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In the Grst part of this paper a variant of the idea of reciprocal static solutions of the gravitational Geld
equations is developed. Thus, given any static solution of Einstein's vacuum equations R&&=0, a one-
parameter family of pairs of solutions of the Geld equations with scalar Geld, vis. , R&&= —

Ift V;zV;&, g~'V;&&= 0,
can be written down by inspection. The special cases of spherical symmetry and axial symmetry are treated
as explicit examples. In the former case all the solutions of the Geld equations are obtained in this way. In
the second part of the paper the theory is discussed from a physical point of view, for which purpose the
motion of a test particle in the spherically symmetric Geld is treated in some detail.

1. ImRODUCTIOZ

~l ECIPROCAL static fundamental tensors have
~ ~ ~ been considered by the author in previous papers, '
both in the context of Riemannian geometry and of
the field theory with asymmetric fundamental tensor.
The basic idea is this. Let gbt (k, t=1, 2, , n&~4) be
the fundamental tensor. Suppose that there exists a
coordinate x' such that

gbt, ,=O, g.,=O, (a, b=1, 2, , s —1, s+1, , st) (1)

i.e., the fundamental tensor gbt—= (g,b,g„) is "static with
respect to x'." Then the fundamental tensor 'gI, ~

—= ( g,b, g„) reciprocal to gbt is defined to be

'g»=((g-)"'" "g.b, (g. ) ').
In particular, if gA, ~ is symmetric and its Ricci tensor
E~~ is zero, then the Ricci tensor 'E~~ belonging to 'g~~

also vanishes. Hence, choosing e= 4, any "static"
solution of the gravitational field equa, tions in empty
space at once implies the reciprocal solution 'gj, ~

=((g„)'g.b, (g„) '), where s need not necessarily be 4
(x4 being the time coordinate). Further, if get defines a
distribution of matter which is static in the ordinary
sense (s=4) and 'gbt the reciprocal distribution, then
the total energies of the two distributions are related by

(3)

In the 6rst part of the present paper a variant of the
idea of reciprocal solutions is developed in which the
introduction of a scalar Geld is contemplated, such
scalar fields having been introduced for instance by
Hergmann and Leipnik' and by Vilmaz. ' It will be
supposed that the metrics to be considered are four-
dimensional, and static in the ordinary sense, i.e.,
n=s=4, though these restrictions are not essential,
Then the main forrnal result to be presented is that the
field equations which arise from the Lagrangian

I-= R+tsg»V, bV , t, (tt= const) . . (4)
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where V is a scalar field, ni2'. ,

~1 i= —pv;av;i, (~)

(6)

2. STATIC SOLUTIONS OF THE EQUATIONS
WITH SCALAR FIELD

(a) To arrive at the required result it is convenient
to deal directly with the variational principle. For this
purpose consider the scalar curvature density% of the
space whose static metric is adopted in the form

gi i= (e 'g b, e «)—
It is not difficult to show4 that it is given by

5= e +&$5*+2ft" (2o,.b+y, .b+o,.o , b+a .y ,b. .

+V;.~;b)j, (9)

where Q* is the scalar curvature density of the V&

whose metric tensor is g,~ and the subscripts following

4 H. A. Buchdahl, Quart. J. Math. (Oxford) 5, 116 (1954).

have the one-parameter set of pairs of (static) solutions

g«=((g«)' 'g b, (g44)"),

V=X lng44, P= & (1—2tsX')', X= const.

if (g,b, g44) is any static solution of the usual vucNNm

equations Rbt=O. [It should be noticed incidentally
that when V/const, then Eq. (6), which arises from

(4) by variation of V, is already contained in Eqs. (5)
by virtue of the contracted Bianchi identities. $ A

result corresponding to that expressed by Eq. (3) again
holds. When X is set equal to zero one has the special
case of the usual reciprocal solutions of the vacuum
ecluations.

In the latter part of the paper spherically symmetric
and axially symmetric solutions are written down
explicitly, these being generated by the well-known
Schwarzschild and Acyl solutions, respectively. The
world lines of a test particle, for given gf„-~ and V,
correspond to the geodesics of a space whose metric is
conformal to gf, ~. This result is used in the course of a
physical discussion of the spherically symmetric
solutions.
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so that

t %(P)+2 (1—p')g~v, .v, bjd'4ix=—5J Fi(1)d&'&x (11)

for all variations of the g ~, v which vanish at the
boundary. Now if (g,b,e'") is a (static) solution of the
field equations for empty space, then the right-hand
member of (11) vanishes. At the same time, keeping
in mind the remark in parentheses following Eqs. (7),
the field equations (5) and (6) will be satisfied by the
functions gbi, V [gbi=—('g, b, 'g44)$ if

(g+pn"'V V. i)d'"x=0 (12)

for arbitrary variations which vanish on the boundary.
If one now takes gzy= 8 g g, g44= t', V= 2Xp,
where X is an arbitrary constant and P= & (1—2@X')',
then, according to (11), the condition (12) will indeed
be satisfied. The result stated in the Introduction is
therefore proved.

(b) The total energy U' of a static distribution is
given by

U=, (Z'4 —Z .)dxdydz= —(4n) ' t $44dxdydz. (13)

Using the present notation, one Ands'

g4 pflab(zv)

so that the values of the energy corresponding to the
two possible values of P Laccording to (7)j are nu-
merically equal but opposite in sign. The result em-
bodied in Eq. (3) is a, special case of this.

3. SPECIAL GASES

(a) A case of particular interest is that of the
spherically symmetric 6eld. Kith the customary non-
isotropic form of the line element, the Schwarzschild
metric

ds' = q'dr' r'(de'+ sin28~2) +qdt'—, —

g =1—2m/r,

a semicolon denote covariant differentiation with re-
spect to g,b. Now choose a= (1—p) v, p= pv, where p is
a constant, and let $(P) represent the corresponding
scalar curvature density. Then

g(p)=z"{g*+2g I.(2—p)v, , +(1—p+p'), ,v,.b)}
(10)

=' e"{5*+2(P' —1)g"v,,v., b},

where the symbol =' placed between any two expres-
sions means that they are equal to within an ord&zary
divergence. Divergences which form part of 5 may
here be rejected for they will not contribute to the
field equations whenever 5 enters additively into a
Lagrangian. From (10) it follows that

is a solution of the vacuum equations. Accordingly, a
solution of the field equations with scalar field (5) and
(6) is given by

ds'= q
—&d-r' r'—q' ~(d8'+sin'Odg')+q&dP,

(16)V=) lnq.

To reduce the metric to the form in which giu= —(x')',
one has to make a change of variables r —+ p, such that

p
—rq(&—P)/~

It is therefore better to use isotropic coordinates at the
outset, since if the vacuum solution is written in
isotropic form, then the solution with scalar field is
also isotropic, viz. ,

ds-'= —(1—m/2r)'&' @(1+m/2r)'"+~&(dx'+dy'+dz')
+(1 m/2r)'—~(1+m/2r) ~'dt', (17)

V=2), 1nL(1—m/2r)/(1+m/2r) j.
Moreover, (16), or (17), is the most general solution

of the equations in this case except for a trivial arbitrary
constant which may be added to V, since in the static
case the fourth member of (5), i.e., 844 0, gives——

L( detgbi)-', V gabj 0

while (6) is an exactly similar equation with V replacing
v. Khen the 6eld is spherically symmetric, it then
follows easily that one must have

d V/dv =2Mv/dr, X= const. (19)

The solution (17) is further considered in the last
section below.

(b) By way of another example, the result of Sec. 2

may be applied!to the axially symmetric solutions of
Weyl. Thus Eqs. (5) and (6) admit the static solutions

ds = e'~ '&&(dp—'+dz') p'e '&&de'+—e'&&dt',
(20)

V=2lig, P=&(1—2'')l, ) =const.

provided P(p, z) and y(p, z) satisfy the equations

p '(A;, ), ,+4*.=0, v, ,=pL(k, )'—(4,.)'j,
21)

7,a= 2' pkz.

4. MOTION OF A TEST PARTICLE

(a) The view will here be taken that the scalar 6eld
V (hereafter called "S-field") is a hypothetical
"ordinary" long-range Geld existing in space-time, the
situation being entirely analogous to the existence of
the electromagnetic 6eld. The S-field will then have
sources ("S-charges") and a particle may interact
directly with the S™fieldin consequence of an S-charge
which it may possess, i.e., not only indirectly through
the fact that the metrical field g~~ will depend to some
extent on the strengths of the sourc'es of the S-fMld,
the form of the equations for the geodesics thus in
turn depending on the S-sources. Moreover, space-time
will not necessarily be Qat even when the S-field is



RLC I PI&OCAL STATI C M ETR I CS AiX 0 SCALAR, F I EL DS 1327

gI t=& "gI &. (24)

The geodesics of *V4, using the arc length *s as parame-
ter, have the equations

d'x dx' dx'
+aT k —0

2
(25)

Now

while

4/k —Pk + (gk x +gk x g gkrx )

d*s= ends.

(26)

(27)

Using (26) and (27) in (25), the latter take just the
form (23) if one chooses

x=ln(n —«V) (28)

Hence the world lines of the particle whose motion is
described by the equations (22) correspond' to the
geodesics of the space whose metric is

ds'= (tl —«V)'gkidxkdx'.

5. THE SPHERICALLY SYMMETRIC FIELD

(29)

(a) Bergmann and Leipnik' have solved the equa-
tions (5) and (6) above in the spherically symmetric
field, but their formal work is disfigured partly by the
occurrence of certain errors, as recently pointed out
by Treder, ~ and partly by an avoidable complexity
which is largely the result of an unfortunate choice of

«E.g., J. Plebanski and J. Sawicki, Acta Phys. Polon. 14, 455
{1955).' Since writing the manuscript it has been pointed out to me
that the result {29)occurs essentially already in a slightly diferent
context in a recent paper by C. Jankiewicz, Bull. acad. polon. sci.
6, 765 (1958}.' H. Yreder, Phys. Rev. 112, 2127 {1959).

zero. This attitude is at variance with that taken by
Bergmann and Leipnik' whose suggested interpretation
is, to say the least, dificult to understand, and which
seems in any case to be quite unsupportable from the
point of view of the formal properties of the equations
and their solutions themselves. Kith the present inter-
pretation in mind, one may then contemplate a test
particle whose mass g and 8-charge e are both
infinitesimal. Its equation of motion in the space-time
U4 in the presence of the scalar field V will be'"

u'[(q —V)u"j, ,= —«V, ',

where I" is the four-velocity of the particle. If 1 "I,
& are

the Christoffel symbols belonging to gk&, (22) may be
written

duk/ds+I'k„u'u'= —(gk' uku—') (ti «V—) "«Vi.
,(23)

These equations obviously have the first integral
uI,I~=1, as must be the case.

(b) Consider now a Riemann space *V, whose
metric tensor is *gI,~, and which is in conformal cor-
respondence with V4, i.e., there exists a scalar function
g such that

f=1+2M/r+O(r '), -
g=1—2M/r+2M'/r'+O(r '). (30)

[It may be noted in passing that the solution of Yilmazs
follows from (17) on taking u= —2 and letting li tend
to infinity. ) Now to study the physical meaning of a
field theory of this kind, one should examine the
problem of the equations of motion by one of the usual
approximation procedures, after first introducing con-
tinuous distributions of field-producing and field-
responding matter into the Lagrangian. On a somewhat
more superdcial level, one may content oneself with
the assumptions and results of Sec. 4 above. Then let
it be first supposed that the Geld be explored by
examining the motion of a test particle carrying no
S-charge («=0), so that its motion is given by the
geodesics of the space whose metric is (30). Now in
(30) P occurs in f and g only through the terms O(r ')
and O(r '), respectively, and the terms explicitly
written out are identical with the corresponding terms
of the Schwarzschild metric. It follows that the test
particle will carry out the familiar motion, including
the correct precession of the pericenter, this result
being subject to two qualifications: (i) that the orbit
is to be calculated only to the usual accuracy, i.e., by
an iterative procedure in which only the post-
Newtonian terms are retained, that is, all terms which
have factors c '"(I)1) are rejected; (ii) that p be not
so small that this process of iteration becomes meaning-
less, which implies that for all points on the orbit one
must require

(31)

Subject to these qualihcations the fields corresponding
to different choices of the value of p will be observa-
tionally indistinguishable as far as their exploration
with uncharged test particles is concerned.

(b) When the S-charge of the test particle is not
zero, set «/ii= 1, where ti is of course assumed to be not
zero. It is also convenient to construct a formal de6ni-
tion of the strength 0 of the source of the 5-field. Sy
analogy with the electrostatic field, take

a.= (4s.) ' g"V,idxdydz= —2Am, (32)

in view of (17). Incidentally, therefore,

X= a(4M'+2p, o') —'*. (33)

, Then in virtue of the results of Sec. 4 the trajectories

coordinate system and the failure to observe at the
outset the result embodied in Eq. (19). Equation (17)
is in fact equivalent to all the solutions they obtain.
It is convenient to write m=M/P when P)0, with an
analogous substitution when p(0 t see also Sec. 5(c)$.
Then (17) becomes

ds'-= f(—dx'+dy'+dz')+ gdP,
where
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of the test particle correspond to the geodesics of the
space whose metric is

ds'= *f(—dr'+r'd8'+r' sin'MP)+~gdt',
where

*f=1+2 (1+m)M/r+0( ')
(34)*g=1—2(1—u)M/r+(2 —4w+w')M'/r'+0(r ')

with
(35)w= ~f'/M.

Only the case in which the particle does not recede to
infinity need be considered, so that the condition

(36)

is to be imposed. (Physically: if 0 and c have the same
sign and 0-e is large enough the repulsion of the charges
will exceed the gravitational attraction. ) Then the
equation of an orbit lying in the plane 8=ir/2 may be
obtained in the usual way, and one obtains the following
results. In first approximation the orbit is of course an
ellipse, corresponding to the classical Kepler motion
under the joint action of two inverse-square fields. In
second approximation, if co is the precession of the
pericenter per revolution for given m, and co0 is the
precession when m =0, then

co/cop ——1—2u/3 —w'/6. (37)

U=Pm (=M), (38)

in harmony with (30). Hence one must take P&~0 or
P&&0 according as nz&0 or m&0, respectively. But
these two families of solutions are then in eGect not
distinct, as inspection of (1'/) shows at once (except
insofar as the sign of 'A is reversed). Hence in (17)

0&P&1, ~&~0. (39)

The precession can therefore have its "usual" value,
vis. , when m= —4. There is, however, nothing in the
theory to say why m should have always just this or
any other particular value.

(c) Normally the condition T'4&0 is imposed upon
any physical field, which implies p&0, because of (5),
and hence P is restricted to the range of values
—1&~P&~+1. On the other hand, the total energy of
the field is given by Eqs. (13) and (14). As one of the
field equations (5) is just R'4 ——0, the foregoing solution
corresponds of course to the presence of a b-function
source at the origin and it is not dificult to confirm by
explicit calculation that the value of the integral on
the right of (13) is

)It might be noted that Bergmann and Leipnik refer
to solutions which resemble the Schwarzschild solution
"except for the disappearance of the famous finite
singularity. " This remark is difficult to understand;
one can always make the finite singularity of the
Schwarzschild solution disappear by simply choosing
the wrong (i.e. , unphysical) sign for the constant of
integration m.j

The solution (17) is remarkably diGerent from the
corresponding solution describing an electrically charged
particle. Now it is not difficult to see that whereas in
linear approximation an electric charge e contributes a
term 4vre'/r2 to g44, the charge 0 of the 5-field at the
origin does not contribute to g44 at all. This peculiar
difference arises essentially from a diGerence in sign
of the stresses of the two fields: when T'4 has the same
value for both fields then the stresses of the S-field are
equal to, but opposite in sign from, those of the electro-
static field (space-time being temporarily taken as
flat in this context).

One may perhaps consider the situation in the
following way. From Eqs. (32) and (33),

3P=m' ——'po-' (40)

If one now contemplates the family of solutions of
given total energy, i.e., of given gravitation-producing
mass M, then the analog of the usual Schwarzschild
singularity, r0 (=2m), increases with increasing source
strength of the S-field, r0 tending to infinity with ~0 ~.

From this point of view the limiting solution (for which

P -+ 0) loses any physical meamng. On the other hand
(although the difficulty of clearly distinguishing
between the two different types of sources which take
part in generating the gravitational field must be
conceded), the considerations above, and especially
Eq. (40), suggest that one may consistently regard o.

and m as in some sense characterizing the strength of
the "5-source" and the "non-S-source", respectively.
Then, keeping the latter, i.e., nt, constant and varying
o., the limiting solution (for which P —+ 0) corresponds
to a state of aGairs in which both sources are Gnite,
but the stresses of the S-field contribute an amount of
negative gravitational potential energy just su%cient
to make the total energy zero.
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