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The method described previously for the solution of the wave
equation of two-electron atoms has been applied to the 1 'S and
2 'S states of helium, with the purpose of attaining an accuracy
of 0.001 cm ' in the nonrelativistic energy values. For the 1'S
state we have extended our previous calculations by solving
determinants of orders 252, 444, 715, and 1078, the last yielding
an energy value of —2.903724375 atomic units, with an estimated
error of the order of 1 in the last figure. Applying the mass-
polarization and relativistic corrections derived from the new
wave functions, we obtain a value for the ionization energy of
198312.0258 cm ', as against the value of 198312.011 cm '
derived previously from the solution of a determinant of order
210. With a Lamb shift correction of —1.339, due to Kabir,
Salpeter, and Sucher, this leads to a theoretical value for the
ionization energy of 198 310.687 cm ', compared with Herzberg's
experimental value of 198 310.82&0.15 cm '.

For the 2'S state we have solved determinants of orders

125, 252, 444, and 715, the last giving an energy value of
—2.17522937822 a.u. , with an estimated error of the order of 1
in the last figure. This corresponds to a nonrelativistic ionization
energy of 38 453.1292 cm . The mass-polarization and relativistic
corrections bring it up to 38454.8273 cm '. Using the value of
74.9 ry obtained by Dalgarno and Kingston for the Lamb-shift
excitation energy E'0, we get a Lamb-shift correction to the
ionization energy of the 2 'S state of —0.16 cm '. The resulting
theoretical value of 3& 454.66 cm ' for the ionization potential is
to be compared with the experimental value, which Herzberg
estimates to be 38454.73&0.05 cm '. The electron density at
the nucleus D(0) comes out 33.18416, as against a value of
33.18388&0.00023 which Novick and Commins deduced from
the hyperfine splitting. We have also determined expectation
values of several positive and negative powers of the three mutual
distances, which enter in the expressions for the polarizability
and for various sum rules.

1. INTRODUCTION

'HE recent renewed interest in accurate solutions
of the wave equation for two-electron atoms has

come from the experimental side, when Herzberg'
initiated his program of a precise spectroscopic meas-
urement of the ionization potential of He, in order to
determine the Lamb shift in the ground state. The
parallel theoretical investigation of Chandrasekhar and
Herzberg' first brought to light a gross discrepancy of
21.5 cm ' between theory and experiment, where none
had been suspected. This gap was soon reduced by
these authors' to 2, and subsequently by Hart and
Herzberg' to 1, while simultaneously, on the experi-
mental side, Herzb erg and Zbinden' succeeded in
reducing an initial uncertainty' of 15 cm ' to 1 cm—'.
Some reported reversals from this trend' were promptly
dispelled. At this stage the Lamb shift just began to
emerge above the noise level, since Kabir and Salpeter'
and Sucherv showed that its magnitude is only —1.339
cm '. When Herzberg' completed his spectroscopic
determination of the ionization energy, achieving an
accuracy of &0.15 cm ', the best theoretical value
available was that of Kinoshita' obtained variationally"

' Chandrasekhar, Elbert, and Herzberg, Phys. Rev. 91, 1172
(1953).

~ S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1954).

~ J. F. Hart and G. Herzberg, Phys. Rev. 106, /9 (195"/).
4 Atomic Energy Levels, edited by C. E. Moore, National Bureau

of Standards Circular No. 467 (U. S. Government Printing OfFice,
Washington, D. C., 1952).

~ E. A. Hylleraas and J. Midtal, Phys. Rev. 109, 1013 (1958);
Dornstetter, Munschy, and Pluvinage, J. phys. radium 20, 64
(1959).' P. K. Kabir and E. E. Salpeter, Phys. Rev. 108, 1256 (1957).' J. Sucher, Phys. Rev. 109, 1010 (1958).

s G. Herzberg, Proc. Roy. Soc. (London) A248, 328 (1958).' T. Kinoshita, Phys. Rev. 105, 1490 (1957)."E. A. Hylleraas, Z. Physik 54, 347 (1929).

from a 39-term solution, for which the uncertainty was
estimated to be &0.5 cm '.

In the solution given by the author, "an accuracy of
0.01 cm ' for the nonrelativistic energy value was
aimed at. This precision could also be ascribed to the
value obtained for the ionization potential if the
Lamb-shift correction were known to the same degree
of accuracy. At present, the Lamb-shift correction is
subject to an uncertainty of an order of magnitude
higher, ' principally because it depends on a knowledge
of the oscillator strengths fs for transitions from the
ground state to the excited states; and while the
ground-state wave function is known with considerable
accuracy, no comparable accuracy has as yet been
attained for the wave functions of the excited states.
In this investigation we aimed at achieving an accuracy
of 0.001 cm ' in the nonrelativistic energy values of
the 1 '5 and 2 'S states. In the case of the ground state
it was necessary to go to a determinant of order 1078,
while in the case of the 2 '5 state, the convergence was
more rapid and a determinant of order 715 sufficed.
One may reasonably expect that within a year or so,
accurate wave functions for the excited states will be
forthcoming, and that the Lamb-shift correction will
then be delineated within correspondingly narrow
limits. The problem of firmly establishing the magnitude
of the Lamb shift in two-electron atoms is thus thrown
back to the experimentalists. What is needed is a
reduction, for the second time, of the experimental
uncertainty in the ionization potential of He by a
factor of 100 to &0.0015 cm '.

Another result obtained from the solution of the wave
function for the 2'S state is an accurate value of the

"C. L. Pekeris, Phys. Rev. 112, 1649 (1958). This paper will
be referred to as I.
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TABLE I. Values for the 1 'S state of the nonrelativistic energy —e, the mass polarization correction —e~, and the relativistic cor-
rection to the ionization potential E;.J denotes the theoretical value of the ionization potential, excluding the Lamb-shift correction.
RH,4=109722.267 cm I; n~=5.32504&(10 5.

2e' —4 *

e'(A jN)'
(p ')
(~(r2))
(~(r»))—(2/cP)E,
(24' —4)RH 4

—~+1

E7J

252

12
1.704031775
2.903724290
1.807448581
0.15906968

54.08851
1.810337
0.106413
0.278224

198317.3558—4.785432—0.5580
198312.0124

444

15
1.704031794
2.903724356
1.807448712
0.15906953

54.08832
1.810389
0.106377
0.278202

198317.3702—4.785427—0.5612
198312.0236

18
1.704031799
2.903724370
1.807448741
0.15906950

54.08822
1.810410
0.106362
0.278195

198317.3734—4.7854263—0.5625
198312.0254

1078

21
1.704031800
2.903724375
1.807448750
0.15906948

54.08815
1.810419
0.106355
0.278192

198317.3743—4.7854256—0.5631
198312.0258

Extrapolated

1.704031800
2.903724376
1.807448754

54.08802
1.810427
0.106345
0.278189

198317.3747—4.7854—0.5636
198312.0259

Units

a.u.
a.u.
ry
a.u.
a.u.
a.u,
a.u.
cP ry
cm I

cm '
cm '
cm '

' The quantities tabulated in I (Table IV) are c'(A/N) and -em, not —e~(A/N) and ~~.

electron density D(0) at the nucleus. In connection
with the recent precision measurement of the hyperfine
splitting, ""in He' this quantity, which depends sig-
nificantly on the spatial distribution of nuclear currents
and magnetic moments, "provides a restrictive criterion
on the choice of nuclear models.

24= ~(r2+rl2 2'I),

r1 r12 r2

W= 2f ('Pl+f2 —t'll),

(1)

(2)

(3)

where r1 and r2 denote the distances of the electrons
from the nucleus, r12 their mutual distance, E the
energy, and e=g—E. The wave function P, which in
5-states is a function of the distances r1, r2, and r12

only, is expanded in the form

P= e-l~ "+'+"~ P A (1,224,42)I.i(N)I.„(2)1.„(W), (4)
t, m, n~

and the coefficients A (l,2N, n) are determined from the
mane eqlatioe. They are connected by the recursion
relation I(22) containing 33 terms, and the vanishing
of the determinant of these coe%cients provides the
condition for the energy eigenvalues 4. In I (Table III)
are given eigenvalues obtained from the solution of
determinants of orders n=95, 125, 161, and 203, these
corresponding to wave functions represented by com-

plete polynomials of orders co=8, 9, 10, and 11, respec-
tively, in the variables I, e, and m, where

2. THE 1'8 STATE OF HELIUM

The method developed by the author for the solution
of the Schrodinger wave equation for two-electron
atoms" is based on the use of perimetric coordinates
I, e, and zo, which are defined by

It was found that the ratios of the differences of the
e-values were nearly constant, and this was made the
basis for extrapolation to n= ~ in order to obtain some
notion as to the degree of convergence of the results.
Let 61 62 63 64 denote eigenvalues obtained for four
equally spaced values of co. Then to the extent that
the successive ratios,

E~= El+ (42 —4l)/(1 —x)

where the constants x and u are determined from

ax= xl, (a+1)x/2= x2.

(7)

(8)

Here x may be negative in the case of oscillating
diGerences.

The value for ~ obtained in I from the solution of
the determinant of order 203 was 1.704031757, and the
extrapolated value was 1.704031794. A determinant
of order 210, in which were included the large coeK-
cients A(l, 222, 22) selected from among the first 438,
yielded a value of 1.704031/81 for e. Table I gives the
results of the solution of determinants of orders e= 252,
444, '/15, and 1078. These are spaced at intervals of 3
in co. The chief result is the solution for e= 1078, where
also the vector was refined to high accuracy, while the
lower orders were done mainly for the purpose of
exhibiting the rate of convergence of the results, and
providing a basis for extrapolation. The nonrelativistic
ionization energy is given in Rydbergs in the line
marked (2&2—4), and in units of cm ' in the line
(242—4)RH, 4. 4M denotes the shift in the energy level

due to the mass-polarization, and is given by

Xl (42 62)/(42 41)) X2 (64 t2)/(62 E2)q (6)

are nearly equal, the extrapolation is made by the
formula

"White, Drake, and Hughes, Bull, Am. Phys. Soc. 4, 10 (1959).
"R.Novick and E. D. Commins, Phys. Rev. 111,822 (1958).
'4 A. M. Sessler and H. M. Foley, Phys. Rev. 98, 6 (1955).

~M= 2&2(222/M) (A/Ã)RH. cm—',

where m denotes the mass of the electron, M that of
the nucleus, and X is a normalization constant defined
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TABLE II. Expectation values of various functions for the 1 'S state.

V= (—1/ri —1/rp+1/2rip). 5(k) ~Z fp (Ep —E ), fp ~ —', (Ep —E„)i|go(ri+r2)iP
n

p0 and Q„denote the energies of the ground state and of the eth excited state, respectively, measured in Rydbergs, lengths being
measured in units of a0.

(ri')
(ri)
(1/ri)
(1/rP)
(r»'&
(ri2&
(1/r»)
(1/r»')
(1/r, r,)
(1/rgr12)
(rl ' r2)
(1'&
(V')
S(—1)
S(0)
S(1)
S(2)
V
T

1.19348333
0.929472381
1.688316596
6.0173826
2.51644015
1.42207040
0.945818478
1.464798
2.708656
1.920947—0.064736742—2.903723953

13.976384
0.752497727
2
8.16745059

121.3300
1.97279
0.45640

1.19348309
0.929472316
1.688316754
6.0173997
2.51643954
1.42207029
0.945818459
1.464781
2.708656
1.920945—0.064736684—2.903724279

13.976417
0.752497601
2
8.16745036

121.3334
1.97818
0.46440

1.19348303
0.929472302
1.688316789
6.0174053
2.51643939
1.42207027
0.945818455
1.464776
2.708656
1.920945—0.064736669—2.903724351

13.976427
0.752497571
2
8.16745034

121.3348
1.98257
0.46941

20'18

1.19348301
0.929472297
1.688316796
6.0174071
2.51643934
1.42207026
0.945818451
1.464773
2.708656
1.920944—0.064736665—2.903724367

13.976430
0.752497561
2
8.16745028

121.3354
1.98444
0.47391

Extrapolated

1.19348299
0.929472293
1.688316798
6.0174080
2.51643932
1.42207025

1.464770
2.708656

—0.064736664—2.903724372
13.976432
0.752497553

121.3360

~E~ =EL„i—&1„2—E1„2' (11)
Here E~,~ denotes the Lamb shift of the one-electron
ion, and has the value of 3.534 cm ' for helium. The
last term is given by

in I(39).E, is the relativistic correction to the ionization sented by
potential:

in Rydbergs. The theoretical value of the ionization
potential J given in the last line is the sum of the
quantities in the preceding three lines. The extrapolated
value'5 of J difrers by 2 units of 10 4 cm ' from the
sum of the three terms above it, and by only one unit
from the value obtained for m=1078. The uncertainty
in the latter, based on the correction terms included in

(9) and (10), is thus of the order of magnitude of 10 '
cm '. In support of this optimistic estimate we may
cite the fact that the difference between the J-values
of m=203 and the extrapolated value in I was 0.022
cm ', which is close to the figure of 0.025 cm ' by
which the 203-value falls short of our new value. It is
unlikely that a value for J of 198312.026 cm ' would
be oG by much more than the margin of 0.001 cm '
aimed at in this investigation. If we add to the above the
Lamb-shift correction of —1.339 cm ' due to Kabir and
Salpeter' and Sucher, ' we get a theoretical value for
the ionization potential of 198310.687 cm ', as com-
pared with Herzberg's' experimental value of 198 310.82

&0.15 cm '.
The Lamb-shift correction is at present subject to

an uncertainty of 0.2 cm '. The leading terms in the
Lamb shift' of the ionization potential DE, are repre-

"The J-values in Table I are given. to at least one figure more
than is warranted by the known precision of Rydberg's constant.
However, when expressed in Rydberg units, the ten signihcant
figures are justi6ed, and these can later be converted to cm '
when a more accurate value of the Rydberg constant becomes
available.

28 )1q
Ei.p

= ——n'&~(r»))»I —
I ry,

3 &n)
(12)

16 1 Ep 19
El„p=—n'Z&5(rp)) 2 ln- —ln +—,

3 0. ry 30
(13)

which represents the average excitation energy of the
1'5 state. Ep is defined by

Q fp„(Ep—E )'1n(Ep —E„)

where,

Z fp-(Ep —E-)'

Ep and E„denote the energies of the initial state and
of the eth excited state, respectively, and Pp and P„
are the corresponding wave functions. In the absence
of accurate wave functions for the excited states, the
oscillator strengths fp„are known only approxi-
mately ' '~ at present. Kabir and Salpeter arrive at a

"A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (London)
72, 1053 (1958); J. P. Vinti, Phys. Rev. 41, 432 (1932); A.
Dalgarno and J.Lewis, Proc. Roy. Soc. (London) A233, 70 (1955).

1~A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London)
247, 245 (1958).

and is equal to —0.2082 cm—' for the 1 25 state. The
uncertainty in the Lamb-shift correction stems pri-
marily from the parameter Ep in the expression
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S(k) =Q fp„(Ep—E.)", (16)

P (k) = (d/dk) lnS(k). (17)

value of 4.39 for lnEp, with an estimated uncertainty
of the order of &0.2.

In view of the enormous amount of computations
required to get a sufFiciently accurate value for lnEp
directly from (14), especially for the excited states,
the following method of inferring a rough value may be
of interest.

Let S(k) and P(k) be defined by

0 1 0
0 1 1 2 2
0 2 0 2 3
0 1 2 3 4
0 2 1 3 5
0 3 0 3 6

2 0 3 7
0 1 3 4 8
0 2 2 4 9
0 3 1 4 10

0 4 0 4
1 2 1 4
1 3 0 4
0 1 4 5
0 2 3 5
0 3 2 5
0 4 1 5
0 5 0 5
1 2 2 5
1 3 1 5

TABLE III. Ordering of the indices /, m, I in the
antisymmetrical case,

11
12
13.
14
15
16
17
18
19
20

Then lnEp is equal to P(2). Now the S(k) are known
from the sum rules"

(18)

S(0)=Z,

S(1)= (8/3) Lp'+ p'(2/Ã)], (21)

S(2)= (64 /3)(~(r )) (22)

Here 0. denotes the polarizability, for which Dalgarno
and Kingston" get a value of 1.39ap', and the other
S-values are given in Table II. Another datum can be
inferred from Kabir and Salpeter's asymptotic expres-
sion' for fp„, namely, that S(2.5) = ~. In the vicinity
of k= 2 we may therefore attempt a representation

S(k) =8/(2. 5 —k)', (23)

and determine the constants 8 and u by 6tting the
values of S(1) and S(2). The result. is

log, PS(2)/S(1)3=2.456, 8=22.11, (24)

lnKp= 2a=4.91. (25)

S(0) comes out 2.33, as against the correct value of 2.
Fitting a polynomial for 1/S(k) at the points k= —1,
0, 1, 2, 2.5, and evaluating the derivative of the poly-
nomial at k=2, leads to a value of 4.50 for lnEp.

Table II also gives expectation values of various
powers of the three triangular distances for the 1'S
state. The deviation at @=1078 of the expectation
value of 2.903724367 for the potential energy (—V)
from the value of 2.903724375 obtained for e' is partly
due to insufhcient iteration of the eigenvector. The

expectation values of (V') will be useful for the eventual
determination of (H'), where it enters as a component
term.

In the preceding discussion we have dealt with the
energy eigenvalue and with expectation values of
operators, which depend on the over-all behavior of the
wave function in the whole of space, rather than on its
properties at a particular point. We shall now study
one such local property, namely the extent to which
our solutions derived by solving determinants of
increasing order, reproduce the known linear terms""
in the expansion of the wave function at the origin:

P = 1—Z(ri+rp)+-', rip+ (26)

3. THE 2'S STATE OF HELIUM

The 2 'S state can be dealt with by our method in a
manner similar to the ground state, the only change
required being that in the expansion (4) we have to put

2 (l,m, n) = —2 (m, l,n), (28)

in order that the wave function be antisymmetrical in
the two electrons. The coefficients A(l, m, n) are again

Representing the expansion of our solution in the form

/=1 —U(ri+rp)+ Trip+ (27)

we give in Table II the values of V and T, which at
e= ~ should approach the exact values of 2 and -'„

respectively. We see that though the energy parameter
~ is determined at e= 1078 to an estimated accuracy of
one part in 10", the value of the coefFicient T still
shows a gross deviation of 5 jo from its true value.

TABLE IV. The determinant of order 7 for the antisymmetrical case.

B4 Bz

—48Z +9+64e
SZ —6 —Se
44Z —6 —52 e
2—4Z+2+4e—12Z+12e—4Z +4+4»

—64Z+23 +160e—4Z+2 —16»
16Z -16—32e
52Z —10—108»
12e—4e

—112Z+17+160e
4e
12Z —8 —Se
90Z —9 —114e
30Z —11—66e

—SOZ+43+288e—8Z+4 —36» —136Z+35+360e—6Z+3 -36e—2Z+1
—196Z+23 +292»—12Z+6+24e —164Z+31 +396e

'8 V. A. Fock, Izvest. Akad. Nauk. S.S.S.R. Ser. Fiz. 18, 163"J.H. Bartlett, Phys. Rev. 51, 661 (1.937).
(1954).
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TABLE V. Values for the 2 '5 state of the nonrelativistic energy —e~, the mass polarization correction —e~, and the relativistic cor-
rection to the ionization potential E;.J denotes the theoretical value of the ionization potential, excluding the Lamb-shift correction.
RH, 4=109722.267 cm ' n =5.32504)&10 5.

(2e' —4)
P(A/Ã)
(pi')
(s(r2) l—(2/~') E2
i2e' —4)EH, 4

E1J

125

10
1.47486303758
2.17522097961
0.35044195923
0.00745487852

41.830336
1.3196009
0.003259516

38451.286218—0.22427162
1.96220

38453.02415

252

13
1.47486584437
2.17522925888
0.35045851777
0.00744233891

41.835955
1.3204316
0.003256937

38453.103059—0.22389436
1.91760

38454.79677

444

16
1.47486588434
2.17522937680
0.35045875360
0.00744213349

41.835507
1.3203474
0.003256860

38453.128935—0.22388818
1.92248

38454.82753

715

19
1.47486588483
2.17522937822
0.35045875644
0.00744213074

41.835544
1.3203558
0.003256860

38453.129247—0.22388810
1.92196

38454.82732

Extrapolated

1.47486588483
2.17522937824
0.35045875647
0.00744213071

41.835541
1.3203550
0.003256860

38453.129250—0.22388810
1.92201

38454.82737

Units

a.u.
a.u.
ry
a.u.
a.u.
a.u.
n~ ry
cm '
cm '
cm '
cm '

Q &,sÃ=0,
k

C,I.=~„a+~&,u,

where the a„A, and b„~, are integers, and

(31)

(32)

(33)

A sample of the determinant is shown in Table IV.
We have solved the determinant by the iteration

method described in I, and the results for the orders
n=125, 252, 444, and 715 are shown in Table V. The
convergence of the values of the energy parameter e

with increasing order of the determinant e, is more

rapid in the 2'5 than in the 1 '5 state. The value of
1.47486588483 for e»5 is probably correct to within

the order of a unit in the last figure, judging by its
closeness to the extrapolated value, and similarly for the
nonrelativistic energy value —e»5'= —2.17522937822.
The solution of the determinant of order 715 thus
yields a nonrelativistic energy value which appears to
be reliable to one part in 10"—an accuracy which

ought to sufFice for any foreseeable application in the
future. Equally, the theoretical value of the ionization
potential J based on the correction terms included in

(9) and (10), excluding the Lamb shift correction, prob
ably does not deviate by more than one unit in the
last figure from 38 454.8273 cm '. Traub and Foley,"
using a 12-parameter variational wave function, get a
va]ue for J of 38452.12 cm '.

The leading terms in the Lamb shift correction to

20 J. Traub and H. M. Foley, Phys. Rev. 111,1098 (1958).

determined from the recursion relation I(22). We have
arranged them into a one-dimensional array by the
following procedure. Let

A(l, m, N) =8„, p=1, 2, 3 (29)

p(l, m, n) = (1/24)~(~+2) (2~—1)
—(1/16) [1—(—1) j+l(m+n)+m. (30)

The scheme which we have adopted for ordering the

(l,m, e) is illustrated in Table III. For each value of p
the recursion relation I(22) takes on the form

the ionization potential are given by Qg; in (11),
where the Lamb shift of the one-electron ion &~1 js
3.534 cm ', as for the 1'5 state, while the term EI.,~

vanishes with (B(rz2)) because of the antisymmetry of
the wave function. Taking Dalgarno and Kingston's"
value of 74.9 ry for the average excitation energy ICo
of the 2'5 state, we get for the leading terms of the
Lamb-shift correction

DE;=3.534—3.698= —0.164 cm ' (34)

a= log, LS(2)/5(1)j= 2.477, g= 13 g917 (35)

le, =2~=4.95. (36)

' G. Herzberg (private communication).
~W. F. Meggers, I. Research Natl. Bur. Standards 14, 487

(1935).

The accuracy of this figure is hard to assess, but
improved values should be forthcoming soon. This
leads to a theoretical value of the ionization potential
of 38454.663 cm '.

The experimental value of the ionization potential
has been estimated by Herzberg" to be 38 454.73 cm—',
with an uncertainty of less than +0.05 cm '. This is
based on his' term-value of 29223.86 cm ' for the
2'P1 state and Meggers'" value of 9230.869 cm ' for
the transition O'S1—2'I'1, but using Edlen's vacuum
correction.

It would be of interest to attain higher precision in
the experimental term-value of the 2 '5 state. We may
expect that an accurate theoretical value for the Lamb
shift will be determined before long, though the problem
is more complicated in the case of the 2 '5 state. The
reason for this is that in addition to transitions of the
2s electron one must also consider transitions of the 1s
electron, and by far the greater contribution to both
numerator and denominator in (14) comes from the
latter, as was shown by Dalgarno and Kingston. " In
view' of this added complication, it is of interest to
obtain a rough estimate of Eo by the method described
in Eqs. (16) to (25). Values of $(k) are given in Table
VI. %'e get
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ThsLE VI. Expectation values of various functions for the 2 3S state.

U= (—1/rq 1/ro+—1/2r»), S(k)=Z fo~(Eo E~—)", fo~= o(&o—&n) ~Po(ri+ro)4' (o.

E0 and E„denote the energies of the 2 S state and of the nth excited state, respectively, measured in Rydbergs, lengths being measured
in units of c0.

&r ')
(r)
&2/r1&
(1/rP)
(r»')
(r»)
(1/r»&
(1/r»'&
(1/r&ro)
(1/rgr&o&
(rg ro)
(v)
(P'2)

S(—1)
S(0)
S(2)
~(2)
D(0)

11.4373177
2.54883477
1.154708349
4.1701299

22.9923236
4.44432371
0.2682804874
0.0889448013
0.5609066279
0.3228030465—0.05884408—2.175276455
8.8387052
7.5856491
2
5.82046895

88.44050
33.16519

252

11.4635124
2.55042260
2.154665077
4.1704717

23.0445817
4.44745376
0.2681995391
0.0889067652
0.5607332322
0.3226983780—0.05877845—2.175230385
8.8392397
7.6031560
2
5.82045759

88.49618
33.18607

11.4643041
2.55046191
1.154664166,
4.2704434

23.0461624
4.44'753369
0.2681978818
0.0889060161
0.5607296916
0.3226962551—0.05877714—2.175229391
8.8391803
7.6036846
2
5.82045736

88.49053
33.18395

715

11.4643213
2.55046267
1.154664153
4.1704457

23.0461969
4.44753519
0.2681978557
0.0889060052
0.5607296364
0.3226962221—0.05877712—2.175229378
8.8391848
7.6036961
2
5.82045736

88.49110
33.18416

Extrapolated

11.4643217
2.55046268
1.154664253
4.2704456

23.0461975
4.44753522
0.2681978553
0.0889060050
0.5607296356
0.3226962216—0.05877712—2.175229378
8.8391845
7.6036964
2

88.49105
33.18414

S(0) comes out 1.64 compared to the exact value of 2.
Fitting a polynomial for 1/S(k) and getting the
derivative from it at k =2, gives a value of 2.65 for lnEO.

The electron charge density at the nucleus D(0) is
given by 8or(B(rt)), and is tabulated in Table VI. The
value of 33.18416 for D(0)tts, which is subject to an
uncertainty of the order of a unit in the last 6gure, is
to be compared with the value of 33.18388+0.00023
which Novick and Commins deduced from the observed
hyperfine splitting. "

4. CONCLUSIONS

In this investigation we have shown that the new
method yields nonrelativistic energy values for the
1'5 and 2'5 states of helium which are accurate to
0.001 cm ', or better. With the program ready, the

problem of achieving even higher accuracy is only a
matter of availability of computing time. It would be
of interest to bracket the energy also by a lover bound,
as Kinoshita does. ' "However, since the establishment
of a lower bound involves rather lengthy computations,
it is a question of economy whether one could not just
as well carry out instead a solution of a higher order
determinant, and gain an improved v, ave function
into the bargain.
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