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Spherical Gravitational Waves*
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The field equations of the general theory of relativity are solved in the linear approximation for all cases
of spherical waves with quadrupole symmetry. Energy is radiated outward by all these waves as determined
by the canonical expression for the energy Qux. A qualitative check of the validity of this method of calcula-
tion is made by the application of the same approximation to cylindrical gravitational radiation, for which
an exact, solution is known. In this case the exact and the linearized calculations lead to corresponding
results.

stricted classes or groups can be justi6ed only in terms
of the preservation of boundary conditions at spatial
infinity, such as asymptotic Qatness of space-time.
Unfortunately, the rigorous solutions in cylindrical co-
ordinates by Einstein and Rosen' do not satisfy these
boundary conditions on the cylindrical axis. It is at
least conceivable that spherical pulses of gravitational
radiation are not incompatible with Qatness at in-
finity. ' Accordingly, we consider that the assignment of
a total energy Qux to such a spherical wave is not
meaningless.

The interest in energy Qux by gravitational radiation
was originally stimulated by Rosen's discovery" that
in cylindrical coordinates both energy Qux and energy
density vanish, a result that was confirmed by Weber
and %heeler. "Rosen discovered subsequently that this
result is not obtained in quasi-Cartesian coordinates. "
At any rate, we found that in quasi-Cartesian coordi-
nates all types of spherical quadrupole waves do indeed
transport energy (defined in terms of the Poynting
vector components of the canonical energy-momentum
density pseudotensor), and this result is the principal
subject of this paper.

The linearized field equations can be solved to yield
spherical waves which arise from (or converge toward)
a point mass source. These solutions satisfy the condi-
tion of asymptotic Qatness at infinity. The validity of
the linear approximation can be made plausible by an
examination of the relationship between the known
exact solution for cylindrical gravitational waves and
the corresponding linear-approximation solution. In the
linear-approximation solution for spherical waves, as in
both the linear-approximation and rigorous" solutions
for cylindrical waves, energy is observed to travel out-
ward f'rom the source. The existence of this energy Qux
suggests that also for a rigorous solution of the 6eld
equations spherical waves carry energy from the point
mass source.

Such radiation presumably exists whenever mass

I. INTRODUCTION

IKE all other 6eld theories, the field equations of
~ ~ the general theory of relativity possess solutions

which have been interpreted as representing radiation,
in this case gravitational radiation. Because of the
great complexity of the nonlinear field equations of
gravitation, the rigorous solutions obtained so far all
have very special symmetries' ', linearized solutions of
greater generality are known, 4 but it is not definitely
known whether these linearized solutions may be con-
sidered as first-order approximations of rigorous solu-
tions having the same symmetry.

In this paper, we shall make no attempt to obtain
new rigorous solutions, or even to prove their existence.
%'e shall con6ne ourselves to the treatment of spherical
gravitational waves in the linearized approximation and
their transport of energy. The issue of transport of
energy in gravitational radiation is beset with a number
of complexities, such as the circumstance that in general
relativity the concepts of energy density and of energy
Qux have no invariant local significance. All the
proposed energy expressions in general relativity~9
obey conservation laws; they all generate infinitesi-
mal coordinate transformations representing time-like
displacement.

At best, the total energy, and the total energy Qux at
infinity, possess invariance properties with respect to
certain classes of coordinate transformations, e.g., co-
ordinate transformations that at infinity approach
I.orentz transformations. The significance of these re-
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points undergo acceleration. Orbiting astronomical sys-
tems are examples of such accelerating masses. The
existence of energy Qux for such systems implies the
presence of an outward radiation of energy analogous
to electromagnetic radiation. For gravitational systems,
the lowest order of mass pole which can give rise to
radiation is a mass quadrupole. It will be shown that,
just as two physically distinct cases exist for electro-
magnetic radiation, electric dipoles and magnetic di-
poles, so four physically distinct cases exist for spherical
gravitational radiation in the linear approximation.

Greek indices will run from 0 to 3, and Latin indices
from 1 to 3, except where otherwise noted in Sec. V.
Repeated indices indicate that those indices are to be
summed over, unless otherwise noted. Partial diGer-
entiation is indicated by a comma, i.e., A, =o[A/Bx .
Square brackets around indices indicate antisymmetry,
i.e., Ii~„„~———Ft,„~. The Minkowski metric is given as
q„„, where gp„=8p„, gp~= —

8A, ~. In the linearized theory,
for which the Geld quantities and their potentials diGer
from their Oat-space values only by terms which are
small in the first order, the subscript 0 will indicate the
Act-space value and the subscript 1 will indicate the
deviation from this value, e.g.,

ilII[u~l[vPI = ~[u~'l [vPl+ r~fu~l [vPl

This notation will not be used for the metric tensor, for
which convention prescribes the linearized expressions

guv [uv+4vv

( )gsgu=vr[uv yuv

II. HERTZ VECTOR FORMVLATION OP
GRAVITATIONAL THEORY

Ke shall begin with a review of the Hertz vector
method in electromagnetic theory, in order to show how
spherical radiation can be studied in this formulation.
We shall then apply the Hertz vector formulation to the
linear approximation of the general theory of relativity.

Let gu be an electromagnetic potential which satisfies
the Lorentz gauge condition pu „=0. We can then define
the Hertz superpotential Z[""i so that Pu=Z[uvi, „.Simi-
larly, the conservation law of charge j",„=0leads to the
definition of a "supercharge" Q'""i such that j"=

Q[u
"[,„.

From the field equations HsPu= —ju we therefore have
+sZ[uv[= —Q[u"i. In the absence of sources we have
Q'Ztl'"& =0. This equation has spherical wave solutions
pf the form

1
Z[uvl = f [uvl ([ r)

The first derivatives of these superpotentials repre-
sent possible electromagnetic potentials. The second
derivatives represent field strengths of waves having the
general character of spherical dipole waves. The six
independent superpotential components can be divided

into two groups of three:

gtP&l ZIP21 Z|031-

Zt»l Zt»] ZAN

Depending upon which ones of these six components are
chosen to be nonzero, we can obtain the diferent types
of dipole waves. In investigating the singular sources of
the radiation, we deal only with the second spatial
derivatives of the superpotentials, since these deriva-
tives contain the terms with the highest negative
powers of r.

If we take first all Z&~"' except Z&P3& to be zero, we have

Z[ ~=Z, Pp=Z, s, @i=Ps=0, @s=Z,p.

From F[u„~——p„,u —pu, „we obtain the following electro-
magnetic field tensor components near the origin:

Fi F[plj = —(1/r), isf, Es= F[ps[= —(1/r), ssf,
(3)Fs= F[ps] = —(1/r), ssf, B=0.

Similarly, if we set Zt'" =Z' and all other components
of Z[u"& equal to zero, we obtain (again near the origin)

&i= —F[sq = (1/r). isf, &s= —F[is[= (1/r), ssfv
(4)

&s= —& [su = (1/r), »fv

The fields of (3) and (4) asymptotically satisfy Cou-
lomb's equations. To this extent they may be likened
to static solutions of Maxwell's equations. The case (3)
represents the radiation of an electric dipole, whereas
the expressions (4) represent the radiation of a magnetic
dipole.

Ke shall now turn to the treatment of the linearized
equations of gravitation. These equations may be sepa-
rated and individually given D'Alembert's form with
the help of the so-called De Donder (harmonic) co-
ordinate conditions. In the rigorous formulation of the
theory, De Donder's coordinate conditions are

[l"" =o, ll""= (—g)'g"" (3)

As usual we denote the deviations of the g&" from the
Minkowski metric by —p&", the quantities h„„dered
as h„,=g„,—g„„being related to the 7&" as follows:

Then the De Donder conditions in the Iinearized ver-
sion take the form

+ps 0

The field equations reduce simply to

Q'y""= —16' gT ",

where z is the gravitational constant. "
Just as in the electromagnetic case, we may intro-

duce a "supermetric" in order to complete the separa-
tion of the Geld equations. From the divergence condi-
tion (5) we conclude first that there exists a set of

14 C. Mgller, The Theory of Relativity (Oxford University Press,
Oxford, 1952), p. 314.
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y»t[va] Vvf»1a] —~EP v] [aW

Interchanging indices, we can also write

Vvfa») —p'Eav] f» P]
, P)

Vaf][tv] p]u[av] lyly Ea]u] fvP]

When we add Eqs. (12), (13), and (14), we obtain

(12)

(13)

P» fva] —U» P[va]
,P) (15)

where
p) p[va] = iLlIy[sv] [ap] IIy[va][ p] +1[ma] [vp]j (1{j)

The quantities U»f' l are potentials of the V»'f" ',
arising from the integrability condition (11). We can
by-pass the intermediate superpotentials V»' ' and
combine the U»[""l linearly, to obtain a new set of
potentials, the "supermetric, "
~[)va] [vp] )-

L
p)vp[va] Up p[va] + p'va [pp]

b'av[)vp]

g (17)

This supermetric is antisymmetric in the index pair
P]inj, as well as in L)I9$, and has the further symmetry
property

M[»l fval —M [va] [»l (18)

By differentiation we verify directly that

A»
v —Mi» al EvP]

, aP

In the linearized theory, the zeroth-order term of the
supermetric will, of course, lead to the I orentz metric
when differentiated twice. Such a supermetric is, for
instance,

,Mf lf N

,', (q~"x.xP+q.Px~x—" q~Px"x y]".xsxP—). (20)—

This supermetric formulation of the linearized theory
of gravitational radiation is analogous to the Hertz
vector formulation of the theory of electromagnetic
radiation. Kith the help of this formalism, we can now
establish a far-reaching analogy to the Hertz treatment
of an electromagnetic Geld. In Sec. III these similarities
will be employed to study the sources and the energy
Aux of spherical gravitational radiation.

1. In empty space, the supermetric's components in-
dividually satisfy O'Alembert's equation. In the pres-
ence of matter, the energy tensor itself, because of its
own conservation 1aw, may be obtained from a tensor

quantities V»'f" ', such that

g
pv t'r»1 fva]

,a.

Since g»'" is symmetric, we have the following integra-
bility condition:

ct»[v P»1[va] tyy'v[ya]
I )ay

which may be written as

(Vt)[va] P'v[Sa]) =P

This relationship implies the existence of a quantity
5'f»'"]f t'] such that

Pf»' ]f"»'], according to the equation

T» v —Pfua]fvPI
,aP ~

In that case the supermetric obeys the set of equations
["al fvP] = 1~&& l~f» a]fvP] (22)

2. If )P[" "P] vanishes (except possibly for a singular
contribution at the origin of the spatial coordinate sys-
tem), we shall consider solutions of O'Alembert's
equation having the form

&~[))a][vp] —(1/y)f [sa] [vp] ([—y) (23)

This type of solution leads to spherical waves having
the symmetry properties of quadrupole waves.

3. The supermetric has 21 components, just as the
Hertz superpotential in the electromagnetic case has
six components. Ke can obtain 21 linearly independent
solutions of the field equations by setting one component
at a time to be nonzero. These solutions fall at first
sight into six distinct symmetry classes. Within each
cIass, solutions may be carried over into each other by
simple rotation of the coordinate system. Ke shall
show in Sec. III that two of these classes can be carried
over into others by means of infinitesimal coordinate
transformations.

The procedure outlined here leads to quadrupole
radiation. By differentiating the resulting metric with
respect to arbitrary combinations of the spatial co-
ordinates, we may obtain higher multipole symmetries
at will, but no monopole or dipole radiation. These
types of radiation are excluded, even in the linearized
theory, by the conservation laws of general relativity.
The conservation of mass prevents the occurrence of
monopole radiation, just as the conservation of charge
does in electrodynamics; the conservation of linear and
angular momentum likewise prevents the occurrence of
spherical dipole waves. "Hence our procedure is capable
of furnishing us with all the spherical waves com-
patible with the field equations and the harmonic co-
ordinate condition.

III. SPHERICAL GRAVITATIONAL V/AVES IN
THE LINEAR APPROXIMATION

We shall now consider in detail the six diGerent sym-
metry classes into which the 21 independent nontrivial
components of the linearized supermetric can be ar-
ranged. The spatial indices r, s, and t below shall be all
different from each other. The summation convention
is not to operate. The six classes are these:

II. $M["""= yM"-,

III. aM[0"""= zM"'

IV. gM"""'l = gM',
M [st] f~],] Mv

VI
') R. Sachs and P. G. Bergrnann, Phys. Rev. 112, 674 (1958).
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Each class contains three independent components,
except for class IV, which contains six. The physical
significance of this classification will be discussed below.

Infinitesimal coordinate transformations, analogous
to the gauge transformation of electrodynamics, will

be found to reduce the number of independent classes
to four. This reduction results from an examination of
the curvature tensor, which in this approximation is
I.orentz-covariant as well as invariant under an in-
finitesimal coordinate transformation. The components
of the curvature tensor for classes V and VI are (except
for a change of sign) identical with the components of
the curvature tensor for classes I a,nd II, respectively.
If we take

where
(27)

4 Os 41 1~,2) $$ lsl'f, lr gp= O. (28)

Furthermore, three of the six independent components
in class IV can be related to the other three by suitable
infinitesimal coordinate transformations. The metric

obtained from the supermetric «3f["["' is related
to the metric p ' obtained from «3f"'][""by

where
v»" v»" =4—, .+5,» n "k',»— (29)

~[O8] [r8] ~[O~] [rt]
7

~[ps] [ra] ( ilII[ps] [ra] (3O)

and the other components of $» are zero.
In carrying our calculations, numerical values will-

be assigned to r, s, and t in such a manner that the s
direction is "preferred" (for the index pair [Or) the r
direction is preferred, while for the index pair frsj the
t direction is preferred). In classes II and IV, where
each of the two antisymmetric pairs of indices refers to
a diferent direction, values are assigned to the indices
in such a way that the preferred direction for the first
pair is the x direction, and the preferred direction for
the second pair is the y direction. Thus the over-all
preferred direction is the s direction. The following
assignment of indices is therefore made:

r=3,
II. s=1, t=2,

III. r=3, s= 1, t= 2,

IV. r= 3, s= 1.

f (t—r) = fr(t r—), fv—'(t —r) = f"(t r—), (24—)

then the metrics for these classes are related by the
following infinitesimal coordinate transformations:

(25)
where

The components of the metric tensor and of the
curvature tensor will be calculated for two physically
interesting regions: large distances from the source,
where only terms of the lowest order in 1/r are sig-
nificant, and small distances from the source, where
only terms of the highest order in 1/r are significant.
The metric in the former region enables us to calculate
the components . of the energy-momentum density
pseudotensor at large distances from the origin, and
thus to obtain the energy Aux radiated outward through
a sphere of large radius centered at the origin. In the
latter region we can study the distribution of sources
that gives rise to each type of radiation.

At large distances, the linear corrections to the
Lorentz metric have the form ff"(t—r)/r jF(&,8),
where g and 8 are the polar and azimuthal angles, re-
spectively. For example, we obtain for class I:
y~= (f"/r) cos'8 HAPP= (f"/r) cos8, 7"=(f"/r). (31)
If the field equations E„,=o are satisfied, the inde-
pendent components of the curvature tensor for class I
are, again at large distances,

Epipi = ,' (f '"'/—r) sin'8(sin'P —cos'8 cos'P),

~ppp2 = s (f""/r) sin'8 (cos'g —cos'8 sin'st ),
Rpipp = —,' (f""/r) sin'8—sing cosg (1+cos'8),

Epipp= s (f "/r) sin'8 cos8 cosg,

Epgpp s (f""/r) sinP8 cos8 sing,
32

Rpp„———,'(f'"'/r) sin'8 c—o+,

Epiip= —(f /r) sin'8 sing,

Epi i p
——,' (f""/r) sin'8 cos8(—sin'P—cos'g),

Rpip, —— p(f ""/r) sin—'8 cos8 sing co+,
+03«2

Similar expressions are obtained for the other symmetry
types. The energy Quxes for all the diGerent symmetry
classes will be discussed in Sec. IV.

Near the sources, the only physically significant com-
ponents of p&" are given below for the four symmetry
classes:

I. yw = 2—PpP (cos8),
r3

1f
II. p~ =——PpP (cos8) sin2$,

2r3

III. pPi =——Pp'(cos8) sing,
r3

"r '= PP (cos8) co+s-
r3

IV. p =—Pp (cos8) cosg,
r'

y"= ——(Pp'(cos8) ——,'FpP(cos8) cos2&j, (33)
r'
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(—167fKiTI'"'= Q'y&"=
~

+'—f[&~'["['j(t r)—
r

since

gj [pn] [vPl ([)P(r) (34)
Bx Bx~

2-f([—r) =r([)~ (r). (35)

Rosen and Shamir, " in discussing a radiating system
of the type which we call class I, set

P[oot[oÃ ([) p & (36)

and all other components of F["'["@(t)equal to zero.
The source model for this supermetric consists of two
massive particles situated on the z axis and connected

by a massless spring, and emits radiation characteristic
of an axial quadrupole. The choice of (36) leads to an
outgoing sinusoidal gravitational wave solution.

Equations (33) enable us to construct source models
for the four types of linearized spherical gravitational

where I'2', I'2', and I ~' are associated I egendre
polynomials.

These twelve solutions (one for each possible pre-
ferred direction in each class) to the field equations are
seen to be linearly independent. The four symmetry
classes represent four physically distinct types of
linearized spherical gravitational quadrupole waves.
The corresponding superpotentials form a complete
set; any gravitational quadrupole potential in the
linearized theory may be expressed as a linear combina-
tion of the above twelve.

The four symmetry classes can be interpreted
physically as diGerent distributions of mass and mass
flux in the pulsating point quadrupole at the origin of
spatial coordinates. This mass distribution is given for
each symmetry class by the field equations at small dis-
tances from the sources:

cI'o—=,t'[. ,dS,
ch ~8

(39)

where Ni, =x~,/r is the k component of the unit vector
normal to S.

If the values of the metric tensor for the four sym-
metry classes are substituted into (38) and (39), we
obtain the following values for [P and for dPp/dt,
respectively, for large r:

waves. "The source of class I is a linear mass quadru-
pole oriented in the z direction, while the source of
class II is a plane mass quadrupole in the x-y plane.
Insofar as the analogy with electromagnetic dipole
radiation is appropriate, these two classes of radiation
may be regarded as "electric-type" in character. The
sources of classes III and IV are distributions of mass
Aux; the former may be thought of as two circular
mass-currents whose directed normals point in opposite
directions along the z axis, and which are joined by a
massless spring along this axis; and the latter as two
circular mass-currents whose normals are also oriented
along the z axis but which are joined by a massless
spring in the direction of the x axis. Classes III and
IV may be called "magnetic-type" sources.

Dt'. ENERGY FLUX

We shall take the Poynting vector of gravitational
radiation to be the hp~ components of the canonical
energy-momentum density pseudotensor in quasi-
Cartesian coordinates":

162r ( f)'[—"=I "AA", (l V. )—
+S "g" LI »-I ..s—1,.-(in+ —g),.j. (37)

In the linear approximation, we can write

162r~fp' ———I' p"y ~ p+y ' p(lng —g) . (38)

If the three-volume V is a coordinate sphere centered
at the origin, and if 5 is the surface of the sphere, then
the total outward Aux of energy across 5 is

(f '&&)2 xk ( s2 ) 2

16 .[o&=
~ )

cI p I )'I

Ch 30~

(f'")'x"( xone [' y2~ dPp
(f'")'

r' r ( r') ( r ) '
dt 10m

(f '&~)2 xk ( s2 ) 2

III. 162rK[p'= —
(

1——(,
r ( r2)

c&o
I I/

Ch 15m

(40)

(f'")'*'
p x'q

[
y'q

IV. 162m[p' —— —
~

1 —
) (

1—[, = (f'")'.
r2 r ( r2) & r2) dt 10'

The linear approximation to the Geld equations of the
general theory of relativity therefore yields spherical

'6 N. Rosen and H. ShaInir, Revs. Modern Phys. 29, 429 (1957).
Cf. also: W. B. Bonnor, Roy. Soc. London Phil. Trans. 251, 233
(1959).

gravitational waves, all classes of which ca.rry a finite
energy Aux.

Since the components of the Poynting vector are

"Reference 14, p. 341.
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quadratic in the metric tensor, a source which is repre-
sented by a linear combination of two or more of the
twelve above-mentioned solutions would give rise to an
energy flux which would contain cross-terms involving
the metrics of both classes.

gpp ) gpk g03 gk3 0)

g„= e '&[(S,—( —n„n,)in—,n,e»),

g33= —t'

(41)

where Latin indices run from 1 to 2, n;=x;/p, n,n'=1,
and y and P are functions of p= (x'iy')'*and t only.
The variables y and P have the same meaning as in
Einstein's and Rosen's papers. ' "In the quasi-Cartesian
coordinate system which we use, the components of the
canonical energy-momentum density pseudotensor dif-
fer from theirs. For these components we have

16n «( g) tto"= —2—n"e»y, /r. .(42)

The time rate of outward Row of the linear energy
density Ap in a volume V whose cylindrical surface is

5 is

dA0 f' 1
( g) l to"ngdS = —~—, (e». (43)

Rosen has solved the field equations for both pulse
waves and periodic waves. ' However, the periodic
wave solution is unphysical, since the boundary condi-
tions at infinity cannot be satisfied. If we take the
pulse wave solution

f(p)dp
p(«, t) =-

L(t—p)' —'3'

v, ~=24, 4'. i,

v. =«(k'+kP)

(44)

V. CYLINDRICAL GRAVITATIONAL RADIATION

Einstein and Rosen' have shown that the field equa-
tions of the general theory of relativity have rigorous
solutions representing cylindrical gravitational waves.
These waves are propagated outwards from a singu-

larity located on the cylinder axis; this singularity can
be interpreted as being a material source.

These waves do not seem to carry energy and mo-
mentum if the canonical energy-momentum density
pseudotensor is calculated in cylindrical coordinates. ""
However, it has been pointed out" that this method of
calculation is invalid, since the coordinate system em-

ployed does not go over into a Minkowskian system at
large distances. Accordingly, the cylindrically sym-
metric solution of the field equations of the general
theory of relativity will be treated in quasi-rectangular
coordinates.

A suitable choice of coordinates puts the cylindri-
cally symmetric metric in the form:

where f(P) is an arbitrary bounded function which
vanishes for negative values of p, a,nd represents the
strength at time p of the wave source at r=0, the fol-
lowing expression is obtained for the time rate of
outward flow of linear energy density:

f(o) t' " f'(P)dP

dt 16m «(t' —r')'*&0 L(t—p)' —r'j*'

dip

tf(0) t' ' (t p)f—'(p)dp
X +,e" (45)

-(t' —«')' " L(t—p)' —«'3'-

A 6nite flux of linear energy density thus exists across a
cylindrical surface whose axis is the line r=0.

The linear approximation to the cylindrical gravita-
tional field equations may be obtained by the expansion
of the components of the metric (41) into power series
and retaining only terms linear in p and P. Equation
(43) then becomes

dAO/dt = —(1/4«)y, (46)

The linear approximation thus also gives a finite flux of
linear energy density across a cylindrical surface whose
axis is the line r= 0. As P „and P, & always have opposite
signs, dAp/dt is always positive.

VI. DISCUSSION

According to the calculations presented in this paper,
spherical gravitational quadrupole waves are of four
distinct symmetry types, just as there are two distinct
types of radiating dipoles in electrodynamics. All of
them carry energy in the direction of propagation. The
validity of these conclusions is contingent upon the
assumptions made: that spherical waves in the linear
approximation represent erst-order approximations to
solutions of the complete Einstein equations, and that
the Aux of energy in quasi-Cartesian coordinates, ex-

pressed by means of the canonical Poynting vector at
spatial infinity, represents an intrinsic property of such

a solution, independent of the choice of coordinate
system.

Though we have presented in the last section some
evidence which appears to speak in favor of these
assumptions, its importance should perhaps not be
overestimated. The linearized 6eld equations permit
infinite wave trains, including sinusoidal waves, which

are, however, certainly incompatible with the boundary
conditions that the metric be asymptotically flat at
spatial infinity. This is because the integral over the
energy density of the radiation field extended over large
values of r diverges in this case and thus presents us

with a self-contradictory task in the second approxima-
tion. Though no such obvious internal contradiction
besets a wave pulse solution, other difhculties might
arise which preclude the existence of rigorous solutions.

Our physical. interpretation of the components of the
canonical energy-momentum density pseudotensor $0'
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as those of the energy Aux (Poynting vector) is, of
course, based on the conservation law satisfied by t„".
To the extent that the three-dimensional integral over
to' may be considered the total mass of the physical
system, this interpretation is justified. Studies with
test particles of the type carried out by Bondi with
cylindrical waves" may throw additional light on the
physical meaning of energy density and energy Qux in
general relativity. Because of the involved transforma-
tion properties of J'toodV, our hope that it represents
an invariant feature of a given solution is inextricably
tied up with the boundary conditions at infinity, and
with the existence of a very restricted group of co-

' H. Sondi) Revs. Modern Phys 29) 423 (1957).

ordinate transformations which preserve these bound-
ary conditions. Although it is easy to demonstrate that
infinite spherical wave trains are incompatible with
such boundary conditions, the converse assumption,
that finite wave. pulses exist and are susceptible to
approximate treatment, is presently at best a reason-
able conjecture.
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