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The dipole polarizability aqs has been calculated for several ions by solving the Schrédinger equation for
the first-order perturbation of the wave functions of the core electrons. General results have been obtained
for the number of nodes of the various types of perturbed wave functions (1 — I’) in terms of the principal
quantum number #. Tables of the perturbed wave functions for the Nat and Cl~ ions are presented. The
results for aq of Nat, K¥, Rb*, and Cs* are in reasonable agreement with those obtained in previous work.
Calculations have also been carried out for the electric field at the nucleus due to the charge distribution
induced in the ion by an external charge. Values of the quadrupole shielding constant v., have been obtained

for several helium-like ions.

I. INTRODUCTION

HE electronic dipole polarizability aq of several
ions has been previously calculated by means of
the Hartree and Hartree-Fock wave functions for the
ions.? In this work, the inhomogeneous Schrédinger
equation for the first-order perturbation of the wave
functions was solved directly, without any expansion
in terms of the eigenfunctions of the unperturbed
Hamiltonian. In the present paper, we give the results
of similar calculations for Hg*+ and U®, which are
the two heaviest ions for which Hartree wave functions
are available. The purpose of these calculations was to
determine the order of magnitude of the dipole polariza-
bility aq for large Z. The heaviest ion for which calcu-
lations were previously carried out is Cs*, which gave!
ag=>5.03 A3. Hartree wave functions® for Cs* were used
in this calculation, since Hartree-Fock functions are
not available. Presumably the result for oy would be
somewhat reduced if Hartree-Fock functions (including
exchange) were employed.

Besides the results for Hg™t and U%, we have also
recalculated the dipole polarizabilities for the Nat,
ClI-, K+, Cu*, Rb*, and Cs* ions, which have been
previously obtained in I. The present calculations are
believed to be somewhat more accurate. With a few
exceptions, the previous values of the various terms of
ag agree within ~109, with the present results.

The calculation of a4 for F~ given in I was carried
out by means of the Hartree functions? for this ion,
which were at that time the only ones available. In the
meantime, Hartree-Fock wave functions for I~ have
been obtained by Froese.® Since the effect of exchange
on the wave functions is very important for negative
ions, aqg of F~ was recalculated using the Hartree-Fock
wave functions.®

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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The calculations of the perturbed wave functions are
described in Sec. IT. The resulting values of the polariza-
bility aq are discussed in Sec. III. In Sec. IV, we present
a calculation of the electric field produced at the nucleus
by the induced charge distribution, for the cases of F~
and Na*. Section V gives the results of calculations for
the following helium-like ions: H—, He, Li*, and Bet+.
Values of the electric field at the nucleus and the
quadrupole shielding constant v, have been obtained
for these ions.

II. CALCULATIONS OF THE PERTURBED
WAVE FUNCTIONS

The present calculations were carried out in the same
manner as in I and II. aq is given by

8 8 16
adzg gl(ns—>;b)—|—z gl(np—w)—{—gl(np—»d)]

16
+T [S—I(nd%;b)%l(ndﬁf)], W

where the sums extend over the filled ns, #p, and nd -
shells, as indicated, and 7 (#l — !') denotes the following
integral for each type of excitation:

I(nl—1)= fw uo (nl)uy (nl — U)rdr, (2)

where / and /' are the azimuthal quantum numbers of
the unperturbed wave function and the perturbation,
respectively; #,’ is 7 times the radial unperturbed
(Hartree or Hartree-Fock) wave function, normalized

according to
f uo'2dr=1.
0

In Eq. (2), %1 is r times the radial part of the pertur-
bation, and is determined by

a Ui+
[+
ar? 72

)

+Vo— Eo]ul’ (nl = 1) =uy (nl)r, (4)
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where Vy is the unperturbed (spherically symmetric)
potential, and Eq is the unperturbed energy. In solving
Eq. (4), the function Vy—E, is so chosen that it re-
produces the unperturbed wave function #,’. Thus
Vo— E is obtained from

1 Pud I(+1)
Vo—' E0=—' _— . (5)
uo’. dr? 72

Equation (1) gives aq in units ex® (ex=Bohr radius),

and must be multiplied by (0.529)3=0.148 to obtain

ag in units A%. The terms of ag [Eq. (1)] will be denoted
by a4(nl—U'). As was shown in I, the outermost filled
shell (with principal quantum number #,) makes the
predominant contribution to ag4, so that terms with
n<mno can usually be neglected.

For CI-, K*, Cut, Rb*, and Cs*, the same unper-
turbed wave functions were used as in I, i.e., the
Hartree-Fock functions®? for CI-, K+, and Cut, and
the Hartree functions®* for Rb+ and Cs*. For Nat, we
employed the Hartree-Fock functions obtained by
Hartree and Hartree,® which are slightly more accurate
than the wave functions of Fock and Petrashen® which
were used in I. For Hgt*+ and U%*, we used the Hartree
functions obtained by Hartree and Hartree!® for Hgt+
and by Ridley" for U¢t. Unfortunately, Hartree-Fock
wave functions (including exchange) are not available
for these ions. As a result of the use of Hartree functions
(without exchange), the calculated values of a4 are
somewhat too large, since the Hartree-Fock functions
are more internal than the Hartree functions. However,
for U%, the overestimate of the present values is not
expected to be important, because of the relatively
tight binding of the outermost electrons (6s,6p) which
arises from the large net charge Z, of the ion (Z;=6).

The procedure of the numerical integration of Eq.
(4) was as follows. In each case, the equation was
integrated inward starting from a large radius 7,
(~6—10ax), with various assumed values of ;' (r1).
If 6, denotes the interval of integration in this region,
the value of #’(r1-}+61) was obtained from the following
equation [see Eq. (58) of I]:

' (r1+61) =y’ (r1) exp[ — [N (r1) | 36:], (6)
where N (r) is defined by
I(+1) ud'r
+Vo—Ey——. (7)

72 2%y
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We note that if 7, is chosen large enough, a small error
in the initial slope, [#1' (r1+81) — %1 (r1)]/61, will have
a negligible effect on the calculated values of %" in the
region of the principal (outermost) maximum of u,
which makes the predominant contribution to
[o7] (%l - l') .

In the region near the nucleus (»£0.4an), the in-
homogeneous term of Eq. (4) makes a negligible con-
tribution. Moreover, the Eo term on the left-hand side
is relatively unimportant, so that small differences such
as Eo(ns)—Eo(np) can be neglected. As a result,
w1’ (ns — p) is proportional to uo'(#p) near r=0, and
similarly #: (np — s5) < uo’(ns). Thus for the ns— p
and #p— s excitations, the unperturbed »ns and #np
wave functions can be used up to 7~0.4ax. The correct
initial value of #(71) is then determined from the
condition that the internal and external solutions
should join smoothly at a radius ro~0.4am. More
precisely, it was required that the value of u'(ro-+60)/
ui'(rg) be the same for the internal and external
solutions, where §o is the interval of the numerical
integration at ro.

For F—, Nat, K+, and ClI~, the d wave function per-
taining to the internal solution for #¢p—d was ob-
tained by outward numerical integration starting with
a power series for #<0.05ax. Similarly, for Hgt+ 54 — f,
the internal solution (up to ~0.4eax) was obtained by
numerical integration, using values of the tabulated 4f
wave function to start the integration at »=0.12a5.
For Cst, #,/(5p — d) was taken as proportional to the
Hartree 4d function® up to r=0.4ax, and similarly for
Hgtt, 4y (5d — p) < us’ (5p), and for U, uy/ (6p — d)
' (5d) at the joining radius ro.

Concerning the number of nodes of the solutions u,’,
the following results were obtained. For ns— p,
uy’ (ns — p) behaves like an np function (for n=2)
having #—2 nodes. [Of course, for 1s — p, %’ behaves
like 2p and has no node; see Eq. (18) of I.] For np — s,
%" has n nodes, like the s wave function with principal
quantum number #-+1. The outermost node of
w1’ (np — s) was not obtained in the calculations of I,
probably because the solution at large » was not ob-
tained by inward integration, as was done in the present
work. However, it was found that the outermost
maximum of #,'(np — s) generally does not contribute
a large amount to the integral for ag(np — s) [Eq. (2)],
so that the previous values' of aq(np—s) are not
changed significantly, except for 3p— s of Cl~, as will
be discussed below.

For np — d, u/ (np — d) has n—3 nodes (for > 3),
and thus behaves like %, (#d). %1’ (2p — d) has no node,
similarly to #,"(3p — d). The case of nd — p is similar
to np — s: uy'(nd — p) has n—1 nodes, and behaves
like an (n-+1)p function. Finally, #,'(nd — f) has n—4
nodes like an #zf function (for #2>4). Moreover,
%' (3d — f) has no node, similarly to #,’(4d— f). In
all cases, #;’ has the same sign as #o’ in the region of
the outermost maximum of #,’.
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TaBLE 1. Perturbation of the wave functions for the Na* ion.
The radius 7 is in units ag.

7 w1’ (2s — p) u’(2p —s) u1’(2p — d)
0.02 —0.004 0.130 0.0000
0.04 —0.016 0.205 0.0001
0.06 —0.032 0.240 0.0003
0.08 —0.051 0.244 0.0007
0.10 —0.072 0.227 0.0013
0.12 —0.094 0.195 0.0021
0.14 —0.116 0.151 0.0032
0.16 —0.138 0.102 0.0045
0.18 —0.159 0.048 0.0061
0.20 —0.179 —0.007 0.0080
0.25 —0.225 —0.142 0.0137
0.30 —0.264 —0.262 0.0207
0.35 —0.296 —0.361 0.0287
0.40 —0.320 —0.435 0.0374
0.45 —0.337 —0.487 0.0466
0.50 —0.350 —0.519 0.0561
0.6 —0.361 —0.538 0.0750
0.7 —0.358 —0.513 0.0929
0.8 —0.347 —0.462 0.1091
0.9 —0.330 —0.398 0.1231
1.0 —0.309 —0.331 0.1346
1.1 —0.287 —0.264 0.1435
1.2 —0.264 —0.203 0.1498
1.4 —0.218 —0.100 0.1556
1.6 —0.176 —0.025 0.1533
1.8 —0.139 0.024 0.1450
2.0 —0.107 0.053 0.1327
2.2 —0.083 0.068 0.1185
24 —0.063 0.073 0.1040
2.6 —0.047 0.072 0.0898
2.8 —0.035 0.067 0.0763
3.0 —0.026 0.060 0.0643
3.2 —0.020 0.053 0.0538
3.4 —0.015 0.045 0.0447
3.6 —0.011 0.038 0.0368
3.8 —0.008 0.032 0.0299
4.0 —0.006 0.026 0.0239
4.5 —0.003 0.015 0.0134
5.0 —0.001 0.009 0.0076
5.5 0.005 0.0042
6.0 0.003 0.0023

The values of the perturbed wave functions for Na*t,
namely, #:'(2s — p), u' (2p — ), and u,'(2p — d), are
listed in Table I. In accordance with the results given
above, the 2s — p and 2p — d functions have no node,
whereas #,"(2p — s5) has two nodes (at »=0.20ag and
1.7axn). Table I shows that the values of #,/(2p — s) in
the region of the outermost maximum are considerably
smaller than those in the central maximum at »~0.6an
(~0.07 as compared to ~—0.5).

Table IT gives the perturbed wave functions for Cl—,
namely, 2u:,"(3s — p), 2u’(3p—s), and 2u,’(3p — d).
It may be noted that the values listed represent twice
the normalized functions, as defined by Egs. (3) and
(4). The numbers of nodes are 1 for 3s—p, 3 for
3p—s, and 0 for 3p — d. In this case, the outermost
maximum of #;'(3p — s) is quite prominent, and makes
a large contribution to az(3p — s).12

12 Similar tables of the perturbed wave functions for the other
ions considered in the present work (F~, K+, Cu*, Rb*, Cst,
Hgt*, and US*) are given in a supplementary paper, “Wave
Functions for Electronic Polarizabilities of Tons and Quadrupole
Antishielding Factors.” This paper also contains tables of the
perturbed wave functions used to calculate the quadrupole
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The unperturbed Ss function and the 5s— p per-
turbation #%;,"(5s— p) for Cs* are shown in Fig. 1.
Similarly, Fig. 2 shows the 5p function of Cs* and the
corresponding  perturbations, #/(5p—s) and
ul' (515 - d) .

III. VALUES OF THE POLARIZABILITY a4

The resulting values of ag(no — ') and the total aq
are listed in Table ITI. Except for the case of Cl~-
3p — s, the present values of aa(nol — /') are in good
agreement with those previously obtained! for Nat,
Cl—, K*, and Cs*. Thus for Na*t, K+, and Cs*, the
additional maximum of #,’ (nop — ) is relatively weak,
so that it has only a small effect on ag(nep — s).

For CI= 3p—s, the outermost maximum is very
pronounced, and actually changes the sign of
aq(3p — ). The contribution of the 3p — 3s excitation
to aq(3p — 5) was calculated and found to be —1.35 A3.
Thus the contribution to aq(3p—s) of s states lying
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Fic. 1. The 5s function #o’(Ss) and the Ss — p perturbation
#,'(5s — p) for Cs*. The wave functions are not shown for
r<0.10g.

above 3s is ~1.354-0.50=1.85 A% It was found that
the effective potential Vo 3, [Eq. (5)] of the 3p electrons
of CI~ does not have any bound s states above 3s. This
result is actually not surprising, since the valence
electrons are very weakly bound in a negative ion. Thus
the positive contribution to aq(3p —s) [which arises
from the outermost maximum of u:/(3p—s)] is
probably due to excitation to low-lying continuum s
states. '

polarizabilities of various ions [R. M. Sternheimer, Phys. Rev.
107, 1565 (1957)], and the wave functions which determine the
effect of the atomic core on the nuclear quadrupole coupling in
ions and for atomic ground states and excited states [as obtained
by R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
(1956), and R. M. Sternheimer, Phys. Rev. 105, 158 (1957)].
This ‘supplementary paper has been deposited as Document
No. 6044 with the ADI Auxiliary Publications Project, Photo-
duplication Service, Library of Congress, Washington 25, D. C.
A copy may be secured by citing the Document number and by
remitting $8.75 for photoprints or $3.00 for 35-mm microfilm.
Advance payment is required. Make checks or money orders
payable to: Chief, Photoduplication Service, Library of Congress.
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For Cs*, we have calculated only the 5s — p, 5p — s,
and 5p—d terms. The small term aq(4d — f)=0.16
A3? was taken from previous work.! For U%, the term
aq(5d — f) was calculated, in order to verify that it is
indeed small (0.14 A3%) compared to the effect of the
no="06 terms (sum=1.20 A3).

Concerning aq(2p — @) for F, it may be noted that
because the Hartree-Fock 2p function® is appreciably
more internal than the Hartree 2p function used in I,
this term is considerably reduced as compared to the
result obtained in I (1.234 A3 instead of the Hartree
value! 3.11 A%). The present result aq(2p — d)=1.234
A% is in very good agreement with the value 1.237 A3
obtained by Burns® using a variational method.
Similarly for Nat 2p — d, Burns’ value is also in close
agreement with our result: 0.132 A3 as compared to
0.133 A% The good agreement with the result of the
variational calculation is to be expected for the 2p — d
terms, since Burns assumes that #,(np — d) is given
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Fic. 2. The S5p function #¢(5p) and the perturbations
u1’(5p — s) and %’ (5p — d) for Cs*. The functions %' (5p) and
1.’ (5p — s) are not shown for »<0.1ag.

by #:'=uo'f(r), where f(r) is a polynomial in 7. Thus
%" has nodes at the same radii as . For 2p —d,
where neither %" nor #;," has any nodes, this procedure
is fully justified. On the other hand, for the heavier ions
with 3p—d, 4p —d, modes of excitation, the
assumption #;"=uy f(r) introduces an artificial node
into the solution #;. The actual solution #;’(np — d)
has #—3 nodes (for 72> 3), whereas ' (np) has n—2
nodes. The existence of the extra node may account for
the small discreancy between the variational results
and the present values for K+ 3p— d (Burns: 0.972;
ours: 1.148 A%), ClI= 3p —d (Burns: 5.03; ours: 5.31
A3%), Rb* 4p—d (Burns: 2.775; ours: 2.568 A%), and
Cst 5p—d (Burns: 5.79; ours: 4.94 A%).

The positive sign of aq(2p — s) for F~ (40.278 A?)
arises from the outermost maximum of %;’, in the same
manner as for CI~ 3p — s. The outer maximum occurs

13 G. Burns, Phys. Rev. (to be published). See also E. G. Wikner

and T. P. Das, Phys. Rev. 107, 497 (1957); M. Sundbom, Arkiv
Fysik 13, 539 (1958); L. C. Allen (to be published).
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TasLE II. Perturbation of the wave functions for the CI~ ion.
The radius 7 is in units eg.

v 2u1’(3s = p) 2u1’(3p —s) 2u1’(3p — d)
0.01 —0.013 0.659 0.000
0.02 —0.049 1.099 0.000
0.03 —0.100 1.366 —0.001
0.04 —0.165 1.492 —0.002
0.05 —0.239 1.502 —0.003
0.06 —0:316 1.426 —0.005
0.07 —0.396 1.280 —0.008
0.08 —0.477 1.085 —0.012
0.09 —0.558 0.852 —0.016
0.10 —0.638 0.598 —0.021
0.12 —0.782 0.045 —0.033
0.14 —0.909 —0.515 —0.048
0.16 —1.013 —1.047 ~—0.065
0.18 —1.094 —1.516 —0.085
0.20 —1.149 —1.919 —0.108
0.22 —1.187 —2.246 —0.133
0.24 —1.202 —2.493 —0.160
0.26 —1.194 —2.667 —0.189
0.28 —1.170 —2.768 —0.219
0.30 —1.130 —2.806 —0.250
0.35 —0.969 —2.649 —0.334
0.40 —0.744 —2.225 —0.423
0.45 —0.479 —1.599 —0.514
0.50 —0.193 —0.857 —0.606
0.55 0.098 —0.060 —0.697
0.60 0.387 0.739 —0.786
0.7 0.941 2.205 —0.960
0.8 1.445 3.389 —1.129
0.9 1.867 4.268 —1.295
1.0 2.207 4.848 —1.454
1.1 2471 5.162 —1.606
1.2 2.660 5.248 —1.748
14 2.875 4.954 —2.001
1.6 2.922 4.239 —2.216
1.8 2.855 3.328 —2.39%4
2.0 2.721 2.369 —2.541
2.2 2.548 1.440 —2.658
24 2.355 0.589 —2.749
2.6 2.158 —0.162 —2.815
2.8 1.966 —0.810 —2.862
3.0 1.776 —1.354 —2.890
3.2 1.599 —1.803 —2.896
3.4 1.435 —2.163 —2.889
3.6 1.283 —2.446 —2.864
3.8 1.141 —2.660 —2.827
4.0 1.010 —2.817 —2.781
4.5 0.737 -3.013 —2.626
5.0 0.535 —3.000 —2.433
5.5 0.381 —2.856 —2.221
6.0 0.265 —2.618 —1.983
6.5 0.181 —2.356 —1.758
7.0 0.124 —2.081 —1.539
8 0.055 —1.554 —1.144
9 0.023 —1.123 —0.830

10 0.009 —0.794 —0.591
11 —0.549 —0.413
12 —0.371 —0.282
14 —0.153 —0.121
16 —0.057 —0.048

at r=3.8ax (where #,"=0.858), whereas the central
maximum is located at r=0.73am (#/'=—1.29).
Presumably, the predominant positive contribution is
due to excitation of the 2p electrons into s states lying
above 2s.

The term aqa(5d — p) of Hgt* will now be discussed.
This term is positive and relatively large (0.935 A3).
One might have expected that aa(5d — p) would be
negative [and of the order of «4(5d— 5p)], in simi-
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TasLE III. Calculated and experimental values of the dipole polarizability aq. The rows above ag4(calc) give the contributions to ag of
the various modes of excitation of the (outermost) shell with highest principal quantum number 7. All values are in units A3.

Ion F- Nat Cl- : K+ Cut Rb* Cst Hgtt Ue+
ag(nos = p) 0.346 0.117 1.38 0.594 0.0737 1.027 2.01 0.202 0.945
ag(mep — s) 0.278 —0.098 0.50 —0.501 —0.0753 —0.675 —1.51 —0.189 —1.195
ag(nep — d) 1.234 0.133 5.31 1.148 0.1001 2.568 4,94 0.320 1.452
ag(nod — p) 0.442 0.935
ag(ned — f) 0.441 0.162 1.512b 0.142b
aq(calc) 1.858 0.152 7.19 1.241 0.982 2.920 5.60 2.780 1.344
ag(exp) 0.76-1.04 0.18-0.26 2.97-3.66 0.83-1.20 1.6 1.40-1.81 2.42-3.14

& This term is due to 4d — f.

larity to the ag(nop — s) terms of Nat, K+, Cst, Hgt+,
and U®t, which are predominantly due to aq(#ep — 70s).
aqa(5d— 5p) is given by

aa(5d— 5p)=(0.148 A% (16/3)aspTsp,  (8)

where a5, and Js, are defined by

w= [ wlGio P GoI, O
0
]51;5] %0’(5?)%0’(5d)1’d7’. (10)
0
It may be noted that a;, is also given by
5,22 50/ (Esp— Esa), (11)

where Ej, and Ejsq are the unperturbed 5p and 54
energies. Since FEs;,<FEsq, the negative sign of
aqa(5d — 5p) is obtained directly from Egs. (8) and
(11). From Egs. (8)-(10), one finds «q(5d— 5p)
=—0.358 As.

Since the total aq(5d— p) is positive and ~2.6
times |@a(5d — 5p)|, it was expected that the 5d — 6p
excitation may make a large contribution. In order to
verify this possibility, the 6p wave function wu,’(6p)
was obtained for the effective potential Vo 54 of the 5d
electrons. It was found that Eg,— E;e=0.813 ry. The
term aq(5d — 6p) is given by

@a(5d — 6p) = (0.148 A%) (16/3) a5, 55
£2(0.148 A%) (16/3)J 5%/ (Esp— Esa), (12)

where agp, and J, are obtained from Egs. (9) and (10)
by replacing 5p by 6p. From the first expression of (12),
involving ag,Jep, one finds aq(5d — 6p)=1.186 A3. It
may be noted that from the second expression which
involves Je,*/ (Eep—FEsa), one obtains «q(5d— 6p)
=1.156 A% in good agreement with the preceding
result (1.186 A3).

Upon taking the sum aq(5d— 5p)+aq(5d— 6p)
=—0.358+41.186=0.828 A3, one sees that the pre-
dominant term is aq(5d — 6p), while the higher excited
states above 6p make only a small contribution:
0.935—0.828=0.107 A%. The situation for aq(5d — p)
of Hgtt is similar to that of as(2p —s) of F~ and
aa(3p—s) of Cl-, where the excited states above #gs

b This term is due to 5d — f.

make the predominant contribution, which determines
the positive sign of the integral, as discussed above.

The term a4(3d— p) of Cut is very similar to the
term aq(Sd— p) of Hgt*, which has just been dis-
cussed. Thus «s(3d— p) is positive and relatively
large (40.442 A%). This is probably mainly due to
excitation of the 3d electrons into 4p and higher excited
p states. In the previous calculation (see Table I of I),
the value of @q(3d— p) was found to be small and
negative (—0.084 A3%). The other terms of a4 are not
changed appreciably, so that the total aq is increased
from 0.470 A3 to 0.982 A3. This value is still somewhat
lower than the experimental result aq(exp)=1.6 A3,
obtained by Tessman, Kahn, and Shockley,** but the
disagreement is no longer as serious as was believed
previously.! Unfortunately, the only experimental
value of ag available is that of Tessman et al.* In this
connection, we note that for Ca*tt, Srt*, and Batt,
where several determinations of a4 exist, the result of
Tessman et al.** (see Table VI of their paper) exceeds
other values by the following amounts: for Catt,
1.1—-0.5=0.6 A3; for Srt*, 1.6—0.86=0.74 A3; for
Batt, 2.5—1.6=0.9 A% Since the discrepancy for Cut
is ~0.6 A3, it is quite possible that a major part of the
disagreement is due to the uncertainties in the experi-
mental determination of ag.

On the basis of numerical estimates, it is believed
that the accuracy of the various terms of aq4 is within
39, which is probably also the limit of error of the
perturbed wave functions u,’(#l— ') at various radii
7, except in the regions of 7 where #;’ goes through a
zero.

The range of the experimental values of ag is listed
in the last row of Table III. This range of ay was
obtained from a consideration of the results of Tessman,
Kahn, and Shockley,* Pauling,!® Born and Heisenberg,®
and Fajans and Joos.!'” Table III shows that for Nat
and K*, the calculated ag lies essentially in the range
of the experimental values, whereas for F—, Cl-, Rb*,
and Cs*, the theoretical value is larger than aq(exp) by
a factor of ~2. The agreement for Nat and Kt is
probably due to the use of Hartree-Fock wave functions

14 Tessman, Kahn, and Shockley, Phys. Rev. 92, 890 (1953).
15 L. Pauling, Proc. Roy. Soc. (London) A114, 191 (1927).
16 M. Born and W. Heisenberg, Z. Physik 23, 388 (1924).

17 K. Fajans and G. Joos, Z. Physik 23, 1 (1924).
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in the calculations, and the fact that in positive ions,
the outer electrons are relatively tightly bound, and
therefore the wave functions are not very sensitive to
the effects of electrostatic correlation between the
electrons, which are not included in the Hartree-Fock
equations. For F~ and CI-, although Hartree-Fock
wave functions were used, the effects of correlation are
expected to be important, because the outermost (2p
or 3p) electrons are very weakly bound. It may be
noted that for F—, the effect of including exchange has
reduced the calculated value from 3.20 A® (Hartree
functions)! to 1.86 A® (Hartree-Fock), i.e., by a factor
1.7. Thus it is quite possible that the inclusion of cor-
relation, which would make the Hartree-Fock wave
functions more internal, would decrease the theoretical
value of a4 for F~ by an additional factor of ~2, and
bring it into agreement with experiment. The same
remarks apply to Cl~. For Rb* and Cs*, the use of the
Hartree functions (excluding both exchange and cor-
relation) probably accounts for the overestimate of aq.

For Hgt* and U%, experimental values of g do not
seem to be available. The fact that the calculated
aqg(U%) is considerably smaller than aq(Hgtt) is
probably mainly due to the larger net charge of the
U% jon. Upon comparing the calculated values of
ag(Hgtt) and aq(U%) with that of a4(Cs*) (=5.60 A3),
it is seen that aq does not increase with Z beyond Z~ 50.
Instead, there is actually a decrease of ag in going from
Cs* to Hgt*. This decrease is probably due in part to
the increase of the net charge Zo of the ion. The effect
of a change of Z, is very pronounced, as can be seen
from a comparison of ag(Hgt+) and aa(U®), or aq(Cl)
and aqy (K+)

IV. ELECTRIC FIELD AT THE NUCLEUS

A sensitive test of the accuracy of the zero-order
wave functions #," and the perturbed functions #,’ can
be obtained by calculating the electric field at the
nucleus Einq due to the distribution of charge induced
in the ion by an external charge placed at a large
distance x= R from the nucleus. The quantity Eiq is of
interest, because its exact value is known from an
argument first proposed by Feynman.!® As shown in I
[Eq. (113)], from the fact that the net force on the
nucleus in the x direction is — Zye?/R?, one finds that the
component Ei,q,. along the x axis is given by

[ Zo
Eind, x=_(1—‘),
R? Z

where Z, is the net charge of the ion, and it has been
assumed that the external charge is a unit positive
charge (+4e) placed along the positive x axis at a
distance R.

In terms of the perturbed wave functions #,’, Eing,z
is given by [see Egs. (119) and (120) of I]

(13)

18 R, P. Feynman, Phys. Rev. 56, 340 (1939).
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TaBLE IV. Contributions to the electric field at the nucleus due
to the perturbation of the wave functions induced by an external
charge. £ is the induced field in units ¢/R?. The last three rows give
the total calculated £, the actual value of ¢(=1—2o/Z), and the
ratio p=¢£(calc)/(1—24/2).

Ion F- Nat
E(1s— p) 0.230 0.187
£EQ2s—p) 1.374 1.027
£EQ2p—s) —1.841 —1.125
£E(2p —d) 1.670 1.063
£(calc) 1.433 1.152
1-2¢/2 1.111 0.909
) 1.290 1.267

e 8
Eind,z=Ez‘[ % EK(”S — )
8 16

+§;‘[13—6K(nd—>zﬁ)+81€(nd—>f)]}, (14)

where the sums extend over the filled s, p, and d shells,
and K (nl— 1) denotes the following radial integral:

Knl— )= f wi! ()t (nd— Dyr=2dr. (15)
0

It may be noted that, aside from the factor ¢/R? Eina,»
differs from the expression for a4 only through the
replacement of I(nl — ') by K(nl— ') [see Eq. (1)].
We denote Eing,»/(¢/R?) by £, so that the actual
value of £ is 1—Zy/Z. The quantity £ is given by the
curly bracket of Eq. (14). The terms of & will be
denoted by #(nl—1). ¢ was calculated from the
perturbed wave functions for the cases of F~ and Na*t.
The results of the calculations are given in Table IV.
For 2s—p, 2p—s, and 2p—d, the values of
K (nl—l') were obtained by numerical integration over
the functions #," and #,". For 1s— p, it was assumed
that %o’ can be approximated by a hydrogenic wave
function with an appropriate effective Z, obtained by
means of Slater’s® screening constant for 1s (0.30).

Thus
w’ (15)=2Z Y exp(—Z.r), (16)

with Z,=Z—0.30. As shown in I [Eq. (18)], the
corresponding #,’ is given by

w'(Is— p)=Z; W exp(—Zr)[14+35Z.r],

whence

17

0

(15 =2 [ w19ui s — prir=—- (18
—> s - Ay = —.
Els—p 3J, uy (1s)uy’ (1s — p)r 7

e

The values of 2/Z, are listed in Table IV. It is seen
that both for F— and Nat, the calculated & exceeds the

18 J, C. Slater, Phys. Rev. 36, 57 (1930).



1204 R. M.

actual value 1—Zo/Z. The ratio p of the calculated to
the actual value, p=¢(calc)/(1—Zo/Z), is given in the
last row of the table. Similar calculations were carried
out in I (Table V). The values of p obtained in I were
2.05 for F~ and 1.49 for Na*, as compared to 1.29 and
1.27, respectively, from the present work. It is seen
that for F~ in particular, the present value of ¢ repre-
sents a marked improvement, as was to be expected
from the result for aq. This improvement arises both
from the use of Hartree-Fock wave functions, which
mainly  decreases £(2p—d), and from the more
accurate determination of #;,’(2p —s) which leads to
a more negative value of £(2p—s) (present value
—1.841, as compared to —1.29 obtained in I).

The use of the hydrogenic approximation for 1s
introduces some uncertainty in the preceding results.
However, even if one assumes an uncertainty of =209,
of the value used (2/Z.), this leads to a maximum error
of only 4=0.04 in p for both F~ and Na™.

For the heavier ions (ClI—, K+, - --), values of £ have
not been obtained, because the required 2s— p,
2p — s, and 2p — d perturbed wave functions have not
been determined for these ions. In contrast to the
situation for ag, the inner shells are expected to make
a significant contribution to £, essentially because the
integrand of K involves the factor =%, which weights
more heavily the region near the nucleus [as compared
to the factor # for I(nl —1')7].

It should be pointed out that the calculation of
Eina,- may provide a sensitive test for a set of Hartree
or Hartree-Fock wave functions for any given ion or
neutral atom. (In the latter case, the actual value of
£ is 1.) The value of p would then be a criterion for the
accuracy of the zero-order wave functions. The calcu-
lation of Eing,» probably tests parts of the wave func-
tions which are, on the average, closer to the nucleus
than the more external regions which make the pre-
dominant contribution to the energy eigenvalue E.
Thus the value of p could be used as an independent
criterion, besides the calculation of E, for the various
electron shells.

V. CALCULATIONS FOR THE HELIUM-LIKE IONS

We have previously obtained solutions® for the
perturbed wave functions for the following helium-like
ions: H—, He, Li*, and Bet*, for both the dipole
polarizability (1s— $ excitation) and the quadrupole
polarizability (1s — d excitation). In these calculations,
the zero-order 1s wave functions #,’ were taken from
the work of Lowdin® The dipole perturbation
#y'(1s — p) was obtained by means of Eq. (4) (with
U=1). The quadrupole perturbation #,'(1ls— d) was
determined from a numerical solution of the equation

a2 6
(‘*—+—+ Vo—Eo)“x'ﬂH d)=uy (15)r* (19)

drt r?

2 P, 0. Lowdin, Phys. Rev. 90, 120 (1953).

STERNHEIMER

The function Ve—E, was obtained from the Léwdin
wave functions by means of Eq. (5).

The solutions #;'(1s — p) and u,’'(1s — d) were used
in IT to obtain the dipole and quadrupole polariza-
bilities ag and a4 (see Table I of IT). In connection with
the discussion of the preceding section, it is of interest
to obtain the electric field at the nucleus Einq,. and the
resulting value of p, £ is given by

£=§ fw o' (18)uy" (1s — p)r~2dr. (20)
3

The second, third, and fourth columns of Table V list
the values of & 1—Z¢/Z, and p=£/(1—Zo/Z). For
comparison, we have also given the values of p (here
denoted by p,) which were obtained in I (see Table V)
by means of an analytic approximation to the solutions
u’(1s— p). It is seen that both for H- and He, the
more accurate numerical solution leads to an appre-
ciably lower value of p than the approximate analytic
solution of I. For Li* and Bet*, the values of p and p,
agree within the accuracy of the calculations.

The perturbation u;"(1s— d) can be used to obtain
the quadrupole shielding constant® +,. For a nucleus
with electric quadrupole moment Q, v., is defined as the
ratio of the quadrupole moment induced in the electron
core to the nuclear Q. v, is taken as positive if the
induced quadrupole moment tends to shield the nuclear
Q, as is the case here. Alternatively, v., can be defined
in terms of the field gradient at the nucleus due to an
external charge. For a charge ¢ placed at =R, the
field gradient due to the charge alone is given by
(dE;/dx)o=—2¢/R?. In addition, there will be a
contribution due to the charge distribution induced in
the ion. This term can be written as A(dE./dx)
=+2ey,/R?, where v,, is the same quantity as defined
above. Thus the total field gradient at the nucleus,
dE./dx, is given by

dE,/dx= — (2¢/R%) (1—7.). N

TaBLE V. Calculated values of &, p, and v for several helium-
like ions. The values of p were obtained from the present calcu-
lations, using the numerical solutions #,’(1s — p) determined in
II. The values of p, were found in I from an analytic approxi-
mation to the solutions #;’(1s — p). The shielding constants -y,
were obtained in the present work. v.(DB) and v.(S) are the
values of ., previously determined by Das and Bersohn? and by
Schwartz.b

Ion £ 1—Zo/2 P Pa Yoo Yo (DB) Yoo (S)
H- 3.251 2 1.63 191 1.131 1.141 1.080
He~ 1.261 1 1.26 1.32 0.424 0416 0.413
Lit 0.795 0.667 1.19 119 0.263 0.256 0.255
Bett 0.569 0.5 1.14 1.13 0.189 0.185 0.185

a See reference 23.
b See reference 24.

2t R, M. Sternheimer, Phys. Rev. 80, 102 (1950) ; 84, 244 (1951);
Foley, Sternheimer, and Tycko, Phys. Rev. 93, 734 (1954); R. M.
Sternheimer and H. M. Foley, Phys. Rev. 92, 1460 (1953); 102,
731 (1956).
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It has been shown? that for medium and heavy ions,
Y. is negative and very large (of order 10-100). The
resulting antishielding of the nuclear quadrupole
moment has important effects both for the quadrupole
coupling of polar molecules and ionic crystals, and for
the relaxation times in nuclear magnetic resonance
experiments.?22

For an ion with only a filled 1s shell, v., is given by

8 0
Ll f o’ (1s)ur' (1s — d)r—dr. (22)

0

The resulting values of v, are listed in the sixth column
of Table V. The last two columns [marked v,(DB)
and v.(S)] give the values of v, previously obtained
by Das and Bersohn® and by Schwartz.2¢ It is seen that
the present results for v, are in good agreement with
those of references 23 and 24.

Note Added in Proof—Additional calculations of
polarizabilities and antishielding factors have been
carried out for the Na*, K+, and B+ ions. For the case
of Nat, the Fock-Petrashen? wave functions were used
in IT to calculate the quadrupole polarizability ag.
Since the Nat Hartree-Fock wave functions obtained
by Hartree and Hartree® are believed to be somewhat
more accurate than the Fock-Petrashen® functions, the
perturbed wave functions #,’(2s — d) and u,'(2p — f)
were recalculated using u,'(2s) of reference 8, and
' (2p) of Lowdin,? which closely approximates the 25
function of Hartree and Hartree.® The function
;' (2p— p) pertaining to the Léwdin wave function® has
been obtained previously.?® The results for the terms of
agare as follows : a,® (25 — d)=0.0102 A%, o, (2p — )
=0.0218 A5, @ (2p— f)=0.0314 A5, giving for the
total ag of Na*: a,®=0.0634 A®. These results may be
compared with the corresponding values for the Fock-
Petrashen functions, as obtained in II: a,® (25— d)
=0.0133 A%, a,@(2p— $)=0.0173 A%, @ (2p—f)
=0.0256 A5, which give a®=0.0562 A5. It is seen that
agW(2s—d) is smaller than «,?(2s— d), whereas
agV(2p— p) and o, (2p—f) are larger than the
corresponding values a,®(2p — p) and a,@(2p— f)
obtained from the Fock-Petrashen wave functions.
These results arise from the fact that the 2s function of
Hartree and Hartree® is slightly more internal than the
2s function of Fock and Petrashen,? whereas for %o’ (2p),
the function of Hartree and Hartree® is somewhat more
external than that of Fock and Petrashen.? The present
values for @, (nl — I') are in good agreement with the
results obtained by Burns®® by means of a variational
calculation using the wave functions of reference
8: aB(25s—d)=0.0101 A%, B (2p— p)=0.0226 A5,
aB(2p —f)=0.0322 AS.

2 E. G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958).
2T, P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956).
2 C. Schwartz, Ann. Phys. 6, 170 (1959).
( 25 R) M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
1956). ’
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From the wave functions #,’(#l — ') one can obtain
the contributions 7., (7 — ') to the quadrupole anti-
shielding factor ve. v (1 — ') is given by

Yo (Wl — 1) =c(nl— 1) f uo (nl)uy' (nl — V)r=3dr, (23)
) :

where ¢(nl— ') is a constant which has the following
values: ¢(ns— d)=28/5, c(np— p)=48/25, c(np —f)
=72/25. One thus obtains for Nat, using the wave
functions of references 8 and 20: v, (2s — d)=0.234,
Yeu(2p = p)=—5.16, v.(2p — f)=0.303. 7,(1s— d)

" is approximately given by* (2/3)Z,2=0.062. Thus the

total 7., due to the angular modes of excitation (ns — d
and np —f) is: v,(ang)=0.599, and the total v, for
Nat [=7,(2p — p)+v.(ang)] is —4.56. The present
results for v, (%l — I') can be compared with the corre-
sponding values of Das and Bersohn®: v, 2B (1s — d)
=0.064, v.PB(2s — d)=0.326, v,LZ(2p — p)=—5.23,
YPB(2p— f)=0.304. It is seen that there is good
agreement, except for the term v, (2s — d). The reason
for the discrepancy in this case may be a shortcoming
of the variational method used by Das and Bersohn.?
Thus the actual perturbed function u,’(2s — d) has no
node,!? whereas the variational function of reference 23
has one node, being proportional to #,’(2s). Inside the
node of %' (2s) at #=0.20ay, the functions u,’(2s) and
' (2s — d) have therefore opposite sign, so that the
actual contribution to the integral of Eq. (23) is nega-
tive, whereas the variational calculation gives a positive
integrand for all ». Thus the absence of a node in the
function #,"(2s — d) will act to reduce v, (2s — d), in
agreement with the results obtained above.

For K+, values of the terms v,(nl— ') have been
obtained from the wave functions u, (nl— ') calcu-
lated in II, and from the wave functions v,"(nl — ')
determined?® in III, which represent the distortion of
the electron core by a nuclear quadrupole moment Q.
[These functions were called #,'(nl— ') in III, but
we use the notation v;” here in order to avoid confusion
with the present functions #;’ which pertain to the
perturbation due to an external charge.] In the calcu-
lation of v, in III, the Hartree-Fock functions for K+
were used” for #o". In terms of vy’ v, (nl — I') is given by

Yoo (Bl — 1) =c(nl — l')f wo’ () vy’ (nd — U)r’dr.  (24)
0

From Eq. (24), the following results were obtained:
Yo(ls = d)=0.0368, v,(25 — d)=0.1016, ~v..(2p — p)
=—1.219, v.(2p — f)=0.1366, v..(3s — d)=0.298,
Yo(3p = p)=—17.15, ~v,(3p— f)=0.478. Thus the
total v, due to the angular modes is: v, (ang) =1.051.

The total ., for K+ is given by

7@0(K+) =Y (ang)+7m(2P e P)
Fv.(3p— p)=—17.32. (25)

26 R. M. Sternheimer, Phys. Rev. 105, 158 (1957). This paper
will be referred to as III.



1206 R. M.

As a check on some of the terms, values of v, (nl — ')
were also obtained by means of Eq. (23) from the
functions #;’ determined in II. The results are as
follows: v,(2p — p)=—1.230, v,(3s — d)=0.303,
Y (3p — p)=—17.83, v,(3p — f)=0.485. It is seen
that these values are in good agreement with those
obtained from »,". The maximum deviation occurs for
Y (3p — p), where the difference amounts to 49,. The
present results for the terms due to the radial (np — p)
modes can be compared with those of Wikner and Das?
who wused a variational method and obtain:

V"2 (2p — p)=—1.22, 7,72 (3p— p)=—13.03. The _

STERNHEIMER

agreement is very good for v,,(2p — p), but for 3p — p,
Yo" P (3p — p) is lower by 249, than the value obtained
from the present work.

We have also calculated v, for the (15)2(2s)? core of
the boron atom, using the wave functions »;’(1s — d)
and v,'(2s—d) determined in III. These perturbed
wave functions are based on the Hartree wave functions
for boron obtained by Brown, Bartlett, and Dunn.?
The results are: v, (ls — d)=0.148, v,,(2s—d) =0.620,

giving v,,(B*)=0.768.

27 Brown, Bartlett, and Dunn, Phys. Rev. 44, 296 (1933).
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Application of Wave Functions Containing Interelectron Coordinates.
I. The Ground-State Energy of Lithium*
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Several years ago, Pluvinage made a substantial advance in the use of interelectron coordinates in atomic
systems by illustrating how the Schrodinger equation can be partially separated in such a way that the
interelectron potential no longer appears as the perturbing term. His method gave excellent results when
used to obtain variational energies of helium-like systems. In this paper, the Pluvinage method is modified
in such a way that it can be applied with a reasonable amount of labor to more complex systems. In this
modification, the nuclear coordinates act like Fermi-Dirac “particles” filling the energy levels pairwise,
while the interelectron coordinates act like Bose “particles,” all of which pile into the lowest energy con-
tinuum state. An accurate approximation technique is also developed for use in integrating functions
containing three or more interelectron coordinates over the space of the nuclear coordinates. The modified
Pluvinage approach is used in conjunction with the approximation technique to calculate the ground-state
energy of neutral lithium. Internal evidence indicates that the approximation technique is better than 999,
accurate in evaluating the individual integrals which appear. Although the wave function used here has no
adjustable parameters, it yields an energy value for lithium which is slightly better than the two-parameter

value of Wilson.

1. INTRODUCTION

HE problem of suitably describing atomic systems

has been attacked since the advent of Quantum
Theory. The statistical theory of Thomas' and Fermi,?
the self-consistent method of Hartree? and the methods
of Slater* and Morse® are among the oldest and have
been widely investigated. All of these methods deal, in
essence, with the nuclear coordinates of the individual
electrons. Although it has long been recognized that
the interelectron potential within the atom is of
comparable magnitude to the nuclear potential, little

* The research reported in this document has been partially
sponsored by the Geophysics Research Directorate of the Air Force
Cambridge Research Center, Air Research and Development
Command, Contract No. AF 19(604)4555.

1 L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927).

2 E. Fermi, Z. Physik 48, 73 (1928).

3 D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 111 (1928).

4 J. C. Slater, Phys. Rev. 34, 1293 (1929).

5P. M. Morse ¢t al., Phys. Rev. 48, 948 (1935).

work was done originally in using interelectron coor-
dinates explicitly. Thewell-knownvariational method of
Hylleraas® does introduce the interelectron coordinates.
However, the wave function is specified only after a
variational calculation of the energy, and the method
is consequently difficult to apply to excited states and
to atoms much heavier than lithium. The method of
configuration interaction as generalized by Loéwdin’
and applied by Tycko, Thomas, and King® shows
excellent promise in treating the interelectron effects
although the interelectron coordinates are not intro-
duced in a direct manner. The recent approaches of
Brueckner? and of Bohm and Pines® which also treat

6 E. A. Hylleraas, Z. Physik 54, 374 (1929).

7P. O. Lowdin, Phys. Rev. 97, 1474 (1955).

8 Tycko, Thomas, and King, Phys. Rev. 109, 369 (1958).

9 K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955).
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