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The meson-meson scattering term has been investigated within
the static approximation for a nucleon. First a static Hamiltonian
is constructed from the renormalizable covariant meson theory
in a manner similar to that proposed by one of the present authors.
Improvements are that the meson-meson scattering term is
included besides the pseudoscalar-pseudoscalar coupling term
and that an argument is presented to show that the Foldy trans-
formation is the unique one generating a valid static Hamiltonian,
though it was left undetermined before. The resulting static
Hamiltonian is then analyzed, for the cases of low-energy 5- and
P-wave pion-nucleon scattering and threshold photomeson
production, in terms of the one-meson approximation of the
Chew-Low-Wick formalism, without recourse to perturbation
expansion. It is shown in particular that the meson-meson
scattering term modifies the Chew-Low effective range plot of the

833-phase shift, making the renormalized P-wave coupling constant
smaller than the conventional plot gives, for a positive coefficient
of the meson-meson scattering term in the Hamiltonian. Empirical
values of the coupling constant determined through the con-
ventional Chew-Low plot and threshold photomeson extrapolation
are shown to be interpretable in terms of the renormalized P-wave
coupling constant of 0.08 and the m.eson-meson scattering term
with a coefficient of =+4 (k=c=1). The present treatment of
threshold photoproduction of mesons, however, does not agree
with the relativistic dispersion relation. General features of the
static model resulting from the ps-ps meson theory are summarized
in the final section, together with the conclusions obtained. The
e8ects of strange particles and of renormalization have been
neglected.

I. INTRODUCTION

SIMPLE model in which a nucleon is assumed as
at rest' has been successful in analyzing low-

energy phenomena. An entirely covaria, nt approach
which makes as few assumptions as possible has also been
successfully developed, whose basic equations are known
as dispersion relations. ' These two approaches reQect in
many ways characteristics of the renormalizable
covariant meson theory. Ke may, therefore, regard
these successes as more or less indirect supports to the
current meson theory. It is still quite desirable to have
a more direct way of showing its consistency with low-

energy data, especially in such a way that two basic
coupling constants, the ps-ps coupling constant and
the meson-meson scattering constant, are uniquely
determined. Determination of the latter is particularly
interesting since such has never been done and a
positive evidence for this term would be a strong
support to the renormalizable meson theory. Here one
should not confuse the meson-meson scattering term
in question with an effective meson-meson interaction'
which was introduced in connection with high-energy
phenomena.

One of the present authors' proposed a method of
constructing a static Hamiltonian from the relativistic
ys Hamiltonian and of carrying out the analysis of the
resulting nonlinear Hamiltonian without recourse to
perturbation expansion. The essential steps consist of
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assuming the static approximation for a nucleon after
a certain canonical transformation is applied to the
original p5 Hamiltonian, and then applying to it the
Chew-Low-YVick formalism, ' without using any pertur-
bation expansion, even though the renormalization
cannot be carried out rigorously.

In the present paper, the same procedure is applied
to the case where the meson-meson scattering term is
included, while the pseudoscalar-pseudoscalar (ps-ps)
coupling term alone was assumed previously. ' Another
improvement is that an argument is presented (Sec. II)
to show that the Foldy transformation is the unique
one that generates a valid static Hamiltonian, although
it was left undetermined before. '

The basic question whether this static approximation
is good was investigated by the other of the present
authors. ' He estimated the lowest order correction to
the static Hamiltonian when the Foldy transformation
is applied. The correction was found not to be so great
as to invalidate the whole scheme, 4 though it may not be
quite negligible.

The previous work' has shown that the ps-ps coupling
term is virtually equivalent, regarding low-energy
pion-nucleon scattering, to the static models thus far
proposed. ' ' It is shown in Sec. III that the meson-
meson scattering term induces a new term which is
quadratic as rega, rds E-wave mesons, besides modifying
two coupling constants out of three a,ssumed in the
static models. "

EGects of these modifications are then investigated
in Secs. IV and V for the cases of S- and E-wave pion-
nucleon scattering, respectively. Interesting points are
that the meson-meson scattering term with a positive

'A. Kanazawa, Progr. Theoret. Phys. (Kyoto) 19, 330 (1958).' Drell, Friedman, and Zachariasen, Phys. Rev. 104, 236 (1956).
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coefficient in the Hamiltonian' contributes appreciably
to S-wave pair-damping and that it acts to reduce the
renormalized I'-wave coupling constant from what is
determined by the conventional Chew-I. ow plot of the
833-phase shift. '

The same procedure is applied in Sec. VI to threshold
photoproduction of mesons. It is concluded that a
smaller coupling constant is prevailing here than the
I'-wave coupling constant e6'ective in scattering. This
point is further criticized in connection with the
relativistic dispersion relation on the same subject. '

Various parameters relating to the meson-meson
scattering term are estimated numerically in Sec, VII,
using the Tomonaga intermediate-coupling approxi-
mation. These theoretical values are compared with
empirical figures. The meson-meson scattering constant
is finally estimated as =4 (h=c=1).

In the final section we summarize characteristics of
the static model resulting from the renormalizable
meson theory and also the main conclusions obtained
as regards the meson-meson scattering term.

II. FOLDY TRANSFORMATION

The relativistic y5 Hamiltonian is given in the
Schrodinger representation by

r
H= j P(sp y+m)fdx+ ,' j [m'+-P (p' —A)$7dx

f—~~'„(~ ~)d ~d (~ ~)'d, (1)

where the ps-ps coupling constant. f and the meson-
meson scattering constant d are two adjustable param-
eters. Ke impose upon the canonical transformation
which generates a, valid static Hamiltonian, in just
the same way as before, ' the following conditions: it is

(i) a charge scalar, (ii) a scalar against space rotation
and inversion, (iii) not always invariant under the full
Lorentz transformation, (iv) an odd function of P, and

(v) not a function of the derivatives of P and its
conjugate ~. Another motivation for the final require-
ment is that the transformation should commute with
the meson-meson scattering term. Thus the trans-
forma. tion assumes an expression

exp (if/2m) ~f(iv(x)+y4w(x))ps~ PPdx, (2)
J

where u(x) and w(x) are two arbitrary real and even
functions of x= (f/2m)g(P').

7 This positive coefficient is also consistent with the classical
correspondence principle. This point was pointed out to the author
by Professor G. Wentzel.

Although (2) is more general than was assumed by
Berger, Foldy, and Osborn, s we now impose on (2) the
same requirements as theirs, namely that this trans-
forms ifJ'gyi, ~.gdx+ ffefdx in (1) into a. totally
even term as regards Dirac matrices. This requirement
is equivalent to assuming an expansion of (1) in inverse
powers of the nucleon mass m. This explains our
motivation for this requirement, since the static
approximation is valid only when the nucleon rest
energy is the most dominant among all energies in-
volved. Following the same method as Berger et al. , we
can show that this requirement determines e(x) and
w(x) uniquely as

w(x) =0, w(x) = (tan —'2x)/2x, (3)

which gives exactly the Foldy transformation. Ke
therefore adopt the Foldy transformation as the unique
transformation that permits a valid static approxi-
mation to (1). It is added that it was for this trans-
formation that Kanazawa~ investigated the appropriate-
ness of our procedure.

III. MATHEMATICAL 'TREATMENT OF THE
MESON-MESON SCATTERING TERM

Since the Foldy transformation (2) and (3) commutes
with the meson-meson scattering term in (1), the static
Hamiltonian which is obtained by approaching the
static limit for a nucleon after the Foldy transformation
is applied to (1) is the simple sum of those obtained in
the previous work4 and the meson-meson scattering
term (d-term):

&'= (f/2&)[(o. &)~ 07f(x)

+(f/2~)'(~ N)[(a &)~ 07(~ 0)g(x)+2~k(x)

+(f/2m)'[~ Py~k(x)+k(x)~ y)&~7/2

f
+d (~~)d, (4)

where we used the same notations as before, ' f(x), g(x),
k(x) and k(x) being defined by (4) and (7) or (9) of
reference 4. It is remarked that no perturbation expan-
sion was used to get (4), while the renormalization
could not be done and therefore all the infinite terms were
simply dropped after the transformation was applied to
(1). It is understood correspondingly that the d-term in
(4) is well-ordered so that it does not include any self-
energy processes.

In the one-meson approximation of the Chew-Low-
Wick formalism, ' we need to evaluate physical nucleon
expectation values of commutators of the d-term with
meson creation and annihilation operators, a~ * and
a~ . According to the previous work, ' it is most con-
venient to define

-4~ = (a~~*+a~~)/v2, Bi i (ak
"'

aj, )/v2. —— —
8 Berger, Foldy, and Osborn, Phys. Rev. 87, 106I I'1952).
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Then it is straightforward to get

[d-'term~A k(g7

{2 [d/(2~~'~"~"') '7(«-+&-'-*)
gl gl Ipl I I P

X(«p-+~ ' p*)(«-p+~ '"p*)}

X (~k+k'+k"yk" ' ~—krak'yk"+k"') y

(6)

and. three others which include di6'erent linear combina-
tions of the four 8-functions occurring in (10), but
otherwise are the same as (10) except for a factor i.

We first notice that all these are symmetric tensors of
the second rank with respect to n and P. Therefore, their
expectation values are proportional to (I I

r «p+ «p«, I
u'&

or 8„p, which enables us to replace

(«"a++—k "a ) («'"P+ +—k"'P )

[d-term, Bk 7
by

~-p Z~ (««+~ '«*-)(«-«+~ k-«*-)/3

glgl /gl p I
{ }(~k+k'+k' '+k" '+ ~—k+k'+k "+k"') 1 We next observe following even-odd and symmetry

properties from explicit expressions of commutators,
where the vacant curly bracket stands for the corre-
sponding part of the above expression.

According to Appendix I of reference 6, the physical
nucleon expectation values of these commutators
change signs if k is replaced by —k. Upon examining
the right-hand sides of (6), we see that Ed-term, Ak 7
has this property, while [d-term, B„7 remains un-

changed on replacing k by —h. Thus the expectation
value of the latter has to vanish. In regard to the former,
we can conclude, because of its dependence on isospin
and k and its parity and Hermiticity, that

(pl[d-term, dk 7lp'&

=C~~(k')/I v' 7(~l (~ k).-I~'&, (7)

where the f's describe physical nucleons and the u's are
corresponding free Dirac spinors and we have defined
a real scalar $(k'), a function of k' and proportional to d.

We now combine (7) with (19) of the previous work, '
which leads to

8 I
[~',~ "7I~'&

=~{[g+4(k')7/~v'~}(~l (~ k) - IN' &, (g)

(0 I
CB',B"7ly')=0.

It is seen that the renormalized 8-wave coupling
constant becomes energy-dependent, in general, due
to the meson-meson scattering term. This energy
dependence is, however, not significant according to
Sec. VII, since it is shown there that $i in the expansion

~(k') =~.+(k/~)'r+ (9)

is small compared with g+go. The two terms g and
t(k') in (8) are schematized in Fig. 1.

XVe then construct double commutators,

[2 p, [d-term, A 77

Ed/2(~~'~"~'")'7[&-p 2 (« '+~-k-«*)

d-term, A„7
-term, dk 7

d-term, Bk 7
-term, Bk 77

~k'p~[
Bk p, [d
~k'p~[
Bk~p, [d

k—+—k

odd)
odd)
even,
even,

k'—« —k';
odd)
even,
odd,
even,

interchange
of k and k'

symmetric;
asymmetric;
asymmetric;
symmetric.

&PIE~'p, [d-«rm ~k-77ly'&
=q(k' k")8 p(k k')/p, '((used')l (12)

(pl[Bk p, [d-term, Bk 77lp')=2{ (k', k")8 p/(axe')l,

and the other two vanish. We have here defined two
real scalars g and { which are both proportional to d
and symmetric functions of k' and k".

On combining (12) with (22) of the previous paper, '
we Anally get

g I[a,.p [H',a,.77ly'&
=q(k' k")6 p(k k')/p'((ucg')l

&PIC~'p, [B',Bk-77I4'&= &0 ILB.-, C&',~'p77IW')
=) ((v'/co) l(nl e.«p««l I'), (13)

(0 I LB'p, EIf',Bk.77 lk'&

=2[ho+{ (k2, k'2)78 p/((uo)')',

with the same notation as before. 4 We see that the
meson-meson scattering term gives rise to a new term
Cthe first of (13)7 which is evidently quadratic with
respect to E-wave pions; it also affects one of the 5-wave
pion-pair terms, the isospin-independent one, making
its net coupling constant energy-dependent. Diagrams

According to a general argument (Appendix I of
reference 6), the expectation values of these stay
unchanged under simultaneous change of signs of k
and k'. We finally remark that these are Hermitian
and scalar. Ke thus can conclude that

X («"'«+& k"'«)+2(«"a++—k"a )—
X («"'p++—k"'p )7{ '4+k'+k"+k"'

+~—k+k'+k"+k"'+~k —k'+k"+k"'

~—k—k'+k "+k"'}y (10)

FIG. 1. Diagrams representing
processes leading to g and P(k') in
(8). Both give rise to pure P-wave
scattering. The shaded area repre-
sents the interaction with a
physical nucleon.
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IV. S-WAVE PION-NUCLEON SCATTERING

We have seen in the previous section that the analysis
of S-wave scattering due to Drell et a/. ' is modified by
the meson-meson scattering term only through the
replacement of Xo by Xo+l(k', k"). This energy de-

pendence, however, makes it very complicated to solve
the integral equation with f(k', k") included. In this

paper only qualitative considerations are given below.
We recall a result obtained in the previous work4 that

the ps-ps coupling term alone gives, as long as the
renormalization is dropped, too large a )0 to fit the
empirical value determined by Drell et al. ' in the case of
the Foldy transformation, while the theoretical value
of X seems reasonable. This situation would be improved
if the meson-meson scattering term gives a negative

i o, since Xo is positive and the d-term does not modify X

at all. According to Table III in Sec. VII, this is the case
if d is positive.

We then notice that, according to the calculation by
Drell et al. ,' both empirical S-wave phase shifts deviate
from the theoretical predictions to the negative side
rather soon as the energy gets higher. We see in Sec. VII

Fxo. 2. Diagrams
representing processes
leading to x0, x and
q{k~ k") f{k' k") in (13).
The shaded area repre-
sents the interaction
with a physical nucleon.

~(k~,k') (~k~ k'&~

corresponding to the various parameters are shown
in Fig. 2. As for the energy dependence of g and i',
Sec. VII shows that the expansions

~ (k2 k 2) —~ +L(k2+k~2)/~2j~ +. . .
(14)

g(k2 k&2) g +L(k2+k~2)/pojl +. . .

are rather poor, in contrast with (9).
It is instructive to give an explicit expression of the

eGective interaction Hamiltonian which gives the same
expectation values as (8) and (13):
&'= (g+i 0o)(—&) 0!p+.no(g«d0) /2~'

+(ho+go)P'+3~ PX~, (15)

where barred parameters are the unrenormalized forms
of the unbarred ones; (15) is equivalent to (4), insofar
as low-energy pion-nucleon scattering is analyzed in
terms of the one-meson approximation of the Chew-
Low-Wick formalism. ' (15) is correct only in the lowest

energy region: As the energy gets higher, we have to
insert 6-operators wherever go and i'o appear, corre-
sponding to the energy dependence of p and g. It is
added that the P-wave coupling constant is g+to alone,
even though qo occurs in the first term of (15): The
second term also contributes to (8) and cancels out a,

term with qo in the first term.

that fi in the expansion (14) is opposite in sign to f'o

and that f& is not at all negligible compared with i o.

Therefore, the breakdown of the simple S-wave model'
at comparatively low energy might be explained as due
to the energy dependence of f(k', k"), since ho+i (k', k")
increases as the energy in the case when l o(0, because
of the opposite sign of pi to i o. The increase of
Xo+f(k', k") is equivalent to the increase of the isospin-
independent repulsive force, thus making both S-wave
phase shifts deviate towards the negative side.

According to Sec. VII, it seems possible to conclude
that the meson-meson scattering term with sign and
magnitude which fit low-energy P-wave scattering
cancels appreciably, though not perfectly, the strong
meson-pair term which is due to the ps-ps coupling
term. It is, however, important to notice that this
cancellation takes place only at the lowest energy, which
means that S-wave mesons interact weakly with
nucleons only when the wave vector k is smaller than,
say, p, otherwise they interact with nucleons much
more strongly.

V. P-WAVE PION-NUCLEON SCATTERING

The main concern here is to see how the new term
with p(k', k") in (13) modifies the a,nalysis of P-wave
scattering due to Chew and Low. ' Again the energy
dependence of p induces a great complexity. We,
therefore, simply put p=qo and try to see how it
modifies the conventional Chew-Low plot of the 83~-

phase shift in the lowest energy region.
We first define, as usual, ' scattering amplitudes

k (~), which are related to the phase shifts 6 (&u) in
three substates of total isotopic and ordinary angular
momenta,

k ((v) =expLib ((o)j sinb ((u)/k'. (16)

where the matrix 3 p is defined in an earlier paper. '
To follow the argument which led to the conventional

Chew-Low plot of 633,' we define a complex function
g(s) by

g(s) = L(g+ko)'/3~v'sjLko(s)+(no/12~~')1, (1g)

where ho(s) becomes ko(&o) if s goes to co+io, o being an
in6nitesimal positive number. It is not difficult to show
that almost the same arguments as those due to Chew
and Low' are applicable to g(s), eventually leading to a
modified Chew-Low plot:

(k' cotBoo)/ar =L1+ (go/12m. ) (k' cot8oo/p')o$

&&L3 p'/(g+5o)'r1 —( / o)+ "3, (19)

Then we can show, as long as we put P=$o and /=go,
that ko(~) satisfies

ko(~) = L(g+4)'/3~~'~j —(no/12~~')

I ko(~) I'
I ke(~) I'

+— ' k"der' +Q Aoo, (17)
7P~ CO M 'EC P 6) +CO
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alld
[(g+ b)P/4 )o,=0.095~0.006,

(g+ $p)'/4p =0.08.

(21)

The latter figure is due to relativistic dispersion
relations: It is quite adequate to identify (g+$p)'/4w
as the coupling constant determined through relativistic
dispersion relations, since it would automatically include

the eGect of the meson-meson scattering term.
The difference between values (21) and (22) is not

very large compared with the uncertainties involved in

these determinations. However, if we admit that the
conventional Chew-I ow plot does give a larger value
than do dispersion relations, then (20) uniquely deter-
mines the sign of qo,

. namely po should be negative, since
(k'cot8pp/p')p is positive. According to Table III in

Sec. VII, a negative go corresponds to a positive d. It is

interesting to recall that a positive d was also required
to have favorable eGects on low-energy S-wave scatter-
ing. Equations (20), (21), and (22) are used in Sec. VII
to estima, te the magnitude of d.

VL THRESHOLD PHOTOPROBUCTION OF MESONS

We apply the same method when the electromagnetic
interaction is introduced. We assume the static approxi-
mation after having applied the Foldy transformation
to the yp Hamiltonian (1) with the electromagnetic

interaction included. Then, because the electromagnetic

field does not interact with the meson-meson scattering

term, we get an additional Hamiltonian which is the

same as (24) of reference 4. As for threshold photo-

9 S. Barnes, Report on the Sevelth Annla/ Rochester Conference o0
High-Energy Physics (Interscience Publishers, ¹wYork, 1957)."G. Puppi and A. Stanghellini, ¹Iovocimento 5, 1305 (1957).

where ( )p implies the zero-energy limiting value of the
quantity inside the bracket, which is known to be 5 or
6 according to a recent experiment. ' It is added that
(19) is just the low-energy limiting form of the new
e6ective-range expansion: We found that the new

plot resulting from (18) seems to improve appreciably
the deviation from experimental data of the conventional
Chew-I. ow plot' at and above the resonance energy.
According to Sec. VII, however, the approximation g=
qo is not justified around the resonance energy; thus,
only the low-energy limiting form (19)has a sound theo-
retical basis.

We now reach the most important conclusion of the
present paper: the renormalized P-wave coupling
constant (g+$p)'/4ir and the one which is determined

by the conventional Chew-Low plot, L(g+gp)'/4w]o L,

are related by

(g+~.)'/4 =L(g+~.)'/4 j"
X11+(qp/12m) (k' cotbpp/p')p j. (20)

According to recent determinations, "

production of mesons, it can be simpli6ed4 to

(~—P./I ) (~A) (~&& 0) p

A(gpV&i —PiV&p)dx, (23)

where g~ is the unrenormalized form of g~ which is
defined by (28) of reference 4. As was remarked there, 4

the same Hamiltonian follows also when the electro-
magnetic interaction was introduced directly into the
static Hamiltonian (4).

It is one of the characteristics of the general static
model resulting from the ps-ps meson theory that g,
is not the same as g. The reason is that the static
Hamiltonian (4) is highly nonlinear as regards 5-wave
mesons. It was, however, shown' that, when the Foldy
transformation is assumed, g and g„are nearly the
same. We, therefore, simply put g~ equal to g in this
paper.

Since (23) is not modi6ed, it follows' ' tha. t threshold
photoproduction of mesons depends solely on g except
for the eAect of rescattering the photoproduced meson

by the nucleon: The meson-meson scattering term
sects threshold photoproduction of mesons only
through the 5-wave pion-nucleon scattering amplitude
appearing in the integral equation. According to Sec. IV,
the S-wave analysis due to Drell et al. ' is not modified
by the meson-meson scattering term, as far as the low-

energy limit is concerned. Thus the coupling constant
determined through the conventional photomeson
extrapolation is g'/4n. , which is not the same as the
renormalized I' wave couplin-g constant (g+Pp)'/4~.

Turning to the experimental side, the most recent
analysis" reports 0.073. If we further take into account
the effect of S-wave rescattering according to Drell
et al. ,

P this is reduced by 15%%uo to

g'/4ir =0.062. (24)

"Cini, Gatto, Goldwasser, and Ruderman, Nuovo cimento
7{},243 (I958).

Though the photomeson extrapolation is still quite
ambiguous, it seems that it gives smaller values than
(g+$p)'/4ir or 0.08. If we assume that this discrepancy
is real, this also determines the sign of d: According
to Table IV, Sec. VII, a positive $p is attained by a
positive d. This sign is again the same as was determined
by low-energy P- and S-wave pion-nucleon scattering,
independently. The numerical values of g'/47r, corre-
sponding to our final estimates of the magnitude of d,
are given in Sec. VII.

We should, however, compare our result with the
relativistic dispersion relation. ' According to (22.6) of
the last payer of reference 2, threshold photoproduction
of mesons depends, except for effects due to nucleon
magnetic moments, on the renormalized P-wave
coupling constant a,nd on a small correction. which is
there denoted as X( '. This E( ' is the correction due
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to rescattering of the photoproduced meson. It is,
therefore, seen that our result does not agree with the
relativistic dispersion relation.

To see the origin of this difference, let us consider
the Kroll-Ruderman theorem. " This theorem is also
satisfied by our static Hamiltonian (23) plus (4) as
long as the line current is properly assumed so that the
total Hamiltonian satisfies the gauge invariance
requirements'; thus threshold photoproduction of
mesons in the zero-meson-mass limit determines

g+$p, and not g. Therefore our result is not inherent
in our static approximation but is entirely due to the
one-meson approximation.

If there were no meson-meson scattering term, our
result would be consistent with the relativistic dis-
persion relation, since the same g appears throughout
and E& &, the eGect of rescattering, is also included as
an additive correction in our calculation. '

We, therefore, would have to conclude that the one-
meson approximation of the Chew-Low-Wick formal-
ism' is not adequate when the meson-meson scattering
term is included, if the conventional photomeson
extrapolation does really give the same coupling
constant as the relativistic dispersion relation.

VII. NUMERICAL ESTIMATION

To estimate numerically the various parameters, we
need knowledge concerning the structure of a physical
nucleon. We here assume that the Tomonaga inter-
mediate-coupling approximation is good enough and
also that only S- and I'-wave mesons interact with a
nucleon. Then we may expand

ai, = (2rr/oi)lffYpp(0(p)a
—s(g/u) 2- k Yi-(t)p )b-j (25)

where a„and b are annihilation operators of S- and
P wave mesons w-ith configurations f(k)= fk/~M and

g(k) =gk'/poigoi, respectively, being normalized asjf'(k)dk= J'g'(k)dk= 1.
Let us expand lit) in terms of zero-, one-, and two-

meson eigenstates lp, ) as

where lP;) is constructed in terms of a * and b * in a
well-known manner. " After straightforward calcu-
lations, we get from (7) and (12)

g(k') = (10d/3v2) l CsCsFp+&3CsC4Gt],

r) (k' k")= (10d/3) [(6lC,Cs+ 2Css) F
+ (3%2CiC4+ Cps+ 2C4'+2Css)G ), (27)

f (k' k")= (Sd/3y) L (6&CiCs+2Css) Fr
+ (3V2'CiC4+ Cps+ 2C4'+ 2Cs')Gr],"¹M. Kroll and M. A. Ruderinan, Phys. Rev. 95, 235 (1954).

"%'e here use the same notations as A. Kanazawa and M.
Sugawara, Progr. Theoret. Phys. (Kyoto) 16, 95 (1956).

where

2f'g
I

r k'k"dk'dk"
Fr,= E(2k",k')

s. " J (k"+k'"+2@,')

(k'+k")'+2@'
Xlog

(k' —k")'+2@,'

g' t I"
k'k" (k"—k"')dk'dk"

Gg=- E(2k",k')
my'J ~ (k"+k'"+2@')

(k'+ k")s+ 2p,'
Xlog

(k' —k")'+2li'

1 2li' )
(k",k') =

I +
L. 3o! 3' j

( k'" 4k"' 16k"')—2(k'+k")
l

— +«s «ip 5 I~p j
t'Sk 4 4k

G,=4g'p dk"
lJ (3 lip 3 I/sj

( 7k"4 28k"' 16k"')—2(k'+k")
l

— +
(3 Its 5 fliP 5 lip j

k'" |'k'" 4k"4
~F„=2fI dk" —(k'+k")

lJ 114 ( /Is 3 /Is j
2g2 ~

- I /f4 ( Sk'" 4k"s)
G,= dk"

J «4 (3pp" P 3oi"sj .
The double integrals in Ii~ and Gg were evaluated
numerically. The numerical results are summarized in
Table I for three choices of k,„, the cutoff momentum,
where

Ft.=Fts+ (k'/p') Fp',

G~= Gt'+ (k'/~')Gt'

Fp= F'+L(k'+k")/I' jF '
G =G„P+I (k'+k")/p')G'

Fr =Fr'+ L(k'+ k")/I"3~r',
Gr=GrP+ L(ks+ k's)/psjGr'

(29)

Table I shows that the energy-dependent coe%cients
Pi, i)i„ l'i have always opposite signs to gp, r)p, fp This.
implies that all three parameters $, rl, l become less
effective as the energy gets higher. It is also noticed

1 8'' 8P' )
E 15oi" 15oi" Soi")

(28)
pffs 4 II4)

F,=4f'lis Jt dk
«P 3 lip j
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TABLE I. Numerical values of integrals dined by (28) and (29) for three values of cutoff
momentum, k, , together with corresponding values off and g.

kmax pd G„oGg' Ggl P 0 G 1 Pg0 Pgl Ggo Ggl

4p 0.0950 —0.00354 0.0512 —0.00405 0.239 —0.072 0.160 —0.0305 0.970 —0.119 0.708 —0.0798 0.943 0.406
5p 0.0806 —0.00262 0.0451 —0.00257 0.199 —0.061 0.101 —0.0180 0.887 —0.100 0.592 —0.0506 0.866 0.311
6p 0.0706 —0.00198 0.0401 —0.00176 0.175 —0.054 0.070 —0.0118 0.827 —0.088 0.513 —0.0350 0.815 0.254

TABLE II. Four assignments for the C s in the expansion
(26) normalized to unity.

C2 C3 C4 Ce

I 0.7746
II 0.8562
III 0.7616
IV 0.8173

—0.5196—0.4243—0.4472—0.4231

—0.3178 0.0775—0.2757 0;0447—0.4359 0.0775—0.3768 0.0447

0.1517
0.0949
0.1549
0.0949

'4 See reference 13.It is remarked that there was an error in the
paper; the numerical values in Table I of reference 13 are proba-
bilities, normalized to unity, while the signs are those of proba-
bility amplitudes. The negative sign of C& is related to a positive
ps-ps coupling constant, the sign of which is entirely arbitrary. .

that the expansions (14) are rather poor. On the other
hand, the expansion (9) is much better.

%e now assign numerical values to the C s in the
expansion (26). To obtain a general idea, let us assume
four assignments as given in Table II. These were taken
from the present authors' calculations" on the meson
cloud around a physical nucleon, which have a similar
basis to that adopted here. Cases I and II correspond to
columns A2 and A6 of Table I of reference 13, respec-
tively. Since the meson-pair term seems to have been
suppressed too much in that paper, "we add in Table II
two extra cases III and IV, in which C3 is strengthened,
with the corresponding depression of Ci and C2, as
compared with cases I and II, respectively. All these
assignments are, however, quite arbitrary. It is added
that C~ and C2 are zero- and one-meson amplitudes,
C3 is the amplitude including two S-wave mesons and
C4 and Cq are two independent amplitudes correspond-
ing to two P-wave mesons.

%e need also to fix k, in Table I. Ke remark that
the F's in (27) are connected with Cs or the contributions
from 5-wave mesons, while the G's are due to E'-wave

mesons. Therefore, let us assume k, =6p, in Table I
for all G's, while we cut oG at k, =4p, for all I's, since
such a smaller cuto8 was required by Drell et a/. in their
analysis of 5-wave pion-nucleon scattering. This choice
is again quite arbitrary and has no firm basis, These
assignments give, from (27), (29), and Tables I and II,
the values summarized in Table III.

We see from Table III that, if d is positive, Ps is
positive and the other parameters are negative, which
has to be the case according to the previous sections.
This important conclusion is entirely due to the fact that
the first terms containing C3 linearly on the right-hand
sides of (27) are always the dominant ones for Cs not
quite negligibly small. Therefore, a repulsive meson-pair

term with at least appreciable magnitude is definitely
necessary to infer the positive sign of d.

We now estimate the magnitude of d from (20), (21),
(22) and an empirical value' of (t'rs cot8ss/ps) s. These are
summarized in Table IV, together with other
parameters.

From the values in Table IV, we conclude 6nally that

d=4 (A=c= 1), (30)

though this could be wrong by a factor of, say, 2, since
the estimation of $, r), and t depends strongly on the
detail of the structure of a physical nucleon which we
know only poorly. It is seen that po is almost —1, while
ts is roughly a 10 to 20%%u~ correction to g which is
a,lmost +1.

TABLE III. Numerical values of (p $0, and gp de6ned by (9),
(14), (27), and (29), corresponding to the four assignments in
Table II.

Case

I
II
III
IV

$0

+0.0304d
+0.0231d
+0.0380d
+0.0324d

—0.183d—0.254d—0.236d—0.291d

—0.150d—0.377d—0.264d—0.456d

'lVe see also that g'/4s. in Table IV agrees well with
the present experimental value (24).

It is also remarked that its in Table IV is always
larger than the empirical value (0.4) of tr (f's+Xs)
determined by Drell et rJ/. s This implies that pls, the
contribution from the meson-meson scattering term,
has, in fact, an appreciable effect on the S-wave pair-
damping. It is also evident that tris @louise can never
explain the strong damping in question. It is suggested
that the renromalization is vitally important in this
respect.

UIII. SUMMARY AND CONCLUSION

The ps-ps coupling term gives a highly nonlinear
static Hamiltonian, which is, however, almost
equivalent to the conventional static models' ' thus far
proposed, concerning low-energy pion-nucleon scatter-
ing and threshold photoproduction of mesons. 4

Since the meson-meson scattering term commutes
with the generating transformation adopted (the Foldy
transformation), it need simply be added to the above
Hamiltonian. This is true even when the electromagnetic
field exists, because it does not interact with the meson-
meson scattering term.
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TABLE IV. Final estimate of d and other related parameters,
corresponding to the four cases of Table II.

Case $0 QO

I 5.9 +0.179 —1.08
II 4.3 +0.099 —1.09
III 4.6 +0.175 —1.09
IV 3.7 +0.120 —1.08

—0.885—1.62—1.21—1.69

g2/4'

0.054
0.065
0.055
0.062

gp contributes to cancelling Xp or contributes, partially,
to the S-wave pair-damping.

If the same procedure is applied to threshold photo-
production of mesons, it is concluded that the coupling
constant determined through the conventional photo-
meson extrapolation is the ps-ps coupling constant,
which is, therefore, smaller than the renormalized

The net e6ect of this meson-meson scattering term,
is, however, not so simple as it appears. According to
Sec. III, its eGect upon low-energy pion-nucleon
scattering is well reproduced by the effective Hamil-
tonian (15). The second term, which is quadratic as
regards P-wave mesons, is an essentially new term.
Such a term is also expected as a nonstatic correction. '
It is, however, important to remark that this second
term is much larger in magnitude than is expected
from a nonstatic correction. ' It is remarked that (15) is
correct only in the lowest energy region; terms with

$, g, and f are in general energy-dependent (or include
6-operators).

This extra I'-wave term has an interesting conse-
quence; it modihes the Chew-I, ow plot of the 5»-phase
shift, such that the renormalized P-wave coupling
constant becomes smaller than is simply determined
by the plot, for a positive coeS.cient of the meson-
meson scattering term.

For this choice of the sign, it is shown that gp has the
same sign as g, while lp is negative. This sign of (p
implies that the net E-wave coupling constant effective
in pion-nucleon scattering is larger than the ps-ps
coupling constant alone. On the other hand, a negative

P-wave coupling constant. This also seems to agree
with the present data, though not agreeing with the
relativistic dispersion relation.

Although all these are very small sects, it seems
possible to conclude that the empirical values of the
Chew-I, ow plot and threshold photomeson extrapolation
are consistent with the meson-meson scattering term
with a coei5cient of =+4 (h=c= 1) and the renormal-
ized E-wave coupling constant of 0.08, though this
final estimate could be wrong by a factor of, say, 2.
This result may be regarded as a positive support to
the renormalizable meson theory.

As regards the S-wave pair-damping, the reduction
induced by the meson-meson scattering term is ap-
preciable but would not be sufhcient by itself. The
pair-damping would be explained in combination with
the renormalization" which has been completely
neglected in this work.

Numerical details and even the sign of d depend very
much upon the assumption concerning the structure
of a physical nucleon. To infer the positive sign of d,
it is essential to assume a non-negligible negative
amplitude corresponding to two S-wave mesons. This
implies the existence of a repulsive meson-pair inter-
action of appreciable magnitude. It is added here that
this is not in contradiction with the pair-damping,
since the damping is just an accidental cancellation,
according to the present work, which takes place only
in the lowest energy limit; in most energy regions,
S-wave mesons interact with nucleons more strongly.
We thus reasonably expect an appreciable amplitude
corresponding to two S-wave mesons.

What has been neglected in the present work are the
effects of renormalization and also of strange particles.
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