, it is the Aux of energy into the system from the
rth reservoir. Similarly [zz, V„j/z7z is the flux of particles
into the system from the rth reservoir. While such
fluxes presumably do not commute with H, zz, or f„,
we may in the present context neglect the eGects of the
uncertainty principle as applied to H, e, and the Quxes.
One may in fact replace these quantities by commuting
"macroscopic variables, " as discussed by von Neu-
mann" and van Kampen. "Then

where to lowest order

h= — Ts[foX,V$.
ih p

where
h=Z. [(p p.)q.-(pz —p.z,)j-,f,

1 1
q„=—Ts[H, V„$X„, j„=—Ts[zz, U„]X„.

Equation (28) can be solved as before; we find

p

~ e "h(z)dt,
—00

where h(t) is the Heisenberg representation operator

h ($)
—g(alii)ath g

—(i/))) at

Finally consider the interaction with an external
mechanical device. In the classical treatment we
characterized such devices by the equation

BF,/Bp;=0,

which, on taking into account Eq. (9), may be written

To relate h to the thermodynamic forces, consider as
before the interaction with a single reservoir (thermal
or particle). Suppose this interaction to be such that
the equilibrium state of the system is described by the
grand canonical ensemble.

~dg(X, V) =0,

X= (1+x)g
The quantum mechanical analog of Eq. (31) is

(31)

Ts[f XO„, Vj= 0

To first order in p —p„and p, —zz„

fo= [1+(p. p)H (p.l .—
pz )3f-., —

and, with the help of Eq. (30), h is reduced to

(30)

h= — P Ts[f,X„V,]
Zk p

Z((p.—p) Ts[H, U.jfX.
Zk p —(P,.zz,.—Pzz) Ts[zz, U„]f„X„).

Now [H, V„j/z7z is the rate of change of the system

energy, due to the interaction with the rth reservoir;

(29)

Here 1/hp„ is the temperature of the rth reservoir and

p„ its chemical potential. Including in Eq. (2i) the
interaction with the rth reservoir only, and requiring
that the ensemble (29) be a solution to this equation,
we 6nd the condition

Ts[X,V]=0.

The contribution to h of a mechanical device is then

h= —(1/ibfp) Ts[fp, V)X.

Assuming e to be a constant of the motion in the
presence of the mechanical device, and further assuming
the flux [H,Vj/ifz to commute with EE, we find

h= -pre,

where 8' is the rate at which work is done by the
system,

W = —(1/z7z) Ts[H, V]X.

In the presence of both reservoirs and mechanical
devices

h= Z.[(P P.)q. (Pz P—.l .)j .j—P~'— —

The derivation of the linear relations between cruxes
and forces now proceeds as before.

"J. von Neumann, ilIathemati ca/ Ii oundatq'ons of Quantum
3fechanics (Princeton University Press, Princeton, New Jersey,
1955).' N. G. van Kampen, Physica 20, 603 (1954).


