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A general method of calculation is described for quantum statistical mechanics. It is based on a simpli-
fication of the Laplace transform of the density matrix which follows from a theorem due to Hugenholtz.
The basic result is that an element of the density matrix can be written as a sum over graphs, with the
contribution of each graph factored into contributions from connected or linked graphs. Applied to the
grand partition function, the exponential formula of Bloch and DeDominicis is obtained in a simple way.
A similar formula is then derived for the canonical ensemble for the case of a nondegenerate gas. In this
way the familiar result of Uhlenbeck and Beth is obtained for the second virial coe%cient. Techniques are
also introduced for evaluating ensemble averages of operators. In this connection, some care must be
exercised in the case of diagonal operators. Finally, these methods are used to calculate the pair-correlation
function for a system of fermions interacting through short-range forces.

I. INTRODUCTION

HIS paper describes a general method of calcu-
lation for the quantum statistical mechanics of a

system of interacting particles. It is based on a theorem
due to Hugenholtz, ' which allows simplification of the
Laplace transform of the density matrix. ' From this we
derive a cluster expansion for the density matrix, and
give several applications of the result.

Brueckner has called attention to the fact that per-
turbation methods for many-body systems involve
formal complications not present in the conventional
perturbation methods. ' The source of these difficulties
is the possibility —for extended systems —that many
particles interact simultaneously. Thus a straight-
forward expansion in powers of the interaction energy
and the retention of only low powers is not expected to
yield a good description of a many-particle system. On
the other hand, different groups of the simultaneously
interacting particles act independently in the sense
that particles in one group do not interact with those
of another. Thus the wave function may be factored
into terms referring to independent clusters of inter-
acting particles. Brueckner introduced the term "linked
clusters" to describe such factors.

The same difficulty also arises in statistical mechanics
when expansions in powers of the interaction energy are
attempted. For classical statistical mechanics, a sys-
tematic expansion applicable to gases has been pre-
sented by Ursell and Mayer. ~' Recently a number of
new methods have been proposed for studying the
equation of state of quantum-mechanical systems. Some
of these procedures are adaptations of techniques that
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have proved useful in quantum field theory and nuclear
physics. For example, there is the recent work of Lee
and Yang~ which is closely related to the classical ex-
pansions. Matsubara has given an extensive field-
theoretic. exposition of the grand partition function''
which makes use of time-dependent perturbation theory
and Wick's theorem. " Bloch and deDominicis have
extended this work in several recent papers. "" In
particular, they have solved the difficulty mentioned
above and given a linked-cluster expansion for the
Gibbs potential. Similar results have been reported by
van Hove. " Montroll and VVard" have also obtained
expansions in terms of graphs for use in quantum statis-
tical mechanics.

The methods presented in this paper are related to
some of the above work, particularly that of Bloch and
deDominicis. "In addition to giving a novel and simple
development, we have also extended the general results
and presented some new applications.

In Sec. II the theorem of Hugenholtz is reviewed
and then used to give the expansion of the density
matrix. In Sec. III this result is used to evaluate the
grand partition function, leading to a result similar to
that of Bloch and deDominicis. "The evaluation of the
partition function for the canonical ensemble is then
considered in Sec. IV. Techniques for obtaining the
ensemble average of an operator are considered in Sec.
V. In the last section this result is applied to the cal-
culation of the pair correlation function for a system
of interacting fermions.
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10, 181 (1958); 10, 509 (1958).
"Leon van Hove, lecture given at the University of California,

September, 1958 (unpublished).
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II. EXPANSION OF THE DENSITY MATRIX
INTO CLUSTERS

We consider a system of E similar particles, each of
mass M, in interaction within a large volume 'U. The
Hamiltonian describing their motion is

(2.1)

In this expression E is the kinetic energy:

E=ps esGgtrzjg) es ——k'/2M. (2.2)

The quantities uz, ~ and cI, are, respectively, creation and
annihilation operators satisfying the usual commutation
relations

FIG. 2. Typical
low-order graphs in
the expansion of
(E—H) '. (a) simple
scattering graph, (b)
repeated scattering
of two particles, (c)
example of a discon-
nected graph.

of this operator, '

2

k2

(2 3)

Xs(x) ='U -'*e'" *5 (2.6)

where S is a spin function if the particles have spin.
Finally, the —or + sign refers to Fermi-Dirac or
Bose-Einstein statistics, respectively.

We shall often use a momentum representation for the
entire system. Thus the ketl p) specifies the momenta
of the S particles; of course it also is an eigenstate of
the kinetic energy operator:

&Ip)=E.
I p) (2.7)

Here E„ is the eigenvalue of the kinetic energy for the
state

I p).
The equilibrium properties of the E particle system

are completely described in terms of the operator e &~,

where P ' is the temperature times the Boltzmann
constant. It is useful to introduce the Laplace transform

E plane

FIG. 1. Contour of inte-
gration 8 for Eq. (2.8).

The + sign refers to Fermi-Dirac statistics, while the
—sign refers to Bose-Einstein statistics. The quantity
k represents the momentum of a single free particle
(k = 1);when used as the label of a state or an operator,
the label k represents the momentum of a single free
particle (5=1) and its spin (if any).

The interaction energy V is

(2.4)
Z, Z, m, n

where

(kll Vlzzzzz) =(x,(xi)x)(xz), v(xi —xz)x„(xi)x„(x,))
~(~k(xl)~l(x2) v(xt x2))t (xz))~ (xi)). (2 S)

The quantity v(r) is the potential energy of two par-
ticles separated by a distance r; it may also include spin
interactions. The wave functions x are

where

1
e
—PH-

2xi ~(:
dEe ~eW(E),— (2.8)

(
1 1

p' V V
E—E E—E E—E

~ V p (2 10)8—E
For the terms in this expansion we use the graphical
representation of Hugenholtz. ' A typical matrix element
of V may be represented by two directed lines, crossing
at a point, as in Fig. 2(a). Definite states are associated
with the two lines, both before and after the scattering.
We shall refer to this as a simple "scattering" graph. A
typical term in an expansion such as Eq. (2.10) is then
represented by a combination of the single-scattering
graphs of Fig. 2(a). For example, we represent the term

(k r "kz"
I

v
I
kr'ks')

E e(kl ) e(kz ) — E e(kl ) e(ks )

X (ka'kz'
I
v

I
krkg) (2.11)

E (k 1e) e (k2)

by the graph of Fig. 2(b), using the notation e(k) = ei.
A graph, every part of which is connected to every
other part by lines, is said to be a "connected" graph.
The graphs of expansions, such as (2.10), zzeed zzot be

corzzzected. This is illustrated in Fig. 2(c). Graphs that
are not connected are called "disconnected. "

If a graph contains "disconnected parts, " a theorem.
due to Hugenholtz' permits us to "factor" this graph
into parts each containing only "connected graphs. "
This procedure is the cornerstone of our method.

W(E) =1/(E—H). (2.9)

Here 8 is a complex number, and the contour of inte-
gration 6 is illustrated in Fig. 1. First one integrates
parallel to and above the real axis from +~ to a point
to the left of the lowest eigenvalue of II. At this point
the contour crosses the real axis and returns to +~
below the real axis.

We now consider the expansion of the operator W(E)
in powers of V. A typical term in the expansion has
matrix elements
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The validity of this factorization may be understood
as follows. Let a typical term (2.10) contain a particular
connected graph G2 and any number of other graphs
(in general disconnected) which we shall call Gi. The
contribution of all these graphs to 5', summed over all
permutations of the order in which the interactions of
G& and G2 occur, is indicated by

W(GiG2) = p' p . (2.12)
E—E—Vg —V2

Here the subscript (1,2) means that we pick out the
expansion of (E E V—i—V—2)

' only those terms which
give the required graphs. For the graph G~ alone, or G2
alone, we have the corresponding expressions,

1
w(G, ) =(p, p),

(2.13)

pvIc, ) =(p, p) .

Here
l p, ') and

l
ps') represent the states obtained from

l p) by the transitions of graphs Gi and G, , respectively.
Likewise the interaction terms V» and V2 represent the
particular terms in V that are required for the transi-
tions in G& and G2, respectively.

The graphs in this discussion, i.e., those in Eqs.
(2.12) and (2.13), involve a specific set of intermediate
states. "The sum over these virtual states will be carried
out at a later stage of the calculation. Now for a large
interaction volume 'U, the interactions associated with
the two parts of the graph, i.e., V~ and V2, may be con-
sidered to refer to diferent states. It is true, of course,
that the sum over intermediate states occasionally
gives terms in which the same states are involved.
However, these cases are usually less important by a
factor 'U ', assumed to be very small. Further discussion
of this question is discussed in Appendix C.

Thus we are justified in treating the interactions V~
and U2 as referring to different states. We can next
introduce a kinetic energy operator E2 which refers only
to the states occurring in the connected graph G2, and
also define the operator E~=—E—E2. Because the two
graphs commute, direct application of Cauchy's
theorem gives

1 1
I 1

df
E E Ul V2 22rZ 4 E f El Ul f E2 V2

(2.14)

The contour of integration is similar to that of Fig. 1,
except that it is sufficiently close to the real axis that
no singularities of (E g Ei Vi) ' are enclo—sed- —
within the l contour. More specifically, we may choose
a representation in which (Ei+Vi) and (E2+V2) are
both diagonal with eigenvalues Di and 62. Then (2.14)

"Thus the examples of graphs in Fig. 2 include de6nite mo-
menta for all the states involved.

obviously holds in the form

1 1
I

1

E hi —62 —22ri ~ E f —Ai—f 62—
By forming the matrix elements of Eq. (2.14) appro-

priate to the graphs G& and G2, we obtain immediately"

1
l 1

W(GiG2) = df pi' pE—g —It,—U,

"( .', ),
We simplify this relation by introducing the notation

&ilp)=Eilp), &2lp)=E2lp),
I~

I p) = (E.+E.) l»=-E.
I p&

We also define f=s+E2, and now Eq. (2.15) becomes

1 ~ 1
W(GiG2) = ds pi' —

p
22ri " E—s —IC—Vi

(
1

X p2' p . (2.16)
s—(E+V2 E~)—

Equation (2.16) is just the statement of the Hugenholtz
theorem. ' We have developed it in a manner suggested
by Hugenholtz' and also by Riesenfeld and Watson. "
A special case of Eq. (2.16) obtains when there is no
graph G~ and V~ consequently vanishes. This factoriza-
tion is not exactly correct because of those cases when
G~ and G2 contain the same momentum. The corre-
sponding errors in the thermodynamic functions are
discussed in Appendix C with an argument which
involves the "slight" relaxation of momentum con-
servation.

We now use Hugenholtz's theorem (2.16) to reduce
e &~ to a sum of terms, each containing factors involving
only connected graphs. First, let us suppose a typical
graph in the expression (2.10) contains I connected
graphs, Gi, G2, G&. By induction, from Eq. (2.16),
we obtain for their contribution to W(E),
W(GiG2 Gr)

dsi ~ds2

1xl'". p pE (si+s2+ zr,) I— —

X pi' p
si —(&+Ui —E,)

X P2'
1

p
sp —(IC+ V2 E~)—

1
X pr,

'
p

sl, —%+Vl.—Ep)
"U either

~
p&') or

~

p2') is the same as
~ p), the corresponding

graph will be repeated indeanitely in the expansion of both sides
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dsi des
s-n» (2a-i) L ~

X der. p pJ E (zi+ss—+ sL) —K

X(~i(si)~s(ss) ' ' '~L(sL)), (2 17)
where

~'(s') = p'' p
s—(E+V E~)— (2.18)

In w;(s;) we include only terms of Ls—(K+V—E~)j '
contributing to G;, but sum over all virtual states. In
Eq. (2.17) the sum over all graphs includes a sum over
all topologically diferent graphs. It also includes a sum
for each graph, over the available particle states in the
states in the states

l p& and (p'l.
To obtain e &~ it is necessary only to substitute Eq.

(2.17) into Eq. (2.8):

&p'le '
l
p&= &

s«si«(2s'i)
dE

~ dsi
J

dsL

Then

&p'le '
I p&

e t'~

X p p
&—(»+Sr+ SL)—E

Xtoi(»)tos(ss) toL(sL).

1 r~ e—P [E—(z1+z~ ~ ~ zL) ]

p dE
s«s» (2es" E—(Si+Ss+ ' ' 'SL)

X ~ d»e e~itol(sl) ' ' ' dsLe e~LtoL(sL).2;J 2m-i

Now define the quantities

We next carry out the sum over virtual states in each
graph on both sides of this equation and also sum over
all graphs to obtain

W(GiGs GL)

This equation represents the fundamental result of this
investigation, It achieves the stated goal of reducing the
interaction of many particles to a sum of products, each
factor describing the interaction of a much smaller
number of particles.

Before discussing a number of applications of this
result, we discuss Eq. (2.20) in somewhat greater detail.
Each factor g; represents a contribution to e i'~ from
a single connected graph. We may suppose this graph to
involve the scattering of r; particles. Then g; is a matrix,

(k, 'k, '" k„'lg;lk, k, k„),
leading in general to a change of state for each of the r;
particles. This matrix is

(k,'" k„'lg, lk, k„)

1
dhe e' p V -V. . .

2~i ~ s—(E—g,) s—(E—~„)

~ ~ ~ —p . (2.21)
s—(E—E,)

The last factor may of course be simplified, since
Ls-(K-~.)j-'I p&=s-'I p&

The sum over "all graphs" in Eq. (2.20) implies first
a sum over all (ki'ks' ~ k, 'lg, lkiks k,) for each g, .
In addition to this, we must sum over all topologically
difFerent graphs. To clarify notation on this point we
use a symbol 6 to denote the topological structure of a
graph. Then a "sum over 6" implies only a sum over all
topologically different graphs. This kind of summation
is then not equivalent to the sum over "all graphs. "
Only when a sum over all (ki' k„') and all (ki k„)
is also performed is the "sum over all graphs" complete.

III. EVALUATION OF THE GRAND
PARTITION FUNCTION

We shall now derive an expression for the grand par-
tition function using the basic result given in Eq. (2.20).
This is the same problem solved by Bloch and deDo-
minicis and, indeed, our result is similar to theirs. We
shall treat separately the two cases of Fermi-Dirac and
Bose-Einstein statistics. The two discussions are, how-
ever, quite similar, as are the final formal expansions in
terms of connected graphs.

gi=
2x'i ~

ds, e e*'w (s) (2.19) A. Fermi-Dirac Statistics
The grand partition function is

where i refers to a graph of the ith type, defined by its
topological structure.

With these definitions, the above expression reduces
to

(p'le e~l p&=&pie e~l p&( 2 gigs gL) (22o)
graphs

of Eq. {2.14) in powers of Vi and V2. This causes no diKculty,
since we may replace V& by gIVI and V& by g&V2 and equate cor-
responding powers of g& and g& on both sides of the equation."W. Riesenfeld and K. M. Watson, Phys. Rev. 104, 492 {1956).

5=Trl e ~e e~j, (3.1)

b= Trl e ~e e~ Q {gi gL)].
graphs

(3.2)

where n is the chemical potential. In performance of the
trace operation (Trl j) a sum is carried out over
all number of particles E. The essential simpli6cation
of the grand partition function is now accomplished by
the use of Eq. (2.20) for the diagonal elements of e e~:
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For the operators S and E we use the familiar ex-
pressions

A =pi eI„E=P& &In&„

with ng, = al, tal, . For Fermi-Dirac statistics, of course, n~
can only be zero or one.

Only the diagonal elements of e t ~ are involved in
the trace of Eq. (3.1).Then, according to the discussion
of the preceding section, only the diagonal matrix ele-
ments of the g; (diagonal graphs) are required in Eq.
(3.2). A typical diagonal g then has the form

ag tc ~ - ~

X[e,e, 5. (3.3)

exp[(n —tsar)n)7 falls into one of three classes; If the
state k does not occur in any graph,

P (, (~
—t)~»»= [1+g(~—t)~»7.

If k occurs somewhere as an initial state, it has, ac-
cording to Eq. (3.3), a factor ei. Thus the sum is

For k occurring as a virtual state, there is now a factor
of (1—ei) [again referring to Eq. (3.3)5. In this case,
then,

P g(a—Pet)»(1 ~ )—1

This expression follows directly from Eq. (2.21) on sub-
stitution of the explicit expression, Eq. (2.4), for the
interaction Y. Between each interaction a sum over
intermediate states s, t, I, is introduced, and this
gives rise to the sums over intermediate states s/N . .
in (3.3). The states kins. are the initial states which
have been suppressed on the left side of (3.3). The coef-
ficients a(klan; stN ) involve energy denominators
and matrix elements of the potential. Their form is not
important for the general discussion of this section.

Equation (3.2) may be written in a more explicit
form as

g exp[(n PEI)s—i5{gig2 . g&}. (3.4)
n)hng ~ ~ ~ graphs k

The summation over n&n& means that the occupation
number for every state assumes the value zero or one. As
a first step in evaluating Eq. (3.4) we insert the appro-
priate expressions (3.3) for the graphs but, for the
moment, do not carry out the sums over intermediate
states s, t, u, . Instead, we erst carry out the sum
over the nI, 's. To do this, we observe that each factor

Taking account of these results we may extract from
Eq. (3.4) for 5 the factor"

So D[——1+e(~ &'»7=Tr[e ~ sx5 (3 5)

The factors f&( ' and f&(+) are simply the probabilities
that state k is occupied or empty for a Fermi gas. Note
also that f).( '+ fg(+)=1.

Referring to Eqs. (3.3) and (2.21) we see that, when
the sum over the el, 's is completed, each g; in Eq. (3.4)
is replaced by a quantity

Of course corrections have to be made to Eq. (3.5) for
states occurring in the graphs. %hen this has been
done, it is seen that each summand in (3.3) is replaced
by

a(k, l,e, . ; s t I, )[f,(+)f,.(+) . . 7
X[f(( 'fi' ' 5, (3.6)

C;(kik2 . k,)=
2@i ~

1 t el'
ds kik2 k, (fV) (jv)" ()v) a,a, ~„).s' s—(E—E(,)

(3.8)

Here E),=«(ki)+e(k2)+ - e(k„). The quantity f is an
operator acting only on the Y to its right; a typical
matrix element of fV is

(ktl fvl~~) =f~"'fi"'(ktl vl~~) (3 ~)

If k (or /) is a virtual momentum state, then fi, (+) for
f, (+&7 is chosen. If k (or t) is a member of the set
(ki k„) then f),( & for fi(-)5 is used. Equation (3.8)
provides a formal expression of the content of Eq. (3.6).

To repeat, each intermediate state s in a graph is
weighted by a factor f, (+) (the probability that s is
empty), while each initial momentum state k is weighted
by f),(—& (the probability that k is occupied). This
feature was obtained previously in the work of Matsu-
bara8 and by Bloch and deDominicis. "

To summarize, we have obtained the following ex-

pansion for the grand partition function in terms of
connected graphs (or linked clusters)

&= &o Q {Ci Cl,}
graphs

(3.10)

As described in Sec. II, the sum over graphs is to be
done in two parts. A given graph, dined topologically,
must be summed over all states (kik2 k„). Then a
sum must be made over all topologically different
graphs. Define

Qa= Q Cg(ki k ), (3.11)

and let there be E0 graphs of a given type Gin a typical
"Of course 50 is simply the grand partition function for the

noninteracting system.
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S= Sp expLP Qgj. (3.12)

We can also introduce the Gibbs' potential through
the equation

b= exp( —PQp).

term in Eq. (3.10). Now, a given graph G is counted
Xg! times in carrying out sumssuchasthoseinEq. (3.11)
The reason is that these sums give Eg t terms that cor-
respond to permgtatio&ss of the Cg's among themselves.
This permutation was already carried out once, how-
ever, in using Hugenholtz's theorem (2.16). Therefore
if a graph G occurs Eg times, its contribution is
Qg~g/1Vg!. Finally, the grand partition function is

Q
Ng

S=bs P g
N g=o g Qg I

which can be written as a simple exponential,

B. Bose-Einstein Systems

We begin our discussion of Bose-Einstein statistics
with Eq. (3.4), which is also correct in this case. Now
the sums over occupation numbers must go over all
positive integral values of the ej„however. In addition
Eq. (3.3) must be replaced by

g= P b(klm . ; stN. )[(e,+1)(vi+1) . .j
XLesei ]. (3.16)

We again first sum over the ei."s in Eq. (3.4) before
doing the sums over intermediate state (s, t, e, ).
As before, the factors exp(rr —pcs) fall into three classes
according to whether k occurs later in a graph (as an
initial or intermediate state) or not. For a k not appear-
ing in a graph, the sum is

p P(~ P~s&~s —— = b&(+&

nIP ] gQ Plfg

(3.13) If k occurs as an initial state, Eq. (3.16) givesQp= —P 'ines —P 'Q Qg.
g

It can be simply expressed as a sum of connected
diagrams,

(3.17)

For convenience, we here rewrite Qg, defined by Eq.
(3.11),

where

P &(a P~a&~st„=—
b (+)bz(—& (3.1S)

1 I 1
Qg —— Q ds—P P'

» .~. 2' " s2

bsi-&= 1/(PP~k ~ 1)—
Finally, if k is an intermediate state, we have

(3.19)

fV fV ki k„
s—(E rI,)—

(3.14)

g kk, "k V

d'k,
(2m)' ~

To illustrate Eq. (3.14), we write out the first two
terms (1st and 2nd order in t&). Sums are converted to
integrals by the usual prescription,

Q e&" P"&""(zI,+1)=(b &+&j' (3.20)

We see then that each term in Eq. (3.16) is replaced
by

b(k f e . . s t u .)[b,&+&bit+' jLbs& &bit &

(3.21)
The coritribution of the ith graph is thus

Qi= —(P/2)L'0/(2m)'j' rf'k

rf'l(klan

t&ikl) fs& &fit—
&,

(3.15)

X (kl (
v

~
me) (me

~

v
( kl)fq

t &fi & &f '+&f„'+&

X(d -'Ee P"—1]—Pd
—'},

8= es+ e[

In the limit of zero temperature (p~~), Qs becomes
the energy of the lowest state of the system. From Eqs.
(3.13) and (3.14) one can then deduce linked-diagram
expansions for the ground state energy which are related
to Goldstone's formula. "
"J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).We

have been informed by Dr. W. Kohn and Dr. J. M. Luttinger
that, under certain conditions, Goldstone s expression is not cor-
rect, whereas the results derived from Eqs. (3.13) and (3.14) are.

Qg= Q Cg(ki. ~ k„).
k1k2 kg

(3.23)

The partition function is given by Eq. (3.12), except

1
kgk2 k bV bV . .bV kgk2 k

s —(E EI,)—
(3.22)

Here, in direct analogy to Eq. (3.9), b is a symbolic
operator which introduces the appropriate weighting
factors into the above products. For example,

(kl
~
bv) nus) = b& t~'bit+& (kl

~

t!its)

The + sign is used for a virtual state and the —sign
for an initial (or final state).

Finally, we introduce, as in Eq. (3.11),



j.380 GLASSGOLD, HECKROTTE, AND WATSON

that Eq. (3.22) is used for Cg, and now

(3.24)

The entire development parallels that for Fermi-Dirac
statistics. The only modification which has to be made
is to replace the Fermi-Dirac weight factors fi&+) by
the bk~+) appropriate to Bose-Einstein statistics.

A comment is required for the case of degenerate
Bose-Einstein systems. Let us suppose, for example,
that a finite fraction of all the particles is in the lowest
state k=0. In this case we can treat no as a large elmber
as the creation and annihilation operators for this state
commute. This permits us to use the Hugenholtz
theorem to separate graphs even though many graphs
involve interactions with particles in the state "0".

Care must also be exercised in carrying out statistical
sums, such as in Eqs. (3.18) and (3.20). That is, many
graphs may involve particles in the state "0"but only
one sum is to be carried out over eo. First let us set
so+1—sp. Now in a typical term of Eq. (3.4) let us
suppose that eo occurs p times when all graphs are
considered. Now, instead of Eqs. (3.18) and (3.20) we
have

g gG't
(43)

where SG is the number of graphs topologically equi-
valent to G in a typical term in Eq. (4.1). We recall
that this factor arises because these permutations are
already included in the use of Hugenholtz's theorem.

For each p, that is not equal to a k; in one of the
graphs, the sum over p in (4.1) gives a factor

and may therefore be evaluated by simply counting the
number of terms occurring.

In the approximation that the gas is nondegenerate,
each k may take any of the values (p, p&). Hence the
possibility is ignored of more than one particle
occupying the same state. The sum over all k then gives
a factor

(4 2)

where r; is the number of ingoing (or outgoing) lines in
the graph g;. In addition to this factor, the sum over
(ki k,) permutes the order of topologically equivalent
graphs. Thus, we must introduce [as was done before
in Eq. (3.12)j the factor

p ~(» P~o)»o—iioy po(—+)j(go)u (3.25) P~»— (4 4)

where no is the average number of particles in state "0".
[Because mo is assumed large, the average of the product
is set equal to the product of the averages. j The quan-
tity no, by Eq. (3.18), is just ho& ). We are thus again
led to Eqs. (3.22), (3.23), etc. , so our conclusions are
valid for degenerate Bose-Einstein systems.

IV. NONDEQENERATE GAS

The general method discussed in Sec. II can be
applied to ordinary canonical ensembles as well as
grand ensembles. Thus we now consider a nonde-
generate gas and evaluate the partition function for a
canonical ensemble. I et the number of particles in the
system be E. The states of the system are specified by
the cV individual momenta,

~ p) =
~ pi p~). Thus the

partition function is

Z=1/X! P exp{—P[.(P,)+.(P,)+ '(P~)]}
Pl PN

X Z {gig2 gr}. (4.1)
graphs

This expression follows directly from the fundamental
result for the matrix elements of e l'~ given in Eq.
(2.20), with the g; given by Eq. (2.21) for the case
ki'=k~, k2'=k2, etc.

As before, the sum over graphs consists of two parts.
First, for each g;, the variables (ki, k~, . k„) are each
summed over all momentum variables in the state
~p)= ~pi piv). Then a sum is made over all graphs
that are topologically diGerent. In taking the trace, one
finally sums over all (pi pi)i). The first sum merely
duplicates terms that occur in the sum over (pi .P~),

V ~ ~ V ki. .k, , (4.8)
s —(EEi,)'—6

kg. .k„V

Next, we introduce

)g= (cV/y)" Q exp{—P[e(ki)+ e(k„)]}
k1 .kp

Xgg(ki k,), (4.5)

and the partition function in the absence of interactions,

Zo= (1/& ) r. «p{—p[~(pi)+. '(P~) j}
uN

This leads to the following expression for the partition
function,

Xg
Z=ZO g g, or Z=ZO exp[2 )o3 (4.6)

Ng 6 ggt G

Here the sum over G implies, as usual, a suni over
graphs which are topologically diferent. This is the
same kind of expansion as given above for the grand
function, i.e., an exponential of a sum of linked clusters.

For applications, we require the free energy, which is

F= —P ' lnZ, or F= —P-' InZO —P
—'g tlg. (4.7)

G

For convenient reference, we write in full the expression
fol )G.'

) =P/ )" 2 {—PL (k)+ . '(k.)j}
k1 ~ ~ kt

1X, dss '«p{—Ps}
2vri ~
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with
y= P3/(2s)'$(2sP-'M)',

J b ——o(kg)+ o(k,). E'~Py-: ~
p )b=16~-*'—

~

—
~

p(2l+ 1), d. ~
'U (Mj i=o

Xexp( P~—'/M)8q(a) (4. .14)

We note the absence of weight factors in intermediate
states (nondegenerate gas) and the Boltzmann factor
for the initial states of a graph.

As a simple application of this result, we evaluate the
second virial coefficient and obtain the result of
Uhlenbeck and Beth."For the second virial coefficient,
we need consider only those terms in which a single pair
of particles interact. Let these have momenta k and 1.
Then

We can now evaluate the free energy, using Eq. (4.7),
and thus the equation of state, from the familiar relation

(BF) 8(lnZ)
I

=t3 '
&azi o aV

When Eq. (4.13) is substituted into Eq. (4.10), the
(4.9) result is

2 h~= (»/~)' 2 expL —0("+«)j
6 kl 2%i

Here (P is the pressure and, of course, P '=kT. The
immediate result is the first two terms in the virial
expansion.

X ds s—' exp( —th)
al

X kykg V V — V ~ ~ kgk2, 410
s+ ob+ot E—

where only those terms in V are kept which describe
the scattering of the two given particles. Introduce the
variables

P=k+I, x=k—1, (4.11)

to replace k and 1. Since P is a constant of the motion,
the energy denominators in Eq. (4.10) become

s+ ob+ oi E=s+ To —T, —
where To=K'/M and T is the kinetic energy operator
for the relative motion of the two particles.

The quantity

R(s) =V+V V
s+ To—T

+V V V+ . , (4.12)
s+To—T s+To—T

which appears in Eq. (4.10), is the two-body level shift
operator. On introducing a representation (», l, nz),
where / is the angular momentum of the two particles
and m is its component along the axis of quantization,
one can perform the integration over s in a straight-
forward way":

1 t' 1 krP ~
ds—e t"(~~&(s) ~~)= P(2l+1)&~(~). (4.13)

2+i ~ s2 'QgJf l=o

ZO= Tr/Oe ~~j. (5.3)

We give two different techniques for evaluating O.
The first is formally very simple, but leads to somewhat
more cumbersome expressions to evaluate than does
the second method. In Appendix A the equivalence of
the two methods is demonstrated.

It is convenient to think of 0 as a generalized scat-
tering operator with v incoming arid v outgoing lines,
as is illustrated in Fig. 3. Connected graphs may then
be constructed, as in Fig. 4 by connecting 0 to graphs
involving the matrix elements of V.

In evaluating 0, we first suppose that the diagonal
matrix elements of 0 either vanish or give a negligible

V. EXPECTATION VALUE OF AN OPERATOR

In this section we consider the ensemble average of
operators of the form

0=Q 0„(ao ta„ ta, t )(a,a„a, ). (5.1)

In this expansion, the vth term is a product of v

creation and v annihilation operators. The coeKcient
O„depends on the states of these 2v operators and the
sum goes over these variables also. This expectation
value of 0 is denoted by 0. For the grand ensemble we
have

50=Tr[e ~Oe ~~j.

For the canonical ensemble, this expression is replaced
by

Here 5g(b) is the scattering phase shift for the lth partial
wave. If the two-particle system has bound states, some
additional terms are required in Eq. (4.13).

' G. K. Uhlenbeck and E. Beth, Physica 3, 729 (1936).
2' See, for example, the discussion in reference 16.

FIG. 8. Generalized scattering operator with v ingoing and v
outgoing lines.
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To obtain 0 for the canonical ensemble, we may
carry out a similar analysis and consider

k2---

Fio. 4. Simple scattering graph linked to the
pair-correlation operator O.

kI

X(li) =TrLe et~+~a&j.

Now X(0)=Z and

dX(l~)
p

—1 =Trl Oe
—~~]=Zo.

dP ), p

In analogy to Eq. (4.6),

(5.10)

(5.11)

contribution to O. At the close of this section, the con-
tribution of the diagonal elements is treated separately.
The reason why the diagonal elements require special
consideration is clarified in Appendix B by a simple
example whose solution can be found by other (ele-
mentary) means

We define the function, for real A. ,

X(li) =Zo expL+a )aP.)j, (5.12)

dx(X) d)g(li)

where )a is the quantity defined by Eq. (4.5), but with
V replaced by V'. Di6'erentiating, one obtains

Y(lt) =Tr )~axe e(EI+ io) j— 5.4
The average of 0 is thus

For X=o, this simply reduces to the grand partition
function, i.e., F(0)= S. Furthermore, the first derivative
of this function yields the average value of 0 defined
in Eq. (5.2):

d)gP)
O= —e-'2

z=p
(5.13)

dY—P-' =TrLe ~oe—~a(= 50.
d) yp

(5 5)

and thus

V'= V+lio,

Il+XO= E+V'.

(5.6a)

(5.6b)

Of course the connected graphs involve both the gener-
alized 0 interactions and the pair interactions V.

To be specific, the contribution of a particular type
of graph QgP), defined by Eq. (3.14), must now be
considered a function of A.. Of course these quantities
reduce to the previous functions for A. =o:

If I' can be determined as a function of X, the problem
of 6nding the average value of an operator is reduced
to once differentiating Y(X). The evaluation of Y(li) is
achieved by simply taking over the development of
Sec. III, except that V is replaced by

Before discussing the contribution of the diagonal
elements we present an alternative procedure for evalu-
ating 0. We first recall the basic expansion in graphs
for a matrix element of e &~, which is given in Kq.
(2.20). In evaluating the average value of an operator,
we are concerned with matrix elements of the form
(ploe e~l p). The direct generalization of Eq. (2.20) is
then simply

(ploe- Ip)=(pie- Ip) p Logi "g.]. (5.14)
al'1 graphs

The "sum over all graphs" has the following meaning
in this situation. We refer to the vth term of the sum
in Eq. (5.1), which goes over all the states of the 2v
operators (a, ta„ ta, t )(a,a„a, ) in O. In perform-
ing this sum we obtain all possibilities of connecting 0
to the original graphs. The graphs g which are con-
nected to 0 in this way Inay now be separated from the
remaining factors in Eq. (5.14) with the result

QG(0) =Qa. (5.&) &ploe '"Ip)=&pie '
I p)x 2 Lgi" g~j, (5.15)

all graphs

Again, in analogy to Eq. (3.12), we obtain an exponen-
tial form for Y(li),

x=&pl 2 Log, "g,.j, l p). (5.16)
Y(lb.) = 5o expl P Qa(l~) j. (5.8) all graphs linked to 0

Therefore,
d Y(X) dQ, (X)

dA. ), p

and the average value of 0 is

dQaPt)

dX g=p TrLe~~oe pa~ (5.17)

In Eq. (5.16) each of the graphs gi. .gI. is linked
directly to O. The sum includes all connected graphs
involving matrix elements of O. Since 0 has v incoming
lines, we must always have 1.'~& v.

In performing the sums over graphs, we sum inde-
pendently over the graphs of p and over the graphs of
the last factor P»i «»i„Lgi gz) in Eq. (5.15).

(5.9) Therefore,



QUANTUM STATISTICAL MECHANICS 1383

where

x =Tr[ P [OCi. Cr, ]g].
all graphs

(5.18)

is that, in the evaluation of the diagrams of A(q, l~),
cs is replaced by (n+X) in the weight factors f,&+&.

Carrying out the differentiation in Eq. (5.22), one
obtains the following formula for the average:

The C's were defined in Eq. (3.8) and fo contains the
weight factors f& i appropriate to the outgoing lines
of O. Thus, as in Eq. (3.9), the matrix elements of fo are

BA(q,h)
Og ——5-' P (5.24)

(q'r's'
~
fo~ qrs )

=f ' 'f ' 'f ' ' "(q'r's' "
I ol qrs" )

To illustrate this result, we consider the very simple
example,

For Bose-Einstein statistics the operator f in Eq. (5.18)
is replaced by b, defined in Eq. (3.22).

An alternative way of writing Eq. (5.18), valid for
either Fermi-Dirac or Bose-Einstein statistics, is

Now,
8

[eaK+hag]
a BA

gaN
7

80!

Og=E=+q e,.

so that the familiar result is obtained by this procedure,O=x=Tr —e ~—ex Ogi gi, g . 5.19
$0 6 SS=85/8n.

Og=g, O(q)e„ (5.21)

where we have simply contracted the two operators
referring to the same state and incorporated all other
factors into O(q). Now,

go„—Tr[eaxO„e PH]—
=Q —(Tr [e ~+'"so(q)e ~~]), (5.22)

c dX X=O

The sum over graphs here is for all graphs linked to 0.
This expression makes use of the notation of Bloch and
deDominicis.

We have previously indicated that the diagonal parts
of 0 have to be treated in a special way. This may be
illustrated with the particular example

O=Z, ,(q'IOlq)a, ta„

i.e., with an operator which has just one ingoing and
one outgoing line. The leading term in x is clearly

Z. f.' '(qlolq). (5.20)

This does not conform, however, to the general result
of Eq. (5.14).The correct result is obtained by omitting
from the sum over q in Eq. (5.20) those terms occurring
in intermediate or initial states in the [gi. . gr,].

The same conclusion may be reached more simply
the following way. Let us separate from 0 a typical
diagonal term, i.e., one for which some ingoing line
equals some outgoing line. Then Eq. (5.1) may be
rewritten as

For a nondegenerate gas, we use the canonical en-
semble (Sec. IV) and, by analogy with Eq. (5.18), write

(E~"
O=x= Z

graPha ki gr ( P )
X(ki' ' 'k )[Ogi' ' 'gr']alki k,). (5.25)

In conclusion we note that the final formulas for the
two procedures described in this section, Eqs. (5.9)
and (5.18), are quite different. It is shown in Appendix
A that these actually give the same result. In Appendix
B we discuss in more detail the source of the compli-
cations that occur when 0 has diagonal elements.

VI. PAIR-CORRELATION FUNCTION FOR A SYSTEM
OF INTERACTING FERMIONS

Ke now illustrate the above discussion of expectation
values with the example of the pair-correlation function.
We consider a system of interacting fermions and, in
doing so, go beyond the familiar results for noninter-
acting particles. "On the other hand, we treat the inter-
actions only in terms of the simple scattering graph
shown in Fig. 1, and give a definite numerical result
for the nondegenerate case. The reason for these re-
strictions is that we are now primarily concerned with
illustrating the formal procedures discussed in this
paper. This particular example has been studied with
other methods by Blatt'4 and Karplus and Watson. 25

We define the pair-correlation operator as

A. (q, lI,) =Tr[e ~+'"so(q) e—ea]. (5.23) +(q —q') r2]ap a; a,a„, (6.1)

which leads us to define the following function of q &(rirg) = 2 exp(i[(p —p') ri
and P, (rV )Ar pp ss

This quantity may be evaluated by either Eq. (5.9) or
Eq. (5.18)." The new feature implied by Eq. (5.23)

"If O(g) itself contains diagonal elements of importance, the
procedure described here must be applied again.

'8 See, for example, the discussion by L. D. Landau and E. M.
Lifshitz, in Statistical Physics (Pergamon Press, New York, 1958),
paragraph 117.

'4 J. Blatt, Nuovo cimento 4, 430 (1950)."R.Karplus and K. M. Watson, Phys. Rev. 107, 1205 (1957).
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where (E')A, is the average of the square of the number
of particles. As discussed in detail in the previous
section, the diagonal part of 8 will have to be discussed
apart from the nondiagonal part. The diagonal part of
8 is

where

8d —— P b(q, p)e,e„,
(Xo)A, - (6.2)

b(q p) =1 exp['i(P 9) 'r3 (6 3)

and r=ri —ro. We note b(q, q)=0, so that the sum in
Eq. (6.2) involves only the terms for which p Wq.

In treating the diagonal operator 8q we recall the
discussion of the preceding section, particularly Eqs.
(5.22) and (5.23). In this case we have a sum of products
of two numbers operators and the expressions are only
slightly more complicated than in Sec. V. In this case
we introduce the function

In this expression the dependence on (p,q,X~,X,) has
been suppressed inside the square brackets.

In evaluating the function A(p, q; X„,X,) as the ex-
ponential of a sum of topologically diR'erent graphs, we
now make the main assumption of this section, which
is to consider only the simple scattering diagram of
Fig. 1. Its contribution Qi was evaluated in Eq. (3.15),
and now becomes

Qi(P, q; ~.,lip) = ——Z(@lsIkf)
lk

Xf.~-&(p,q; li„l,)fi~-&(pq; &.1,). (6.9)

To complete the evaluation of (8d)A„we need only
perform the differentiations indicated by Eq. (6.8) on
bo and Qi, which are given in Eq. (6.7) and Eq. (6.9),
respectively. Without going into further detail, the
final result is

~(p,q; 7,p, ) = S,(p,q; X„,~,)
X-p[Z. Q.(p,q;7.,1,)j, (64)

&s Av=1

and evaluate the average value of 0~ with the formula
[g f,&-&e-'&' —Pg exp[ —ik rj

(Xo)A„~ kl

X(kl~s~kl)fA 'fA'+'fi 'j'. (6.10)
(t&d) „=g b(P, q)

— logA(P, q; ),„X,) j A, =o, &„=o.
7C N „BXq

(6.5)

The evaluation of i&&. (p,q; X~,X,) follows directly the de-
velopment in Sec. III for the grand partition function
[Eq. (3.12)j. The only essential change is the replace-
ment in the statistical factors fA &+&, [Eq. (3.7)$ of n by
(n+),,b A,+X„bA,):
fA& &(P,q; X„,X,) = [1+exp(PoA (n+X„b—i„

+X,b„)}j-i, (6.6)

fA&+&(P, q; ),„,Xo) =1—fA' '(P,q; X„,X,).
Thus the function Sp(p, q; X„,X,), which occurs in Eq.
(6.4), is

bo(P, q; X„,X,) = gJ fo&+&(P,q; X„).,)j-'. (6.7)

In a similar way the contribution Qg(p, q; X„,X,) of a
graph of type G is evaluated from Eqs. (3.10) and (3.8)
by using the new statistical factors of Eq. (6.6).
Finally we note that the differentiations in Eq. (6.5)
lead to an average value for 8~ which consists of 6ve
terms,

The statistical factors in this equation are the original
ones given in Eq. (3.7), since now X~=X,=O. The con-
tribution of the fifth term in Eq. (6.8), i.e., the term
containing (o&'/B, ~H,,)PG Qg, has been dropped since
it is smaller than the others by a factor of 1/'U. In the
derivation of this result it has also been shown

(&')A, =l Z[f, ' ' —P 2 (kl

Is

l�»)f"
'f"+'f ' &3' (6»)

In the limit of U —+ op one also verifies (E')A, =(Ã)'A, .
Finally, for complete degeneracy, Eq. (6.10) reduces to
the familiar formula

(ed)A~
——1—[Q e

—* 'j'/[ g 1g'. (6.12)

%e next evaluate the contribution from the nondiag-
onal part of the pair-correlation operator. We shall use the
second n1ethod of calculating average values described in
the preceding section and summarized by Eq. (5.18) . The
only nonvanishing graph involving a single scattering is
illustrated in Fig. 4. In accordance with the discussion
in Sec. III, the contribution of this diagram is obtained
f10111

o&'bo (o&bo) o&

(~.).,=Z b(p, q) ~.— +I, I r, Q.
BX~N, & p&1~„) M,o 0

(Oboe 8 t'

+I I ZQ~ +I &Qg I

H, W.~ n , &BX„

Ci(kl) =
2x'i ~

ds s—' exp( —Ps)

1
X kl e V ut

s (E oA
—pi)—

( 8 ) 8
g Qg ~+ g Qz . (6.8) where the corresponding graph is in Fig. 4. When Kq.

(BX, & ) N~81&,o & A„=o, A, =o (2.4) is substituted for V and Kq. (6.1) for 0 and the
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contour integration is carried out, this becomes

Ci(kl) =Q b(kl, ml)(lnzji
~
kl) fg( 'fi' 'f„'+'f '+'

The diagonal contribution, Eq. (6.10), now assumes
the form

X(~ +~.—~) —«) '

XLexp{—P(e +e„—e),—ei)) —1]. (6.14)

Here b is simply the coeKcient of the operator appearing
in the definition of 8 in Eq. (6.1),

b(k'II';kg)=exp{iL(k —k') ri+(q —q') r27). (6.15)

Xexpt' —iq r+n y—'(I'$

—Pw(0) d'k d'l

XexpL —ik r+2n —y'(k'+P) j, (6.18)

(W)Ay= ((E')Ay)&="U 2(2%)') d'(t exp(ix —qq')

The last factor in Eq. (6.14) comes from the contour and K . (6.11& becomesq. (.
integration. The complete nondiagonal contribution is
then obtained by summary over k~ and k~ ..

(8„$)A„= —2 g b (8,me) (nnz
~
8

~
kl)

I(;lmn

Xj(' 'fi' 'f '+'f '+'(~ + (. i) —'—
We note that when these last summations are intro-
duced, the two terms of Eq. (6.14) give equal contri-
butions. This may be shown with the help of the relation

f~(—)f (+) exp) P(~ ~~)j=f~(+)f ( )—
and by relabeling the sums in Eq. (6.16). Finally, this
expression may be simplified by using Eq. (2.5) for
(em

~

()
~
kl) and Eq. (6.15) for b (klitnm), and by replacing

sums by integrals in the usual way,

—Pw(0)(2ir) ' t d'k d'l

XexpL2~ —~2(k2+I2) j (6 19)

~&=P (k2/2').

The square brackets in Eq. (6.18) is the same as that
in Eq. (6.19) except for the dependence on r. But this
dependence may be removed by completing the square
in the exponentials in Eq. (6.18), and leads to a factor
exp( —r'/4y') for each bracket. Thus Eq. (6.18) is
simply

(8d (r) )A„= 1—exp (—r'/2y'). (6.20)

Xg(k+.1—m —n) fy( )fi( f (+)f„'+'

XexpL —i(k —m) rj(e„+e„e),—ei)-—'

XLw(k —m) —w(k —n)j. (6.16)

Here z represents the Fourier transform of the potential

The second term is a quantum-mechanical correction
arising from the repulsive effect of the exclusion prin-
ciple. It is important only for particle separations of the
order of the deBroglie wavlength, i.e., for r

Returning to the nondiagonal contribution in Kq.
(6.16), two integrations can be done immediately with
the aid of the transformation k=x+k', 1=x—k',
m= x' —k", n = v.'+k". The result is

w(q) = d'r v(r)e—'&'.
(8 q)A = —('U'/(1P)A)Py ' exp(2n)L(2ir)'('y] 'I. (6.21)

(6.17)

The complete expression for the pair-correlation
function is the sum of the diagonal and nondiagonal
contributions, i.e., the sum of Eq. (6.10) and Eq. (6.16).
We shall now obtain a quantitative estimate of the
pair-correlation function by making the further ap-
proximation of nondegeneracy. Thus the statistical
factors are now

f~(—) ~ea—Paib f (+)~1

I= d's v(s) d'k exp( 2y'k' —ik x]—
al

X)I d'k' . (6.22)
k"—k2

We have used Eq. (6.17) for the Fourier transform of
the potential and put x= r—s. The integration over k' is

2~z " g'~ ~ ].
dk' k' -= —', (2ir)' —(e'"*+(,—"*)

x "0 k 2 —k~ x

In addition we shall ignore the exchange part of the where the contour corresponding to the principal value
potential. has been chosen. The integration over k can also be



1386 GLASSGOLD, HECKROTTE, AND WATSON

carried out and the final. result for I is where

v(l r —xl)I= (22r) 2)2(2y) ' ~d'20 exp( —x2/2y2) . (6.23)
*

S

~o, ,=—&0-&;, (A.2)

Q=(olol1)(1lvl2)(2I vl3)" (~lvlo). (A.3)

I=(2 )"'(4v) ' (). (6.24)

The complete calculation of the nondiagonal con-
tribution also requires evaluation of the chemical poten-
tial e from the total number of particles. Neglect of the
first-order effect of the potential in Eq. (6.19) leads to

If we are interested in correlations for separations con-
siderably larger than p, we may regard v as constant in
doing the integration and obtain a closed form for the
integral:

The label zero refers to the initial state, and the inter-
mediate states are enumerated with the integers from
1 to J. In the carrying out of the comparison, sums are
not made over the intermediate or initial states in this
expression. The factors fO, fi . . fJ represent the appro-
priate statistical factors f'+'

The analogous term in Eq. (5.9) is

( (fO) ( fid" 'Q
I

—II—
2~i ~ Es'I &s+aO, ,)

e- =(u/(N)A, )2(2~le) '. (6.25) Xi
Is+30 J

Collecting all these results, one finds the nondiagonal
contribution to the pair-correlation function to be
simply v(r)/kT. Adding this to the diagonal part for
r&)y, one has for the pair-correlation function

(e)A, ——1—v(r)/kT. (6.26)

This is just the classical result and it serves to verify
the techniques introduced in the preceding section. In
addition it should be noted that the result of Karplus
and Watson" for the nondegenerate case may also be
shown to lead to this result.

In conclusion we should like to point out that the
entire discussion of this paper refers to general anni-
hilation and creation operators satisfying the commu-
tation relations for Fermi and Bose statistics, and not
just to those referring to free-particle states. They may,
for example, refer to collective variables such as those
introduced by Bogolubov and Sawada. ~
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In addition to this, there are J other terms obtained by
cyclic permutation of the factors in Q. A typical permu-
tation of Eq. (A.4) is

fJ l+1——pT(" = ds e-~z (J—i+1I Vl J'—1+2)
2 J s

fJ 1+2—
x (J f.+2-l vl -J f,+3)"—

S++J—l+1,J+l+2

fJ(l)
X

S+~J+ l+1,J

0
(1)

(zl vlo)
S+~J+l+1,0

x(olol 1)(1Ivl2) ".
X(J—fl Vl J—/+1). (A.5)

Now, the matrix elements of t/' and 0 in this expression
may be combined and set equal to Q, defined by Eq.
(A.3), so that one has

1 f 1
pT(l) —

Q
1 ds e ezf(l) f(l)—

2%i J S+~J 1+1,J l+2— —

APPENDIX A

We demonstrate here (for Fermi-Dirac statistics) the
equivalence of the two methods given in Sec. V for
evaluating O. An analogous demonstration can be given
for the Bose-Einstein case. The contribution of a
typical graph to Eq. (5.18) may be written

T= —. "«e '*Ql —
II

— —
I

.
I

22ri ~ ( s ) 4s+60,1) Es+120,J)

2 N. ¹ Bogolubov, Nuovo cimento 7, 794 (1958).
'7 K. Sawada, Phys. Rev. 106, 1372 (1957).' David J. Thouless, University of California Radiation Labora-

tory Report UCRL-8696, March 23, 1959 (unpublished).

If the new variable,

X. f"' (A.6)
S+~J- l+ 1,J—l

S =S++J+l+1,0 (A.7)

is introduced, the energy denominators in Eq. (A.6)
may be rewritten as

1 1
~ ~ ~

S ++0,1 S +~0,2 S ++O,J+l+1 S +z-(O, J+l+1

1
X— . (A.8)

s +~0,J+l s ++0.J
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At the same time, the following equation holds:

e—pz —e—pz'ep(E J+1+1—Ep)

Because we have

(A.9)

and for lI, =O,

g(k,0) = 1. (8 5)

Equation (8.3) is easily verified directly, since we have

f~
(+)e (~ P&k) ——f~ (6) p i g (k 1) —e e&i n—i; (8.6)

1 t
Qs

J
2'(') = P'P—Qf-, f

2x'i 4

the second factor in Eq. (A.9) may be used to convert
the fi's in Eq. (A.6) into the fo fz of Eq. (A.4).

Finally, the complete term associated with the second
method is

Now, following the notation of Sec. III, one obtains

b= TrLe ~e ~~j= bo P II C(1,1)), (8.7)
l1, l2, Is

where (for /), = 1, 2, 3, ~ )

1 1 1
Xe—Pz ~ ~ ~

s++o, l s++O, J

C(k, l),)=
2x'i ~

For lg, =o,

ds exp( —Ps)Z (4+))b 4f (—) (8 8)

~ ~ ~

s (s+~o, i)' s+~o, z

C(k, ly) = 1.

Then sum over these factors is easily carried out,

(8.9)

This may be rewritten as

1
~ ~ 0

s s+&o, i (s+&o,z)'

p 'LQfo f~j
2+i ~

1 1
dse t' ———

ds s s+Ao, i

H =E+V, V=Q), b),no (8.1)

Here each b~ is a real number representing the "poten-
tial energy" of a particle with momentum k. This
example is chosen because the grand partition function
may be evaluated directly to give

&=IILI+expf —P(o +b ))] ' (8.2)

We now evaluate 8 by the methods of Sec. III, using
Eq. (2.20), which now takes the specific form

which, after partial integration, is simply T. %e have
thus shown that the terms of Eq. (5.9) combine in
groups to give the terms of Eq. (5.18).

1

APPENDIX B

We attempt to clarify here the complications which
arose in Sec. U in handling diagonal terms in the
operator O. For purposes of illustration, we consider
the evaluation of the grand partition function for the
Hamiltonian

2 C(k~1) =1+f),' 'Le ~"—1)—= 1+L)„(8.10)
l=0

where I& is simply the second term of the result.
Equation (8.7) is clearly equivalent to Eq. (8.2), since

L'1+exp(n —Pop) jL11Lk]=1+exp(a —P(oq+b), )),
the first factor on the left comes from the bo in Eq.
(8.7).

To see the relation of this development to the ex-
ponential formula of Sec. III, we consider

IILI+Loj=1+2 Li+ Z L~ L) ~

I(, pf (I I I

+ 2 L) La"L)" + . (8.11)
Isl gA. 1 I (PI / I

1
II[1+L.]=1+2L,+—(Z L.) +".

=exp(Pi L),).
(8.12)

This shows the relation to the graphical analysis of Sec.
III, since each I.~ is a sum of connected graphs. The
factorials here arise just as they did in the sums of
Sec. III.

The error in Eq. (8.12) may be seen by examining

in~(1+LE)g= P In(1+LE) = PLLi+ (L),o)j. (8.13)

Now, if terms such as LA,
' are negligible, we may write

this as

e ~~=e ~~ Q IIg(k, l(,).
& l& lm~ ~~ k

Here, for /I, =1, 2, 3, , we have

(83)

g(k, lq) = — ds exp( —ps)Z "".+')b), "n), (8.4)

the expression (8.12) is valid. This condition is satisfied
when the b& are very small. The corresponding case in
Secs. III and V obtains when the matrix elements of V
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and 0 are individually very small (for example, of order
'V '), a finite result being obtained only on performing
a sum.

lim 8(P' —P) ='U/(2n)'.
P'-+P

(C.1)

We replace this by a new function D,(P'—P) which
depends on a parameter a and is normalized to unity,

d'f A. (I) = 1.

The matrix element of the interaction between two
particles is now written

v =vp(k' —k) D.(P'—P) (C 2)

where ep is a function of the relative momentum k of
the colliding particles and P is the total momentum
(and similar primed variables after the collision). The
corresponding coordinate-space representation is

APPENDIX C

It was mentioned previously in applying the Hugen-
holtz theorem that it is convenient to suppose that
momentum conservation is violated by a small amount
at each interaction. This effectively decreases the
likelihood that particles in different graphs will have
the same momentum. It also means that we may ignore
the possibility that two lines in the same graph refer
to the same momentum state. This is not at all an
unphysical assumption because a small violation in
momentum conservation cannot have a macroscopic
effect. To see this, we need only recall that two particles
interacting in a real gas always do so in the field of
other particles, which then receive some momentum
transfer from the two colliding particles.

We shall now illustrate this idea with a definite model
for the relaxation of momentum conservation. The
usual 8-function, in a box of volume 'U, satisfies

particles near a. Finally an appropriate sum must be
carried out over all regions of size d ' at all points a
within 'U. We may think of this as being an average
over all local fluctuations in the force-field in which
clusters interact.

We define

so that
P= (2prd'—)

—
&,

D.(0)=H. (C.6)

Equation (C.6) should be compared with Eq. (C.1),
noting that H has the dimensions of a volume. It is
important to assume that

H(('U.

We may write the matrix element vo as

(2pr)P
$0~ 7IJ,,

'U2

(C.'I)

(C.S)

where p is the average interaction energy of two par-
ticles and r is the corresponding "interaction volume. "

Consider now a diagonal graph with a number v

interactions v. I.et the ingoing lines be "tied" to the
outgoing lines. There are then 2s lines and v 8-functions
(or 6 -functions). If there are q external lines, (ingoing
or outgoing) there are 2v —

g integrations over virtual
states. One of the h-functions (D,-functions) is re-
dundant. Integration over the remaining (v —1)
8-functions (6;functions) leaves v —q+1 free inte-
grations, each one giving a factor

'U 'U

~d'k~
(2~)» (2~)P r

Furthermore, there are (v—1) energy denominators, to
each of which will be assigned some average energy &.

If momentum is conserved exactly, i.e., if the normal
8-function is used, this graph gives a contribution,

rr =8 (r' —r)8 (x—x') (8p (r))A,(Z.(x))p, . (C.3)

Here r is the relative —and x the center-of-mass —coor-
dinate, and (Vp)A„and (Zu)A, are the Fourier transforms
of vo and h„respectively.

For example, we might choose

h. (P'—P) = (27rd')
**expL

—(P' —P) '/2d'
+i(P' —P) aj, (C.4)

which has the transform

A, (x) = expL —(x—a)'d'/2g. (C.S)

(C.9)

If we sum over all S possibilities for each of the q
incident lines, we obtain for the contribution of the
graph under consideration

With this form, the interaction between two particles
is important only if their center of mass is within a
distance d ' about the point a. Thus a linked-cluster
now involves only particles interacting in the neigh-
borhood of a. This is consistent with our physical inter-
pretation of momentum being transferred to other where I is of order unity.

(C.10)
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a H
Go( '=—Go G(') =—G

'U 'U
(C.11)

On the other hand, if we relax momentum conserva-
tion and use the 6;function, the above estimate is
changed only by the replacement of '0 in Eq. (C.9)
with H defined by Eq. (C.7). The resulting contri-
butions would be

from a single graph:

'U

(G1G2)A d pLG1 G2 j
(2m)' ~

=12E'(r/'U) '('U/r)

=12(1Vr/'U) 1V

(C.13)

7
G(—1) (a) —~(a) G(—1) —~

'U 'U
(C.12)

Consider next the contribution from two discon-

nected graphs Gi and G2, each of which has one line

describing a virtual particle in the same state p. When

we sum over p and use a 5-function, the two graphs

give a contribution which is the same order as obtained

The superscript a indicates a quantity calculated with
the h,-function.

On summing over all points a of volume II, as men™
tioned above, an additional factor "U/H is obtained in
Eqs. (C.9) and (C.10). This is in agreement with our
assertion that a small violation of energy conservation
cannot aBect the macroscopic properties of the gas.

If ore virtual integration is suppressed in the graph,
a factor of 'U/r must be removed from G and Gi'i, with
the result,

With the 6 -function, we find, however for the same
quantity

(Gi&'G2")A = (H/'U)'I'(1Vr/'U)N. (C.14)

When we sum over "regions" a, this is multiplied by
'U/H. The result is then of order H/'U times that of Eq.
(C.13). From this we see that the two graphs give a
negligible contribution to the thermodynamic functions
if the 6 -function is used. That is, the relaxation of
momentum conservation permits us to neglect the pos-
sibility that two or more virtual momenta have the same
value.

The important practical consequence of this result is
that all graphs must be evaluated just as if no two lines
referred to the same state k, each getting its proper
statistical factor of f&' i or f&&+&. In this way the
Hugenholtz result can be used and linked-cluster ex-
pansions obtained for the thermodynamic functions.
Finally, these expansions will give the same results as
those obtained by Thouless. "


