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Ground State of a Bose System of Hard Spheres
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It is shown that the pseudopotential method can be extended to yield further terms in the low-density
expansion of the ground-state energy of a system of Boltzmann or Bose particles with hard-sphere inter-
action. Two terms beyond the known result are found, and the expansion is no longer a power series in
(esp)&. Other related properties of the system are discussed.

l. INTRODUCTION energy per particle for the many-particle system in a
definitive form. In Sec. 7, some of the simple properties
of the ground state are calculated. And finally Sec. 8
consists of some qualitative discussions of the present
problem. This entire paper deals with the ground state
only.

A LTHOUGH it is an old problem to investigate
the properties of a system of a large number of

particles interacting pairwise, there exists only a few
explicit answers for the quantum mechanical case. In
the case of a system of identical bosons interacting
through the two-body hard-sphere potential, virtually
none of its properties were known until the recent work
of Yang, Lee, and Huang. ' ~ In the investigation of
these authors, two independent methods have been
used. One is the method of binary collision, "'where
the evaluation of the grand partition function is reduced
to the solution of the two-body problem. In the other
method, '' ' use is made of the pseudopotential of
Fermi. In both methods, the particle density is assumed
to be low.

It is the aim of this paper to study the possibility of
getting higher order terms by the method of the
pseudopotential. One difficulty of the extension of this
method is the inclusion of triple collision. ' To the lowest
order, this difficulty is resolved in Sec. 2. Another
complication of the method of the pseudopotential,
already apparent in reference 3, is the removal of the
divergence in the expression for the ground-state energy
per particle. This involves a comparision of the per-
turbation series with and without the operator (c)/ctr)r.
This task becomes impossibly complicated in higher-
order terms. In Sec. 3, a slight modification of the
pseudopotential is proposed so that to the lowest order
this removal of divergence is automatic. This is done
at the expense of dealing with a non-Hermitian Hamil-
tonian at all times. In Sec. 4, this modified form of the
pseudopotential is used to determine the next two terms
in the expression for the ground-state energy per
particle. However, in order to interpret the final
formula, it is necessary to make a more detailed study
of the three-body problem. This is done in Sec. 5, and
the result is used in Sec. 6 to express the ground-state

2. THREE-BODY PSEUDOPOTENTIAL

A system of hard spheres is a collection of pairwise
interacting particles with the Hamiltonian (Ps=2228=1)

(2.1)
with

(2.2)

where
(2.3)&i &j )

0, r&a

r&a.
Vo(r) = (2.4)

These particles are, as usual, assumed to be confined
to a cubical box of volume 0=I.', with periodic
boundary conditions on its surface.

When g = 2, the interaction potential may be re-
placed exactly by the pseudopotential'

Sx tanka
V2 b (r& rs) — —r»+ terms corresponding

k Br]2

to partial waves with /& 1, (2.5)

where the meaning of k has been discussed in reference
1. When applied to the case E&2, the replacement of
Uo by U2 is accurate only when the interacting pair of
particles are far away from all the other particles.
Therefore, if Vo is to be correctly represented by a
pseudopotential, it is necessary to include a three-body
pseudopotential in addition to V~. To find this three-
body pseudopotential, consider the case X=3. The
problem is to find V3 such that the eigenfunctions of

&8=Ps +Ps +Ps +Vo(rss)+ Vs(rsr)+ Vs(rls) (2.6)

and

JI8 pl +p2 +ps + V2(r28)+ V2(rsl)

+V2 (res) +Vs(rr, rs, rs)

coincide in the region r2~, r~~, r~2) a.
90

(2.7)
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The pseudopotential V2 as given by (2.5) is ex-
ceedingly complicated, but when

QO= (1+&8"+&3"+SO"+&8"&31'+&8"SP3+&3'3&381
+/31"-/331+/3285'8»+5'8815'828)$1nc (2 19)

ka(&i,

the leading term is simply

a
V2 82CQ5 (ri i'2) r12.

Bt'y2

(2.8)

(2 9)

It is required to compare pe with p2, which is defined

by the right-hand side of (2.19) with the subscript 0
replaced everywhere by 2. Here, for example,

5"=—(H3/V2" E) —'V" (2.20)

In almost all applications of the pseudopotential, this
approximation is used. In the same sense, the leading
term of V3 is, by dimensional arguments, '

V8(ri, r2,r,) constant a'6(ri —r2)6(r2 —r8)08, (2.10)

where 08 is some generalization of (8/Br12)r12 to three
bodies. It is the purpose of this section to find the
constant in (2.10).

The meaning of the assumption (2.8) is that momenta
comparable to or larger than a ' are not important. In
coordinate space, this means that distances comparable
to or smaller than a are neglected. Therefore for the
present purpose-, the comparison of the two Hamil-
tonians in (2.6) and (2.7) may be carried out in the
following manner. Instead of the eigenfunction problem
originally posed, consider the scattering problem with
the same Hamiltonian. In accordance with (2.8), the
energy of the incident field is chosen to be small com-
pared with a '. And the constant in (2.10) is to be so
determined that the scattered fields for the two Hamil-
tonians coincide as well as possible for points far away
from the region r~ ——r2=r3. If the first Born approxi-
mation is used with respect to V8, then the 03 of (2.10)
may be replaced by 1.

In order to carry out this program, the formalism of
binary collision is used. Write (2.6) in the form

From the way the pseudopotential V~ is defined, it
follows that

(g 28 g 23)g, inc 0

for r»&a. Thus for the present purpose it is only
necessary to study the quantity

where

and

D=D1+D2,

—g 12(g 28 g 28)ll, inc

D (5' 12 5' 12)g 28/inc

(2.22)

(2.23)

(He E)G = —8—(ri —r2) 5 (r2 —r8),

PG=kG,

where P is the total momentum and k2(3E. I.et

R,= ri+r2 —2r8,

&'= F3 +~81 +~12 2 (3r12 ++8 ),
then a solution of (2.24) is

(2.24)

(2.25)

(2.26)

E143
G = i R——'H ~'& (RE1-'*/&3)

48m'
Xexp[8ik (ri+r2+r3) j, (2.27)

In the determination of D~, some properties of the
following Green's function are needed:

H8= He+ V823+ V(8'+ U312

and consider the Schrodinger equation

(H8 —E)Pe=0

(2.11) where
Eg= E—~P.

The behavior of G for small E is

(2.28)

for a scattering problem. I.et P'"' be the incident field
satisfying (He —E)p'"'= 0 and define the following
operators:

K3
G= — R.—' exp[-', ik (ri+r2+r8)].

4vr3
(2.29)

and
Go= —(He —E) ',

So"=—(Ho+Vo" E) 'Ve'8 etc. —
(2 13) The equality r» adefines a hypersur—f—ace in the six-

dimensional space of relative coordinates (r,—r2, R,).
(2 14) It follows from (2.29) that

is
(Hp+ Vp28 —E)/=0,

p —(1++23)/inc

Note that the solution of

(2.15) ~ r12 =a

(2.16)

Gd'5=
r t' V3 )

dS12 d'R, (—
4~8)

X4(3r12'++8') 'exp[-', ik (ri+r2+r3)j

Equation (2.12) is equivalent to the integral equation = —4a exp[8ik. (ri+r2+r8) j. (2.30)

—Pinc+G (V 28+ V 31+V 12)P

G V 28 —(1+5' 28)—lg 23

Thus the first two iterations of (2.17) give

(2.17)

(2.18)

For the purpose of obtaining D~, assume

p' '=exp[i(k, r,+k2 lc+k8 13')], '

I312+k22+ 1382=E.

(2.31)

(2.32)
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To 6rst order, it follows from the definition of the
pseudopotential that

h(2:) =1 for x&0
=0 for x&0. (2 34)

Therefore, for r»)a, Dj is a solution of

(P2—E)Dg=0 (2.35)

with the boundary condition that, for r»=a, —Dj is
equal to the right-hand side of (2.33). With

k =k2+k2+k, , (2.36)

the right-hand side of (2.33) is approximately, for

(S2 2—S2 2)tp'"'=
~

——1 ~h(a —r22)

XexpfiLk2 r2+2(k2+k2) (r2+r2))}, (2.33)

where h is the Heaviside function defined by

"I'his means that the constant of (2.10) is zero, and
consequently it is irrelevant what 03 is.

In particular, there is no correction to the ground-
state energy due to the three-body pseudopotential, to
the order p2a4cV, where p=lV/0 is the particle density.

8
0=6(r)—r =8(r) —r

8r Br „ p

(3 1)

does not commute with the infinite Fourier series; for
example:

3. TWO-BODY PSEUDOPOTENTIAL

Even in the case E= 2, the pseudopotential
82ra8(r2 r2—)(8/Br22)r22 of (2.9) cannot be replaced by
82ra8(r2 —r2). However, in the treatment of the 1V'-body

system with large X, this replacement is made, '4 and
leads to a divergence in, for example, the expression for
the ground-state energy per particle. The removal of
this divergence is a rather complicated process. This
di%culty stems from the fact that the operator

~

——1 ~h(a —r22) expg2ik (r2+r2+r2)j. (2.3/)
ns sinmr m sinmr

OQ — & QO
m~n m2 n2 m~n m2 n2

(3.2)

In particular, for fixed |.'i —r2,

(a
d2R2i —1 I/(a —r»)

Er22 )
r (a

=322r r222dr22~ ——1 ~h(a —r22) = (162'/3)a2, (2.38)
&r„ )

which is independent of r2 —r2. A comparison of (2.38)
with (2.30) gives the result that

D2 ———(16/3) 2r2a4G. (2.39)

The quantity D2 may be calculated as follows. First
it follows from (2.20) that

S223pino 82raGO~ (r2 r2) ~ (2.40)

For a point source in r»&a Sp —S2 gives 0. For a
point source in r»&a, Sp" may be replaced by —1,
while SP may be replaced by —a/r». Therefore

This inequality causes trouble because a typical P for
0 to operate on is a solution of

(V'+02)g =42rkab(r). (3.3)

It is the purpose of this section to see how the operator
0 can be slightly modified so that this particular di-
vergence does not occur. The modified form of the
pseudopotential is then used to get the phonon spectrum
near the ground state and the ground-state energy.

Imagine that the 8(r) in (3.1) is replaced by, for
example,

P,, (r) = (82r2'2) —~q—~& ~' (3.4)

where 2'((a. To be consistant, the 8(r) in (3.3) has to
be so replaced also. In this case, P is distorted up to a
distance several times e'. In order that the pseudo-
potential can serve its purpose, the part (8/Br)r of
(3.1) should be evaluated at a distance 2, where
e'(&t.«a. Since only an S wave is under consideration,
the result is more precisely

D2/G=-',
,

d'(r& —r2)d'R282ra&(r2 —r2)
1 f t9

0„,=8, (r) —' dQ—r
4x ~ Br

(3.5)

a)
X

~

—1+—~h(a —r22) = (162r2/3)a4. (2.41)
r22]

Since c' is much smaller than any other length in the
problem, it may be set to zero. Then (3.5) becomes

Finally, the substitution of (2.39) and (2.41) into
(2.22) yields

8
O, =S(r) —

~ dg—r
4m & Br

(3.6)

D= 0. (2.42)

V2(r2, r2, r2) =0. (2.43)

This means that for the purpose of the present calcu-
lation, there is no difference between f2 and f2. Since
this result is independent of E. m sinmr m sinmr

-~- m —n -~- m~ —n2
(3./)

For a P with no singularity at r= 2, 0, commutes with
the Fourier decomposition; for example, in contrast to
(3 2)
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It is proposed here to use the 0, of (3.6) in the two-
body pseudopotential instead of O. Only after the
desired answers are obtained will the limit s ~0+ be
taken. More precisely, the order of the limits are
lim, p+ limp „, where the right-hand limit means
E +po—so that p=E/Q is fixed.

It may be noted that

In view of the form of the Hamiltonian of (3.18), let

+k uk uk+u k—u k—+2yk(uk u—k

+uku k cospk), (3.19)

where kWO. This Hamiltonian, being non-Hermitian,
cannot be diagonalized by a canonical transformation
of the form'

0 2 —O (3.8)

With the result of Sec. 2 and this interpretation of
the pseudopotential (2.9), the Hamiltonian of a Bose
system of hard spheres may be approximated by

4= (1—~k') '(uk+~ku-k*),

t—k= (1-aa') *(u k+~kuk*).

However, if eI, is chosen to be

(3.20)

with

and

H'= T+V'.

T= — d'm)*(r) V2$(r),

V'= u d'ridpr2$*(ri)p*(r2)8 (ri —r2)

(3.9)
then

n&= (2yk cospk) 'L1 —(1—4yk2 cospk)1), (3.21)

Bk= —$1 —(1—4yk' cos pk) l)
+(1—4yk' cospk)&($k*$k+$ k $—k)

—2y&(1—cossk)pkp k. (3.22)

On the other hand, if the choice is
8

X dQi2 ri2$(ri)p(r2) . (3.11)
Bfis T}2=2i

nk ——(2yk) 't 1—(1—4yk2 cospk)&), (3.23)

T=Q)ks u)s u))) (3.13)

V'=Q '42ru Q u *up*u„u„b(k +kp —k„—k„)

Xcos(-', s
i
k„—k„

i ). (3.14)

Here the language of quantized fields is used, and P
satisfies the usual commutation rules for a boson field.
In (3.11), 8/Bris is taken with fixed ri+r2. If the
annihilation operators in the momentum space are
defined by

P(r) =Q '* P„„uepx(ik„r), (3.12)
then

EIk = —L1—(1—4yk2 cospk) l)
+ (1—4yk2 cossk) '*(tk*$k+ t k*& k)

+2yk(1 —cospk) $k*$ k*. (3.24)

Since $k and $k separately satisfy the same commu-
tation rules as uk, it follows from either (3.22) or (3.24)
that the energy eigenvalues of H& are

Ek(mk, m k) = —Li —(1—4yk2 cossk) '*)

+ (mk+m k) (1—4yk2 cospk) l. (3.25)

The substitution into (3.18) then yields the phonon
spectrum near the ground state

(3.26)

X t
—1+(1—4yk2 cossk) 1)) (3.27)V'= 4~upE+42rup g Luk*uk(4 COS-', pk —2)

and

+uk u k +uku k cossk). (3.15) ~ ( ) P m y2+k 2(2 cos1sk 1))
k/pIf the following notations are used, X (1—4yk2 cospk) &. (3.28)

This differs from the V' of Lee, Huang, and Yang' only E(mk) =EP+Epk...„(mk),
in the appearance of the cosine factor. When the
occupation of the k=0 state is almost complete, and
only pair excitation is included, an approximate formula As=4&up&+2 g Lk'+kp'(2 coss2k —1))
for V'is

then

kp'= Seep,

yk ———,'kpsfk2+kp2(2 cos-,'ek —1)) ',

(3.16)

3.17
Equation (3.26) is valid when m k =0 (1), and
pk&pmk=o(E). In the limit p~0+, (3.28) yields
the well-known formula' 4

H) =42rupcV+ P t k +kp (2 cos 22 pk —1))
kM

XLuk*uk+yk(uk*u k*+uku k cossk)). (3.18)

Eok,„,„(mk) = p mkk(k2+162rup)'.
k&p

(3.29)

In the same limii, (3.27) yields the ground-state energy
Tile eigenvalues of this non-Hermitian Hamiltonian per particle
give the energies of the low-lying states of the Hose
system, 2 N. ¹ Bopoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947).
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Ep/N=4nap+ lim lim (2pQ) '

&( P I k'+koo(2 cos-,'ok —1)j
&& I

—1+(1—4yk' cosok) '*j

The state of Hk with one phonon of momentum k is
related to the lowest state by

I
1k&=Kk'4*l ok)

&1.I
=Kk'«k

I
h.

Since
=4map+ lim (47r'p) '

t~
dkk Lk +kp (2 cosipok —1)j

~0
&& L

—1+(1—4yk' cosok) &j. (3.30)

(oklaka klok) ——~k(1—~k~k) ',

(ok I
ak*a-k*l ok) = -~k(1-~k~k) ',

(oklak aklok) —(okla —k a—klok)
=ak~k(1 —akak)

(3.40)

As k —+ ~, the integrand is asymptotically ——,'k0' cosek,
which yields zero when integrated from 0 to ~ for any
eWO. If this asymptotic expression is subtracted from
the integrand, the limit o —+0+ may be taken under
the integral sign to give the result

Eo/N =4vrap+ (4'7r p) dk(k (k +kp )
~0

X L
—1+(1—4y" l.=o)-*' J+-,'ko'}. (3.31)

This is identical with the result of Lee, Huang, and
Yang. ' ' After integration, the result is

128
(a'p)*'Ep/N=4~ap 1+

15

blok&= t-k
I
ok)- o,

&o. I ~.*=&0.
l ~-.*=0

In terms of ak, (3.33) is, with (3.20),

(3.33)

The present procedure involves no removal of di-
vergence. Note also that in this calculation the com-
bination 2 cos2ok —1 in (3.17) and (3.18) may be
replaced by 1 at the beginning.

Now consider the lowest state of II~. Since it is
necessary to distinguish the right and left states, define
(0 I

and Io)by

as consequences of (3.36) and (3.38), the normalization

(1k I 1k)=1
yields the condition

(3.41)

4. GROUND-STATE ENERGY PER PARTICLE

It is the purpose of this section to improve the
calculation of the previous section for the ground-state
energy per particle by applying the second-order
perturbation theory after the canonical transformation.
For this purpose, attention is returned to (3.13) and
(3.14). A more accurate approximation of V' than
(3.15) may be obtained as follows.

A. Let np ——(ao*ap), where the expectation value is
taken in the ground state; then

ao ao aoao (ao ao)

K„'Kk'= (1—nk ) ''(1 —ako) '(1—ukak). (3.42)

The states Imk, nz k) with both numbers different from
zero are somewhat more complicated, although explicit
formulas can be found for them. They do not appear
in the following discussion. It may be noted that, as a
consequence of the pair excitation, it is possible to
choose the normalization

&mk, ~—k Imk ~—k ) ~mk mk ~m—k m—k (3.43)

even though Hk is not Hermitian.

(ak+~ka-k*) I ok) (a—k+~kak ) I ok) 3.34
&o.1(ak +~ka-k) =&ok

I
(a-k*+~kak) =o.

=
I ep+ (ao*ao—no) j'-np'+2ep(ao'ao —rio)

=no(2N —No) —2no Q ak~ak.
IM

(4.1)

From (3.34), except for normalizations, the states
0k) and (okl may be expressed in terms of the states
) and ( I

defined by

a.
l
)=o, ( la.*=o.

The results are

Here, use has been made of the relation N=gk ak*ak.
3. In view of the remark following (3.32), o may be

made equal to 0 in those terms of V' that can be com-
bined directly with kinetic energy terms. Thus

I
o.&= Kk exp( —~kak*a-k*)

I ),
(o. I

=Kk&
I exp( —~kaka-k).

The normalization

ao ak apak cos—,'ko~ao*ak aoak SOCk ak (4.2)

(3 36) for k&O.
C. The same approximation may also be used in the

numerical part of the Hamiltonian. Thus
(o, lo„)=1

then yields the condition

K&k = 1—~k~k.

(3.37)

(3.38)

P a,*ay*a ap cos(-'olk —kpl) P a *ay~a ao
a, tnl&0 a, /+0

—(N —ap*ap)'- (N —eo)'. (4.3)
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D. For the off-diagonal terms, the approximation aZ, =Q-'4 a[P (0,[a *u,*[0,)g
CO~CO ~QO~ (4.4)

k&0

may be used.
K. For the off-diagonal terms, those with four mo-

menta all different from zero are neglected.
These approximations are based on the fact that

1 No—//t/ is small; more precisely, I.ee, Huang, and
Yang' have given the result

X[Q (Ok
~

ak'a —Q'
~
Og ) cosk'e j

k'go

=Q—'4tra[ g nI, (1 n—ono) 'j-
k~o

X[P nI, (1—non„)
—' coske). (4.11)

5= tso/&=1 — (a'p) '*+0L(a'p) «3.
3+n-

This is easily evaluated in the limit 0 —+ ~ and then
(4.5) e —+ 0+:

~Z,/X= 4~up(64a'p/~). (4.12)
This quantity is to be studied in more detail in Sec. 7.

It is convenient at this stage to modify (3.16) to Accordingly, the diagonal matrix element of the H' of
(4.8) is

ko'= 87rupt,

and, according to (4.2), to simplify (3.17) to read

(4 6)
(O~a'~0)=4 up/«r 1+ (1—~)'

yI, =-'ko'(k'+ko') '. (4 7)

X[aw us+ye(aa a—o. +utu —t coske)]

+Q—'Stratsol P [a~*a~.*aging cos(-', ~

k+k'~ e)
k, k', k+k'y'-0

%ith these notations and the approximations 3—E, the
Hamiltonian given by (3.9), (3.13), and (3.14) becomes

e'=4~ape[1+(1 —~)'jy P (k'+k, s)
k&0

128 (u'py '* (u'p)
+—&'I I +64k'I I

. (4.»)
15 ( tr ) ( tr )

When (4.5) is substituted in (4.13), the result is more

explicitly

128 a'pq «128 /a'p)
(Oi a'io) =4~up/«r 1+ I i + I I (4 14)

15 in) 9 (n )

+a~+~ uncut ' cos(o
~

k—k
~

&)1

+Q 4tra Q ak u—k ak'a k' cosk e.
k, k'go

(48)

It is seen from (4.8) that the relevant intermediate
states for a second-order perturbation calculation are
the three-phonon states. In view of (3.39), they may
be de6ned by

The first two terms of this Hamiltonian are identical
in form with the Hamiltonian of (3.18).Therefore, with
some trivial modifications, the canonical transforma-
tions of last section may also be applied to the present.
case. The program is to treat these two terms as the
unperturbed Hamiltonian and then carry out a second-
order perturbation calculation to get the ground-state
energy per particle. For this purpose, certain matrix
elements have to be obtained.

With reference to (3.33), the right and left un-

perturbed ground states may be defined by

~. IO) =o,
(4 9)

for all kWO, where $k and $& are defined by (3.20),
(3.21), and (3.23) with the yo of (4.7) and (4.6). In
view of the form of (4.8), one matrix element to be
calculated is

AEr ——(O~Q '4tra Q up*a g*ug a g cosk'e~O). (4.10)
k, k'&0

This may be evaluated using ~0k) and the identities

(3.40) as follows:

o See Kq. (40b) of reference 3, There the o should be a,

~1k,1k,1z")=Eo'Er Er" gg*pk. *gk" ~0))
(4.15)

(Io)lk, 1~"
~

—Eo E~ Ea" (0
~ hP~ 4",

where the three k's are assumed to be distinct. With the
help of (3.20) and (3.40), it is not dificult to verify that
for k+k'+k"=0

(1g,1g,1t, ~H'~0)=Q '16tratro~Ãg'Eg 'Kt, '(1—no')i

X (1—na') '(1—no-') '*(1—nano)
—'(1—no no )-'

X (1—ng" nI, ")—'[—no- cos(-,'k"e)

+non& cos(-', ~k —k'~ e)+symm. ],
(4.16)

(OiH 1g,1g )1j,. )=Q '16rruno'Et, 'EI, 'Eg '(1 nP)f—
X (1—na')'*(1 —nI ')'(1—nant. ) '(1—n~ nl, ) '

X (1 ng ng")—'[n"kno cos(-', k"e)
—n~" cos(—,

~
k —k

~
e)+symm. g, (4.1/)

where "symm. " denotes additional terms obtained
from those explicitly written down by the cyclic
permutations of the three indices. So far as the energy
denominator is concerned, it is sufficient to use the
phonon spectrum (3.29). With (3.42), the ground-state
energy shift due to the three-phonon processes is found

to bg
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(Eo+Eo +Eo-) '256m'a'pQ '
k &k'&k" &0
+~ +~ =0

X(1—ni, n~) '(1—noni) '(1—ni, "no ) '

X$nini cos(-,'k"o) —n&" cos(-',
~
k —k'

~
o)+symm. ]

X&—no" cos( ', k"—o)+nini cos(o Ik—k
I

o)

where
+symm. ], (4.18)

Eo= k(k'+16map)'*. (4»)
In (4.18) the approximation )=1 may be used. Un-
fortunately, as it stands, the formula (4.18) is not
meaningful, because lim, 0+ limg „QE2 does not exist.
I'his difficulty is to be resolved in the next two sections.

[
1

I
8

Hi=gvra 6(r,—ro) — dQoo roo
-4~ ~

,5. THE THREE-BODY PROBLEM

The difhculty with (4.18) is not peculiar to the
X-body problem for large Ã, in the sense that a very
similar trouble already appears in the three-body
problem. Rather, this difficulty may be considered to
be a fundamental limitation of the method of the
pseudopotential. This section is devoted to a study of
the ground-state energy of a system of three particles
interacting pairwise through the hard-sphere potential
Vo and confined to a large periodic cubic box of volume
Q.

This limitation of the pseudopotential of (2.9) may
be seen from the perturbation calculation of the 37-body
ground-state energy by Huang and Yang. ' There, the
energy is calculated to the third order. If one attempts
to carry the procedure further to get the fourth-order
energy, the result is divergent for E&2. The divergence
is unrelated to the one arising from the omission of the
operator (8/Br)r. Furthermore, the situation here is
not improved by the introduction of ~: the fourth-order
energy is convergent for o)0, but as o ~ 0+, the limit
does not exist, Since this fourth-order energy is useful
in spite of this difhculty, this perturbation calculation
is repeated here with e. Only the case X=3 is treated
since further generalization does not seem to be
necessary.

Consider the three-body Hamiltonian

Ho pl +p2 +po +Hi) (5 1)
with

In terms of these momentum states, the matrix elements
of Hi of (5.2) are

(k, ',k, ',k, '
~
H,

~
ki, ko,k,)

=0 '8~aLbi ii i ' cos(oi
~
ko —ko

~
o)+symm. ]. (5.5)

The first three orders of perturbation yield just the
following results by Huang and Yang, ' in the limit
e —+0:

E&"= 24ira/0,

Eio) =C(a/1)Eo)
E"'= (C'+ $o) (a/L) 'E"'

(5.6)

where C is a constant approximately equal to 2.37 and
with n) 2 is defined by

Z, m, n=oo
(2+m'+ e') (5.&)

This perturbation calculation is now to be pushed
to fourth order. I.et Go be the operator defined by
(2.13) with E=O:

Go= —(pP+po'+po') ',

and Q be the projection operator

(5.8)

Q= 1-
i 0,0,0)(0,0,0 i. (5.9)

Then E(" consists of two parts, one of which can be
easily obtained in the limit e —+ 0+:

where

E(4)—Ei(4)+Eo(4i

Ei&'i = ( 9Cfo+15(o) (a/—I,)'E"'

(5.10)

(5.11)

in the limit o —+ 0+, and

Eo&'&=(0,0,0iHiGoQHiGoQHiGoQHii0)0)0). (5.12)

With (5.5) the right-hand side of (5.12) may be found
explicitly. It again consists of two parts, one of them
being in a form not dissimilar to E~&4':

Eo(4i =Eo(4)+E4(4) (5.13)

For the perturbation calculation of the ground-state
energy, the three particles may be assumed to be
distinguishable. Then the eigenstates of the kinetic
energy part of the Hamiltonian (5.1) are the momentum
states

~
ki,ko, ko) with the coordinate representation

r1)r2)r8 ly 2) 3

=n-'expLi(k, r,+k, ro+ko ro)]. (5.4)

where
+symm. , (5.2) E,&'&+E.&'i=(C' —m+15&)( /I-)'E"' (5 14)

(5.3)

where "symm. " again denotes the other two terms
obtained from the first one by the cyclic permutation
of the indices 1, 2, 3, The three particles are confined
in a cubical box of sizes L&(LgL with periodic
boundary conditions. It is assumed that

e&&a&&L,

in the limit o-+ 0+, and

E,&'& = —E~'&-', (giraQ ')' (kio+kio+ko') '
k j.+k2+ kg=0

XLki '-cos(bio) cos(-', )k..—ko~ o)+symm. ]
X [ki ' cos(iokio)+symm. ]. (5.15)
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In (5.15), each component of each k is of the form
27rL 'X(integer), and the prime means the omission
of those k1, k2, k2 tha, t makes any one of the energy
denominators vanish.

There remains the rather complicated task of 6nding
the behavior of E4 "& when e&&L. Only the leading term
will be calculated here. Consider first the sum

Introduction of the variable x=k2/k1 yields the result

t' dx Lx 1+x+x'
Z2'~202(22r) —' i —In ln . (5.26)J,„,

Since the integral

i' dx 1+x+x'—l I
"2 x 1—x+x'

(kP+k22+k22) 'k1 4

k4=k2-k2,
Z2'=02(22r) 4[in(L/4)2r2/3+O(1)g. (5.27)

The substitution of (5.16), (5.22), (5.23), and (5.27)
in (5.15) yields

g4(4) = g(1) (a/L)2

X[8(82r/3 —2&3) In(L/4)+O(1) j. (5.28)

then

Z '=2 (3kP+k42) 'k1-'
k1+k2+k3=0

Xcosk14 cos2k14 cos2k44. (5.18)

Since the terms with k4=0 do not contribute to the
leading term, they may be omitted. Furthermore, when
the decomposition

In this calculation e ' acts as a high-momentum
cutoff. Since, in the actual problem of hard spheres,
the only quantity of high momentum is u ', the form
of the correct expression for the three-body ground-state
energy may be expected to be

24~aQ-1{1+C(a/L)+ (C'+ p2) (a/L)'
+ (a/L)'[(O' C&2+15&2—

—8(82r/3 —2%3) ln(I/a)+h2j+o[(a/L)2j), (5.29)

(3kP+k4') '=k4 '—3kPk4 '(3kP+k4') ' (5.19)

is used in (5.18), those terms coming from k4 ' again
do not contribute to the leading term. Therefore

~li~ 6 Zi (3k12+k42) —lk1—2k4
—2

ki+k2+&a =0
k4 &0

Xcosk14 cos2k1e cos2k44 (5.20. )
where (5.6) and (5.14) have been used. In (5.29), $2 is
a number that cannot be determined by the method of
the pseudopotential. A comparison of (5.28) and (5.29)
gives the following interpretation of the sum in (5.15)

This may next be replaced by the integral

l

Z,' —-20'(22r) ' d'k1d'k4(3kp+k4') 'k1 'k4 '
4

Xcosk14 cos2k14 cos2k44) (5.21) (kP+k22+k22) '

I gl
kI+k2+k3=0

Xcosk14 cos2k14 cos(P k2 —k, i 4). (5.16)
I.et is convergent, a contour integration gives finally for

(5 17) 4/L ~ 0

Z2'--,'02(22r) —' d'k, d'k,
J

X (k 2+k 2—k1.k )—1k1—2k —2 (5 24)

where the domain of integration is L '&k] (6
L '&k2&~ '. The angular integral may be evaluated
to give

Z2' 02(22r) 4 dk1dk2(k1k2)
—'

kP+k22+k1k2
X»

kl +k2 klk2
(5.25)

where the domain of integration is ki&L ', k4&L '.
Now it is straightforward to get the result that as
4/L~ 0

02(22r) '[22r2&3 In(L/4)+O(1) j. (5.22)

The other part of the sum

(k 2+k 2+k 2)—lk -2k -2
k1+kg+ k3=0

Xcosk14 cos2k24 cos(2
i
k2 k2 i 4) (5.23)

may be replaced immediately by the integral

0.A, 4mapk
—',

Ep k2,

(6 1)

(6 2)

as seen from (3.21), (4.6), (4.7), and (4.19). Further-
more

0.'y=o!y cosk6. (6 3)

Therefore, when the three momenta are all large, the
summand of DE2 as expressed in (4.18) behaves the
same as that of the left-hand side of (5.30), except for
a numerical factor. To make a more detailed compari-

k1+k2+k8=0

X[k1 ' cos(k14) cos(-'i k2 —k2i 4)+symm. j
X[k1-2 cos-'2k14+ symm. j

~ 3Q (42r)
—2[(82r/3 —23 In(L/a) —82/8j. (5.30)

This interpretation is to be used in the 37-body problem.

6. GROUND-STATE ENERGY PER
PARTICLE—CONTINUED

The asymptotic forms of n~ and EI, are, as k ~ and
(=1,
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son, consider first the diHerence

(kP+koo+k, ')—'[kg—' —(4orap) 'uk—)'j
In (6.12) and (6.13), «may be put to zero in n&. '1'here

only remains a slight simplification of these formulas:

kl+ k&P+ k3=0 16a'cV
Xcosky«cos2kl«cos(2

~

k2 ko
~
«). (6.4) &E2,———,dk dk' dk" kk'k" U(k, k')k")

This quantity is studied in Appendix A. The result there
ls

3,&= ~Qo(27r) o[—2V3 ln(12orap) ~L+C~) (6.5)

in the limit « ~0+ and 0 large. C~ is a number defined
in Appendix A. Next consider the difference and

X (««a+ax +~1")'[(Ea+E«+E«") '(1—a~,o) '

X(1—n ') '(1—nI, ') ' —(k'+k"+k'") 'j (6.14)

(kP+k2'+ko2) —'
kl,+k2+k3=D

X [kl k2 —(4~ap) 'naxnao$ cosk~«cos-', k2«

Xcos(—', ~

ko —ko
~
«). (6.6)

In view of (6.1), the limit « ~0+ may be taken under
the summation sign. Thus

16u'E r
E„, I dk dk dk" kk'k" U(k, k', k")

"o "o

X(E~+Ea+E~") '(1—~~') '(1—~o ') '

X (1—&I" ) (&I w~" +&a"«I+&a&u )

X (2nA. +2nk. +2n~" +««~ nI" n« "«~—««ms, —), (6.15)

kl+k2+k3=D
(kp+k2o+ko') ' where U(k, k', k")= 1 if the numbers k, k', k" can form

a triangle, and =0 otherwise. For dimensional reasons,
X [k& k& (4~ap) ~~&««"2j (6 7) DE2o+QEoo is of the form

As a consequence of (5.27), 6, must be of the form, for
large 0,

6 =0'(2m) o[o'7r ln(12orap) ~L+C2], (6.8)

where C& is a number defined by (6.8). Equations (6.6),
(6.8), and (5.30) then give the interpretation

(4~ap) ' Q' (k'+k'+k') '
kl+kg+k3=0

X[aA& cos(2 [k2—k&( «)+symm. g

X [na, cos-', k,«+symm. )

DE22+ DE2o = 4ora'p'cVCo,

where C3 is a dimensionless number. Finally, let

6=8Ci+128C2+Co+ (128/9m. ),
then it follows from (4.14) and (6.10) tha, t

E,=(0
~

e'
~
0)+~E,

128
=4oraplV 1+ (a'p) '

15+m.

(6.16)

(6.17)

—+ —30'(4or) —'[(o4or —W3) ln(12~a'p)+-,' 8,,jC,+16C,j.
(6.9)

(6.10)
where

DE2~ —& 32ora'p'Ã[(-,'or —V3) 1n(12ora'p)

+pisc o+Cg+16C2$, (6.11)
2a'A

aE» ——— ~ ~ d'kd'1 'd&k"S(k+4'+I ")34J J

Note that lnL does not appear in (6.9).With (6.9), it is
possible to write AEo in the limit 0 —+ oo and « —+ 0+
explicitly as follows:

DE2 6E21++E22+DE2 31

+8(o4or —v3) (a'p) ln(12ora'p)+ (a,'p) (h&+6) . (6.18)

Note that the three-body energy h& of (3.72) has not
been explicitly found. On the other hand, 6 is known
in principle by (6.17) in terms of C&, C2, and C&, which
in turn are defined in Appendix A, Eq. (6.8), and Eqs.
(6.14—16), respectively.

V. PROPERTIES OF THE GROUND STATE

In this section, a few simple properties of the ground
state are to be studied.

X[~&+~«+~~"j'[(Ea+E«+Ex") '(1—~a') ' A. The Depletion Factor g

X(1,),(1,), (k,+k„+k„,),$ (6 12)
First the formula (4.5) may be improved. From

(3.40), it follows that
and

2u'E
AEoo —— ' " I d'kd'k'd'k "b(k+k'+k")

3. JJ.
X(E«+EI, +Es") '(1—~a') '(1—~~') '

X(1—~~ ') '(~a ~~"+«~-«a+~~~~ )
X (2&«+2&x +2&I" &v«a &a «« &s&«)— — —

(0~ao*ao~0)=&—2 ~«ma(1 —no~a) '
k&D

=7V 1— (a'p)'&-** (7.1)
3 7r

as « —+ 0+ and 0 large. Next it is necessary to calculate
(6 13) the further depletion due to the creation of phonons.
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(1a I
a-a*a a I

la&= 2nana(1 —nana)
—'. (7.4)

Accordingly

(o I
ao*«

I o&
—(1.1«*aoI1.& = (1—nan. ) '(1+n n.). (7.5)

A perturbation calculation with (4.18) then yields

&(—(0I ao*aol0)

256m'a'pQ '(Ea+Ea +Ea")—'
k )k' &k"&0
k+k'+k" =0

X(1—nana) '(1—na na) '(1—na"na") '

Xl (1—nana) '(1+nana)+symrn. ]
Xfnana cos(-', k"o) na"—cos(o

I
k —k'I e)

+symm. ]
X I

—na ~ cos (-', k"o) +nana cos (-,
I
k—k

I
o)

+symrn. ]. (7.6)

Because of the extra energy denominator, the limit
o —+0+ may be taken directly here. The result for
Q ~ ~ and o ~0+ is

8 32 16u2
(a'p) '*+ a'p-

3+or 3or 37r

X dk dk' dk" kk'k" U(k, k', k")

X(Ea+Ea+Ea ) '(1—na') '(1—na') '

X (1—na ') 'L(1—na') '(1+na')+symm. ]
X (na+na'+na« na'na" na "na —nan—a ) &

(7.7)

where U is defined after (6.15). Note that no logarithm
term appears in (7.7). As before, in the na under the
integral sign, it is understood that o=0 and )=1.

B. Three-Particle Wave Function

In the work of I.ee, Huang, and Yang, ' the ground-
state wave function is expressed in terms of a two-
particle function

f()=—1
dok nae'"' (7 g)

It is noted there that terms of the form

f12 ~18

The one-phonon states have the property

(0 I
ao*ao

I
0& (1a I

ao*ao
I 1a&

=(1a
I
aa*aa I1a&—«I aa*aa I0)

+(1ala—a a—al1a& —(Ola a*a al0&. (7.2)

Since the one-phonon state is explicitly known, it is
tedious but straightforward to verify that

(1a I
aa aa

I 1a)= (1—nana) '(1+nana), (7.3)
and

are missing in the wave function. In the present calcu-
lation, due to the admixing of the three-phonon states,
a certain three-particle function takes the place of the
combination f(r») f(r»)+symm. It is the purpose here
to make a partial study of this three-particle function.

A phonon does not differ very much from a free
particle if its momentum is much larger than (ap)l.
This approximation may be used if the three relative
distances are much less than (ap) '. In view of the
difFiculties arising from the three-body problem, the
results are not expected to be valid when the relative
distances are of the order of a. Thus it is hereby
assumed that

a«roo, roi, rio«(ap) '*. (7.9)

Under this assumption, define the required function by

fo (rl, ro, ro)

expl i(k ri+k' ro+k" ro)]Pl
k+k'+I "=0

X(1a,1a,1a"
I
H

I 0)(Ea+Ea +Ea ) '. (7.10)

Since only momenta larger than (ap)'* are of concern,
(4.16) simpli6es greatly with (6.1) and (6.3). With o

put to zero, the result is

(1„1,., 1,-la lo&

64~oaopfl grk(k oy—k' o+—P~ o)— (7 1—1)

Therefore, as 0~ ~,

fo(r, ,r, ,ro)

=m 4a' d'kid'kodoko5(ki+ko+ko)
J

X(k '+ko '+ko ')(k'+koo+koo) '

Xexpl i(ki ri+ko ro+ko ro)]. (7.12)

This integral is explicitly evaluated in Appendix B.
The result is

and y is defined in (8.15). Under the assumption (7.9)
the "missing" terms are

f(r»)f(r»)+symm =a'Llri —rol 'lri —rol '

+symm. ]. (7.15)

Thus it may be seen that fo (ri, ro,r,) is not quantitatively
close to f(r») f(r»)+symm.

The conclusion is then reached that even at low
densitites, the ground-state wave function is not of the
form

II &(r'~) (7.16)

In particular, it seems unprofitable to push any further

fo(ri, ro,ro)=8m '3 ~a'Lri' '(y' —ri") l

Xsin '(ri'/p)+symm. ], (7.13)
where
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the procedure of Aviles, "who calculated the ground- gl
state energy per particle by a variational formula using &&(r) =
a trial wave function of the form (7.16). ~8~»s J~8m pj'

QTs
C. Pair Distribution Function

r
' d'kd'k' e'"'(G

~
ak+k kakak.

) G)

f f
' d'kd'k' e'"'

The pair distribution function, normalized to be 1 at
inlnite distance, is defined by

D(r) =p-s(G~Q~(0)P*(r)P(0)P{r) ~G)

for the ground state, where
~
G) is the ground-state wave

function. For the determination of D(r), the following
formulas are of use:

(Ss'p)' «
X(G

I
~k*~'*~k+'

~
G). (7.»)

A calculation quite similar to the above gives

H(r) = — d'kd'k'd31 "r(k+k'+k") e"
47rsp a J J

(1k
~
~ke k ~1k)= —2~k(1 —~k~k)-',

(1,I
~„*~-,*11,)= —2~k(1-~k~k)-~.

(7.18)

(7.19)

X(E.+E.+E')- (1--.)- (1--')-
X (1—~k-') '(~k" —~k~k ) (~k+rrk +~k"

~k ~k- ~' ~k ~k~k ). (7.26)
As in the calculation of P, it is permissible for the present
purpose to set &=0 at the beginning; in particular,
eq=o. J,. Following Lee, Huang, and Yang, ' dehne

In terms of the functions F(r), G(r) and H(r), the pair
distribution function of (7.17) may be written as

1
F(r) = d'k e'k'(G~ak*uk~G),

Sm'p ~

()= + K ()+ ()j+L ()3'
(7.20) +LG(r) j'+4H(r). (7.27)

1
G(r)= "d'k e"'(G~aka k~G)

s~'p J

,

d3k e"(G(a,*a,*[G). (7.21)
Sm'p ~

It follows from (7.6) that

F(r) = d'k e'kr.
Sssp"

16a'p 1+aks
X + y(e) , (7.22)

1—0,'Jc x' 1—
(ZIs

where

y(k) = d'k'((Ek+Ek +Ek-)-'(1—nks) —'

X (1 hark' ) (1 crk" ) (rrk+rrk'+rrk" uk'hark"

—hark"rrk —rrkrrk )'gk- k+k . (7.23)

Similarly, it follows from (7.18) or (7.19) that

1
G(r) = ' d'k e'k'

Sap J

AIc 168 p —2(YIc

X + y(k) . (7.24)
Qlc x' 1—Q'Ic

However, note that except for the exponential factor,
H(r) is very similar to the DE& of (4.18). Therefore,
due to the complication arising from the three-body
problem, (7.26) for H(r) is inaccurate for r a. Com-
pared with the result of Lee, Huang, and Yang, the
more complicated formula (7.27) gives no extra in-
formation for r a, but is probably more accurate for
a&&r.

It remains to evaluate D(r) approximately for
(ap) '*«r. Since

F(r)+G(r)=, d'k e'"'
Sm'p ~

—nl, 16u'p
~(&), (7.28)

(1+ak)'

H(r) = — ~d'k e"'(1—o.ks)-'@'(k) (7.31)
4 pJ

where p(k) is that of (C.1), it follows from (3.13) that
asr —+ ~

rs' fe'P'1'
F(r)+G(r) ~ —8—,I I

1—-( ~, (729)
r'& ) 3( i

where
rp= (87rup)

—
&. (7.30)

On the other hand, in terms of the p'(k) of (C.14),
H(r) of (7.26) is

In addition to F(r) and G(r), the following function is
also needed:

»J. B. Aviles, Jr., doctorate dissertation, Johns Hopkins
University, 1958 (unpublished).

Application of (C.18) gives, as r —+ oo,

(esp) 128rp' (4 m )
&3 2i

(7.32)
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So far as the terms LF(r)j' and LG(r) j' in (7.27) are
concerned, it is sufhcient to use the result of Lee,
Huang, and Yang' that as r —+ ~

therefore

F(r) -+ (x'pror') ',

~(r) ~ —(~'pror') '
ro (a'p)

L~(r) 3'+LG(r) 1'~ 1o24—
I

(7.33)

(7.34)

( 80) (a'p) '
X 1—

/
16ir+

I I I (7.35)
3&E )

This is the desired answer.

D. Sound Speed

Although strictly not a property of the ground state,
the speed of propagation of a compressional wave in the
limit of infinite wavelength is related to the ground-
state energy per particle. ' Thus it follows from (6.18)
that this speed is

8
(16irap) & 1+ (a'p) '+ 12 (-, m —~3a'p ln(12ira'p)

+ (a'p) L-,'(ho+6)+10(-,'ir —v3) —32/vr] . (7.36)

8. DISCUSSIONS

Since the preceding calculation is concerned with an
improvement over the results of Lee, Huang, and Yang, '
it only remains to discuss a few miscellaneous topics
peculiar to these higher order terms.

A. Although this calculation has been carried out
only for the case of hard-sphere interaction, it also
applies to any repulsive interaction of short range. In
fact, the only modifications are: (a) Bo is in general
diferent, and (b) the length a appearing in the calcu-
lation is to be interpreted as scattering length of the
two-body potential. In particular, the logarithm term
of (6.18) appears in the more general case.

B. This logarithm term may be obtained by an
argument as follows. From (5.29) for the three-body
problem, the three-body ground-state energy has a term

—1927rL(8/3)7r —2%3/O'L ' lil(L/a).
' In the logarithm, t. ' plays the role of a low-momentum
cutoff. Since

1
=&'/6,

]Eq

Finally the substitution of (7.29), (7.32), and ('7.34)
into (7.27) gives, as r-+ oo,

ro' (a'p) l

for large 1V, there should be a term of the following form
ln Eg.

1P )8——192m
~

-or —2%3 ~a L In(L'/a),
E3 )

where I' ' is some low-momentum cutoG. Since this
should be proportional to 31, t.' must be independent of
the size of the box. This leaves just one possible choice,
namely

L'=(up) '.

With this choice of I', this energy becomes

16m-L (8/3) ir —243)u'p'X ln(a'p),

which is identical to the logarithm term of (6.18). In
fact, this is the argument originally used to get this
term, before the present calculation was car'ried out.
However, it is much more satisfying to see the explicit
cancellation of t. under the logarithm sign, as exhibited
in (6.9).

C. It may also be noted that no logarithm appears
in the depletion factor $ of (7.7). Thus the logarithm
term of the ground-state energy does not come from the
depletion of the single-particle k=0 state.

D. Contrary to 6, no formula has been found for the
number 83. After repeated failure to find 83, the author
conjectures that 83 cannot be expressed in terms of a
finite number of integrals involving only well-known
functions.

E. If an unknown number 83 has to be introduced
for the ground-state energy per particle, why is P of
(7.7) well defined? The reason is as follows. The coin-
plication due to the three-body problem implies that
the matrix elements of (4.16) and (4.17) are inaccurate
for any k of the order of a '. For large k, the energy
behaves like k' but the depletion behaves like 1, from
(7.5). Thus the unknown region of large momenta
contributes much more to the ground-state energy per
particle than to the depletion factor $. To the order
calculated, it turns out that the contribution is of
importance for the former quantity but not for the
latter.

F. The existence of a sound speed (7.36) implies the
absence of an energy gap immediately above the ground
state. How can this be verified directly' Even though
the phonon spectrum is unstable due to the three-
phonon perturbation, for a given 0 the one-phonon
state with a momentum of 27r/L is stable. It is possible
to modify the present calculation to find the energy of
this state. Here it is important to note that the ground-
state depletion factor for this state is different from $.
When this is taken into account, a very tedious calcu-
lation yields the result that there is no energy gap to
order ap(a'p) &.

G. So far as the asymptotic behavior of the pair
distribution function D(r) is concerned, although the
first two terms of the coefficient of (ro/r)' are given in
(7.35), there seem to exist no proof that it is indeed
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of the form 1+0[(rp/r)'] as r ~ 00. In particular, a
term of the form (pap)l(rp/r)4 In(r/rp) has not been
excluded.

APPENDIX A

In this Appendix, the quantity 61 defined by (6.4) is

studied. Since 0 —+0+ eventually, two of the cosine
factors are ineffective; thus

(kP+k22+k22) '
k1+k2+ k 3=0

X[kl '—(42r/zp) 2ni..P] cos(-', ik2 —kp~ 0). (A.1)

The first part of 61 is identical with the Z of (5.16).
According to (5.18) and (5.19), 61 may be broken up
into

where
+1 ~10 +~11 +~12 ~1 (A.2)

ACKNOWLEDGMENTS

I am greatly indebted to Professor C. X. Yang, with-

out whose continuance guidance and encouragement
this paper could not possibly be written. I would also
like to thank Professor Kerson Huang, Dr. Conyers
Herring, Dr. H. Frisch, and Dr. J. J. Hopfield for
helpful discussions; the Senior Fellows of the Society
of Fellows for permitting me to come to the Institute
for Advanced Study; and Professor J. Robert Oppen-
heimer for his hospitality at the Institute.

C"= zr
—' lim P [P+ (zn+-')'+ (n+-')'] —'

a-+0+ L, m, n=—~

Xcos[p(P+zn2+n2)'], (A.12)

C"'= zr
—' lim Q [(l+—')'+ (zn+-') 2+ (n+-')'] —'

&
—+0+ L, m, n=—~

Xcos[p(t'+nz'+n2)*']. (A.13)

These constants are related by

and
$2'+ 4"+ 2

$2'"= 5&2,

C/+C//y 1C///

(A.14)

(A.15)

In terms of these constants, Z, l' is, in the limit 0 ~ 0+,

1 02
(Cb+3C'(2'+3C" b"+C'"$2"'). (A.16)

256 (22r)2

In a similar manner, Z&" may be separated into

~1 +11 ++12 (A.17)

Kill" = 2 (42r/zp) Q' k4 nlP coszk40, (A.18)
k1+k2+k3=0

C'=zr ' lim Q [P+zn'+(n+-', )'] '
c-+0+ L m, n=oo

Xcos[0(P+nz2+n2)l], (A.11)

(kP+k2'-+kP) 'kl 4&io =
k1+kg+k3 =0

k2 =k3
Xcos(-',

~

k, —kzi 0), (A.3)

In the limit 0 —& 00,2 11'——2 Q' k4
—'kl Cospk4C/

k1+k2+k3=0

Z 1,
"= —6 (42r/zP)

—'
+k2+ k3=0

XkPk4 'naP cos 2k40. (A.19)

212 —6 p' (3kl'+k4') 'kl 'k4 ' cospk40, (A.5)
k1+k2+k3=0

1 1
—Q2 n/, 2 ~ nlzkzdk=
0 2%2 0

32
(42r/zp) l. (A.20)

105m2

Zl" ——(4zr/zp) '
k1+k2+k3=0

(kl'+k2'+kp') 'n/:p
Therefore Z~|' is of the order 0'i' as 0~ ~ and hence
may be omitted. Finally, as e —+0,

Here k4 is that of (5.17). Clearly with (5.7)

Xcos(2
I I ) ( 6) Zi ' —Z12"———6 p' (3k '+k ') 'kl 'k

k1+k2+ k8=0

X[1—(4 /zp) 'k ' 4']. (A.21)

1 02
+10 fB

12 (22r)2
(A.7)

In order to consider the two terms separately, it is
convenient to introduce a high-momentum cutoG for
k4. ASQ~ 00,

L, m, n=—oo

[P+m2+ (n+-') 2] 2 (A.8)

&2"——zr ' Q [P+(nZ+-')'+(n+-')'] '
L, m, n=—oo

(A.9)

[(I+-')'+ (m+-:)'
L, m, n=—oo

+ (n+-') 2]—' (A.10)

For the evaluation of Zii', define the following variations
of the constants C and $2'.

Q '6 Q/ (3k12+k42)—lk12k4
—

2(4~4zp)
—2nl 2

k1+k2+ k3=0

6
"d'k2d'kp(3kl'+k4') 'kl'k4 '(4zr/zp) 'n/P

(22r)0 ~

(A.22)

3 pK
dk4 dki k14(3kP+k4) '(42rap) 'n/;. P

16~4 &,

ln (122r/zp) 'E +0(1)——
327r3 12
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as IC ~ ~. On the other hand, in view of (5.22), it is and
possible to define

Cg' ——lim (2'[3 (i'+2m'+22')+ (i"+222"+22")] '

8
Z(R, f )= ——J(R,f ).

8
(8.6)

X[P+~2y~2]-~[i'2+m'2+~"]-~ The function E may be integrated to give

—m'3 i ln(22riV) }, (A.23)
and hence

Z(R,f)= (~/f)~ exp( ;—R—2/g), (8 7)

~(R f) = ( /f')'* e p( —l&'/i')@' (8 S)

1=2~23-'y; " d~(Z'+~') :( R—+y—,)
0'

[—2V3 ln(122yap)'I+Ca], (A.25)
S (2~)2 where

X (R'+Ry~+P') ' (8.9)

(8.10)~2 1(y~2+y22+y22)

P2 2(y 2+y 2)

where and
(8.11)1

C~ ——-', b+—(C(2+3C'(2'+3C"$2"+C'"$2"')
32 In (8.9), it has been assumed that r~+r2+r2 ——0

without loss of generality. The evaluation of the re-
maining integral is straightforward but tedious. The
relation

&We—62' 2Cg' — . (A.26)

where the 2' extends over /, ns, e, I', ns', and e' such
that l"+2N"+22"&1V2, andi+i', m+222', I+I' are all
even. With (A.22) and (A.23), (A.21) reduces to

Z ~ Z I 0 (2 ) 6[2v3 21n(12 a )~1 When (8.7) amd (B.S) are substituted into (8.4), the
f integral and the angular part of the R integral may
be carried out to give

Now (A.7), (A.16), and (A.24) may be substituted into
(A.2) to yield

APPENDIX B 3n2 2P2 yP = —0— (8.12)

In this appendix, the following integral, which simplifies the calculation greatly. The result. is

appears in (7.12), is evaluated: I= 8223—
ty2

—'(2n2 —yP)
—l sin—'(2—

lyg/n). (8.13)

I= d2k, d2k2d2k2 g(kg+k2+k, ) (PP+ P2'+P ')-'

Xki 'exp[i(k~ r&+k2 r2+k2 r2)]. (8.1)

When the integral representations

8 (kg+k2+k2)

= (2~) ' td'R exp[iR. (k~+k2+k2)] (8.2)

and

In order to remove the restriction r~+r2+r2=0, it is
suKcient to make the following substitution in (8.13):

r, —+ r;+-', (r,+r,+r,). (8.14)

Under this substitution

2u' ~ p'= 2'(yj'+y2'+y2')+ -(7/27) (r&+r2+r2)'. (8.15)

APPENDIX C

Consider the integral

@(k)= (1—n22)P(k) = d'k' M(k, k'), (C.1)

are used in (8.1), I becomes

I= (22r) ' ~d2R Assume
(C.3)k«(ap)'*.

(~1 +~2 +~2') '= dt exp[—t (kP+4'+&2')) (8.3) where

M(k, k') = [(22+82 +82-)—'(1—u2 ')—'

X (1—~2-') '(O'2+~2 +~2"—oa al"
—~2"~2—~2a2 )']2-=2~2" (C.2)

goo

X dt-J(R+r„i-)Z(R+r„ f)X(R+ r,„f), (8.4)

where

When k'«(up)i, the behavior of M(k, k') is

M(k, k') = (16~ape)-~ (4X'
~

k+k' ~)-'. (C.4)

When k&&4', it is convenient to use

J(R t') = d'k k-2 exp(ik R—
1 k2), (8 5)

an
y =k'+-'2k, (C.5)
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M (k,k') = [2p(16~apt+ p') ~+k(16~ap()'*]-'

X (1—~ ') 'L —~ '—k(4~apt) '(1—~n)]'

k (16m-apP)-*= [4p'(p'+16irapf)] —' 1——
p (p'+16m apP)

'*

y'(k) = I d'k' M'(k, k') (C.14)

Therefore, for k«(ap)'*, the first two terms of g(k) are

@(k) =—',vr'(16~apf) —l —4m k (1&(rap&)
—'(-,'n. +-,') . (C.13)

In (7.26), a function similar to P(k) appears:

d'k' M (k,k').4(k) =)
y&K

It is then found from (C.4) that

4 i(k) = [E+O(k'/E)]
16~apg

On the other hand, @~(k) is

yp(k) =x(16m.ap()-l I dg sechg
~ Sinh 'K(16rrapg) &

X[1—4k (16m ap() —:(1+e
—")—']

= —mE(16m apg) '+-', m'(16m apg) '*

k(1—2o.„)—2
(4~apt)'(1 ~.')-

Take a momentum E such that

k«Z«(ap):,
and write (C.1) in the form

~(k) =~ (k)+~.(k),
where

@i(k) = d'k' M (k k'),

(C. )

(C 7)

(C.9)

(C.11)

M'(k k') = [(g~+g„,+pi,„)—'(1—ai, ')—'

X (1—~~ ') '(~a"—~~i ) (~i+~s +di-
—az ni- —n„"ni —nini )]~-=~+~ . (C.15)

Again assume (C.3). For k'«(ap)&,

M'(k, k') = (167rapg)
—'(2k'

~

k+k'
~ )

—'
X (—~

k+k'~+k+k'); (C.16)

and for k«k'

M'(k, k') = [4P'(p'+ 16~apg)]—'*

1
k (167rap)) *

X
P(P'+16~apg)l (4mapg)l(1 —n„')

k(1 2n„—)

X (~k+k'~ —k') —„+(1—„)

( .+(k' —P)—. I
. (C.»)

d "i

The situation here is very similar to the case of p(k).
Thus it is permissible to use (C.17) in (C.14). The
result is then

—4mk(16map$) '(-'m-+-,'). (C.12) Q'(k) =2m. (1—ni)[-', (16nap))-**—k(-,'~—1)].(C.18)


