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The dipole polarizabi1ity c~z has been calculated for several ions by solving the Schrodinger equation for
the first-order perturbation of the wave functions of the core electrons, General results have been obtained
for the number of nodes of the various types of perturbed wave functions (~st —+ t') in terms of the principal
quantum number m. Tables of the perturbed wave functions for the Na+ and Cl ions are presented. The
results for nd of Na+, K+, Rb+, and Cs+ are in reasonable agreement with those obtained in previous work.
Calculations have also been carried out for. the electric 6eld at the nucleus due to the charge distribution
induced in the ion by an external charge, Values of the quadrupole shielding constant p have been obtained
for several helium-like ions,

I. INTRODUCTION

HE electronic dipole polarizability o.g of several
ions has been previously calculated by means of

the Hartree and Hartree-Fock wave functions for the
ions. '' In this work, the inhomogeneous Schrodinger
equation for the first-order perturbation of the wave
functions was solved directly, without any expansion
in terms of the eigenfunctions of the unperturbed
Hamiltonian. In the present paper, we give the results
of similar calculations for Hg++ and U'+, which are
the two heaviest ions for which Hartree wave functions
are available. The purpose of these calculations was to
determine the order of magnitude of the dipole polariza-
bility Q.d for large Z. The heaviest ion for which calcu-
lations were previously carried out is Cs+, which gave'
0.~=5.03 A'. Hartree wave functions' for Cs+ were used
in this calculation, since Hartree-Pock functions are
not available. Presumably the result for 0,& would be
somewhat reduced if Hartree-Pock functions (including
exchange) were employed.

Besides the results for Hg++ and U'+, we have also
recalculated the dipole polarizabilities for the Na+,
Cl, K+, Cu+, Rb+, and Cs+ ions, which have been
previously obtained in I. The present calculations are
believed to be somewhat more accurate. VVith a few
exceptions, the previous values of the various terms of
as agree within 10% with the present results.

The calculation of o,~ for F given in I was carried
out by means of the Hartree functions' for this ion,
which were at that time the only ones available. In the
meantime, Hartree-Fock wave functions for F have
been obtained by Froese. ' Since the effect of exchange
on the wave functions is very important for negative
ions, e~ of F was recalculated using the Hartree-Fock
wave functions. '

*YVork performed under the auspices of the U. S. Atomic
Energy Commission.

' R. M. Sternheirner, Phys. Rev. 96, 951 (1954). This paper
will be referred to as I.' R. M. Sternheimer, Phys. Rev. 107, 1565 (1957). This paper
will be referred to as II.

P D. R. Hartree, Proc. Roy. Soc. (London) A143, 506 (1934).
4 D. R. Hartree, Proc. Roy. Soc. (I ondon) A151, 96 (1935).' C. Froese, Proc. Cambridge Phil. Soc. 53, 206 (1957).

The calculations of the perturbed wave functions are
described in Sec. II. The resulting values of the polariza-
bility e& are discussed in Sec. III. In Sec. IV, we present
a calculation of the electric field produced at the nucleus
by the induced charge distribution, for the cases of F
and Na+. Section V gives the results of calculations for
the following helium-like ions: H, He, I.i+, and Be++.
Values of the electric field at the nucleus and the
quadrupole shielding constant y„have been obtained
for these ions.

II. CALCULATIONS OF THE PERTURBED
WAVE FUNCTIONS

I'he present calculations were carried out in the same
manner as in I and II. 0.& is given by

8 8 16
n~ ——P —I(ns ~p)+P I(np ~ s)—+ I(np ~d)—

As 3 Ay .3 3

16
+g —E(nd ~ p)+8I(nd —& j), (1)

where the sums extend over the filled ns, np, and nd
shells, as indicated, and 1(nl —+ l') denotes the following
integral for each type of excitation:

I(nl —+ i') = Np'(nt)zzi'(nl —+ I')rdr,
"o

where l and l' are the azimuthal quantum numbers of
the unperturbed wave function and the perturbation,
respectively; no' is r times the radial unperturbed
(Hartree or Hartree-Pock) wave function, normalized
according to

No 2dr=|.

In Eq. (2), Ni' is r times the radial part of the pertur-
bation, and is determined by

d' i'(V+1)
+ + Vp Ep zzi (nl ~ 1') =zzp'(nl)r, (4)

dr r
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where V& is the unperturbed (spherically symmetric)
potential, and Eo is the unperturbed energy. In solving
Eq. (4), the function Ve —Ee is so chosen that it re-
produces the unperturbed wave function No'. Thus
Vo—Eo is obtained from

1 d'ue' l(l+1)
Vo-&0= (5)

No'. dr' r2

Equation (1) gives nq in units an' (a~= Bohr radius),
and must be multiplied by (0.529)'=0.148 to obtain
rr~ in units A'. The terms of rr~ [Eq. (1)7 will be denoted
by n&(e1 ~ l'). As was shown in I, the outermost filled
shell (with principal quantum number ep) makes the
predominant contribution to o,~, so that terms with
a&co can usually be neglected.

For Cl, K+, Cu+, Rb+, and Cs+, the same unper-
turbed wave functions were used as in I, i.e., the
Hartree-Fock functions' ' for Cl, K+, and Cu+, and
the Hartree functions'4 for Rb+ and Cs+. For Na+, we
employed the Hartree-Fock functions obtained by
Hartree and Hartree, ' which are slightly. more accurate
than the wave functions of Fock and Petrashen' which
were used in I. For Hg++ and U'+, we used the Hartree
functions obtained by Hartree and Hartree" for Hg++
and by Ridley" for U~. Unfortunately, Hartree-Fock
wave functions (including exchange) are not available
for these ions. As a result of the use of Hartree functions
(without exchange), the calculated values of nq are
somewhat too large, since the Hartree-Fock functions
are more internal than the Hartree functions. However,
for U~, the overestimate of the present values is not
expected to be important, because of the relatively
tight binding of the outermost electrons (6s,6p) which
arises from the large net charge Zo of the ion (Zo=6).

The procedure of the numerical integration of Eq.
(4) was as follows. In each case, the equation was
integrated inward starting from a large radius r~

( 6—10aH) with various assumed values of Nr'(rr).
H b~ denotes the interval of integration in this region,
the value of Nr'(rr+8r) was obtained from the following
equation [see Eq. (58) of I7:

mt'(rt+5r) =et'(rr) exp[—
~
N(rr)

~
&&7, (6)

where X(r) is defined by

~'(1'+ 1) Qor
N(r) = +Vo Eo- —

r' Nj

'D. R. Hartree and W. Hartree, Proc. Roy, Soc. (Lpndon}
A156, 45 (1936);A157, 490 (1936).

'D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).

8D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A193, 299 (1948).

9 V. Pock and M. Petrashen, Physik. Z. Sowjetunion 6, 368
(1934).

'o D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A149, 210 (1935).

"K.C. Ridley, Proc. Roy. Soc. (London) A243, 422 (1957).

We note that if r~ is chosen large enough, a small error
in the initial slope, [er'(rr+8r) —Nt'(rr)7/8r, will have
a negligible effect on the calculated values of N~' in the
region of the principal (outermost) maximum of Ne',

which makes the predominant contribution to
ng(el-+ 1')

In the region near the nucleus (r&0.4aH), the in-
homogeneous term of Eq. (4) makes a negligible con-
tribution. Moreover, the Eo term on the left-hand side
is relatively unimportant, so that small differences such
as Ee (es) —Ee (ep) can be neglected. As a result,
er'(ms~ p) is proportional to Ne'(np) near r=0, and
similarly er'(ep~s) ~me'(ns). Thus for the es —& p
and ep~s excitations, the unperturbed es and ep
wave functions can be used up to r 0.4aH. The correct
initial value of ur'(rr) is then determined from the
condition that the internal and external solutions
should join smoothly at a radius ro 0.4aH. More
precisely, it was required that the value of ur'(re+Re)/
nr'(re) be the same for the internal and external
solutions, where bo is the i'nterval of the numerical
sntegratson at ro.

For F, Na+, K+, and CI, the d wave function per-
taining to the internal solution for reps d was ob-
tained by outward numerical integration starting with
a power series for r (0.05aH. Similarly, for Hg++ 5d —+ f,
the internal solution (up to r 0.4aH) was obta, ined by
numerical integration, using values of the tabulated 4f
wave function' to start the integration at r=0.12aH.
For Cs+, Ni'(Sp ~ d) was taken as proportional to the
Hartree 4d function' up to r=0.4uH, and similarly for
Hg++, ur'(Srf —+ p) cr +o'(Sp), and for U~, ur'(6p —& d) o-

ne'(Sd) at the joining radius re.
Concerning the number of nodes of the solutions N~',

the following results were obtained. For es -+ p,
Nr'(res-+ p) behaves like an ep function (for v~2)
having e—2 nodes. [Of course, for 1s~ p, er' behaves
like 2p and has no node; see Eq. (18) of I.7 For ep -+ s,
N~' has e nodes, like the s wave function with principal
quantum number n+ 1. The outermost node of
ur'(ep —+ s) was not obtained in the calculations of I,
probably because the solution at large r was not ob-
tained by inward integration, as was done in the present
work. However, it was found that the outermost
maximum of ur'(ep ~ s) generally does not contribute
a large amount to the integral for nz(np ~ s) [Eq. (2)7,
so that the previous values' of aq(np —+s) are not
changed significantly, except for 3p —+ s of Cl, as will
be discussed below.

For np —+ d, ur'(np —+ d) has e—3 nodes (for e ~&3),
and thus behaves like Ne'(md). ur'(2p —+ d) has no node,
similarly to er'(3p —+ d). The case of ed-+ p is similar
to ep~s: mr'(ed ~p) has e—1 nodes, and behaves
like an (x+1)p function. Finally, I&'(rjd ~ f) has e—4
nodes like an If function (for n ~& 4). Moreover,
e&'(3d —+ f) has no node, similarly to Nt'(4d —+ f) In.
all cases, N~' has the same sign as No' in the region of
the outermost maximum of N~'.
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TABLE I. Pel"t111'ha't1011 oi tile wave functions f01' the Na+ 1011. The unperturbed Ss function and the Ss ~ P per
The radius r is in units aH. Iturbation 1st (Ss-+P) for Cs+ are shown in Fig. 1.

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Q.18
0.20
0.25
0.30
0.35
Q.40
0.45
0.50
0.6
0.7
0.8
09
1.0

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

5.0
5.5
6.0

Zl1'(2S ~ P)

—0.004—0.016—0.032—0.051—0.072—0.094—0.116—0.138—0.159—0.179—0.225—0.264—0.296—0.320—0.337—0.350—0.361—0.358—0.347—0.330—0.309—0.287—0.264—0.218—0.176—0.139—0.107—0.083—0.063—0.047—0.035—0.026—0.020—0.015—0.011—0.008—0.006—0.003—0.001

u1'(2P ~ S)

0.130
0.205
0.240
0.244
0.227
0.195
0.151
0.102
0.048—0.007—0.142—0.262—0.361—0.435—0.487—0.519—0.538—0.513—0.462—0.398—0.331—0.264—0.203—0.100—0.025
0.024
0.053
0.068
0.073
0.072
0.067
0.060
0.053
0.045
0.038
0.032
0.026
0.015
0.009
0.005
0.003

u1'(2P ~ d)

0.0000
0.0001
0.0003
0.0007
0.0013
0.0021
0.0032
0.0045
0.0061
0.0080
0.0137
0.0207
0.0287
0.0374
0.0466
0.0561
0.0750
0.0929
0.1091
0.1231
0.1346
0.1435
0.1498
0.1556
0.1533
0.1450
0.1327
0.1185
0.1040
0.0898
0.0763
0.0643
0.0538
0.0447
0.0368
0.0299
0.0239
0.0134
0.0076
0.0042
0.0023

III. VALUES OF THE POLARIZABILITY n

The resulting values of ns(nsl 1 l') and the total ns
are listed in Table III. Except for the case of Cl
3p —+ s, the present values of ns(esl ~ l') are in good
agreement with those previously obtained' for Na+,
Cl, K+, and Cs+. Thus for Na+, K+, and Cs+, the
additional maximum of 1st (ssep ~ s) is relatively weak,
so that it has only a small effect on ns(issp —1 s).

For Cl 3p-+s, the outermost maximum is very
pronounced, and actually changes the sign of
ns(3p —& s). The contribution of the 3p 1 3s excitation
to ns(3p ~ s) was calculated and found to be —1.35 A'.
Thus the contribution to ns(3p~ s) of s states lying

10
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Similarly, Fig. 2 shows the 5p function of Cs+ and the
corresponding perturbations, Ni'(5 p -+ s) and
ut'(Sp -+ d).

The values of the perturbed wave functions for Na+,
namely, ssi'(2s —1 p), sst'(2p 1 s), and ssi'(2p —& d), are
listed in Table I. In accordance with the results given
above, the 2s —+ p and 2p —+ d functions have no node,
whereas ssi'(2P —+ s) has two nodes (at r=0.20aII and
1.7aII). Table I shows that the values of ski'(2p —+ s) in
the region of the outermost maximum are considerably
smaller than those in the central maximum at r 0.6aH

( 0.07 as compared to —0.5).
Table II gives the perturbed wave functions for Cl,

namely, 2tsi'(3s ~ P), 21st'(3P —1 s), and 2ssi'(3P ~ d).
It may be noted that the values listed represent twice
the normalized functions, as defined by Eqs. (3) and
(4). The numbers of nodes are 1 for 3s —+ p, 3 for
3p —+ s, and 0 for 3p —& d. In this case, the outermost
maximum of ski'(3p ~ s) is quite prominent, and makes
a large contribution to na(3p ~ s)."

"Similar tables of the perturbed wave functions for the other
ions considered in the present work (F, K+, Cu+, Rb+, Cs+,
Hg++, and lJ'+) are given in a supplementary paper, "Wave
Functions for Electronic Polarizabilities of Ions and Quadrupole
Antishielding Factors. " This paper also contains tables of the
perturbed wave functions used to calculate the quadrupole

FIG. 1. The 5s function us'(Ss) and the Ss ~ p perturbation
111'(Ss—+p) for Cs+. The wave functions are not shown for
r &O.icH.

above 3s is 1.35+0.50=-1.85 A'. It was found that
the effective potential Vs, s„['Eq. (5)$ of the 3p electrons
of Cl does not have any bound s states above 3s. This
result is actually not surprising, since the valence
electrons are very weakly bound in a negative ion. Thus
the positive contribution to nd(3p —+s) Lwhich arises
from the outermost maximum of rsi'(3P —+ s)j is
probably due to excitation to low-lying continuum s
states.

polarizabilities of various ions t R. M. Sternheimer, Phys. Rev.
107, 1565 (1957)j, and the wave functions which determine the
effect of the atomic core on the nuclear quadrupole coupling in
ions and for atomic ground states and excited states Las obtained
by R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
(1956), and R, M. Sternheimer, Phys. Rev. 105, 158 (1957)g.
This -supplementary paper has been deposited as Document
No. 6044 with the ADI Auxiliary Publications Project, Photo-
duplication Service, Library of Congress, Washington 25, D. C.
A copy may be secured by citing the Document number an'd by
remitting $8.75 for photoprints or $3.00 for 35-mm micro6lm.
Advance payment is required. Make checks or money orders
payable to: Chief, Photoduplication Service, Library of Congress.
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pzo. 2. The 5p function go'(Sp) and the perturbations
z, (5p ~ r) snzi gc, '(5p ~d) for Cs+. The functions No'(&P) and
zg, '(5p —+ g) are not shown «r «0 1&H.

by Nz'=us'j(r), where f(r) is a polynomial zn r. Thus
~z' has nodes at the same radii as +o'. For 2p~ d
where neither uo' nor u&' has any nodes, this procedure
is fully justified. On the other hand, for the heavier ions
with 3p~d, 4p —&d, . modes of excitation, the
assumption Nz' ——us'f(r) introduces an artificial node
into the solution uz'. The actual solution Nz'(np —+ d)
has rz 3nodes (f—or tz~&3), whereas es'(np) has tz —2

nodes. The existence of the extra node may account for
the small discreancy between the variational results
and the present values for K+ 3p —+ d (Burns: 0.972;
ours: 1.148 A'), Cl 3p —+d (Burns: 5.03; ours: 5.31
As), Rb+ 4P ~ d (Burns: 2.775; ours: 2.568 A'), and
Cs+ 5p —+ d (Burns: 5.79; ours: 4.94 A').

The positive sign of nq(2p —+ s) for F (+0.278 A')
arises from the outermost maximum of N~', in the same
manner as for Cl 3p —+ s. The outer maximum occurs
"G. Burns, Phys. Rev. (to be published). See also E. G. Wikner

and T. P. Das, Phys. Rev. 107, 497 (1957); M. Sundbom, Arkiv
Fysik 13, 539 (1958);L. C. Allen (to be published).

For Cs+, we have calculated only the 5s —+ p, 5p —+ s,
and 5p-+d terms. The small term tran(4d —+ f) =0.16
A' was taken from previous work. ' For U'+, the term
ns(5d —+ f) was calculated, in order to verify that it is
incleed small (0.14 A') compared to the effect of the
Ns 6 ter——ms (sum= 1.20 A').

Concerning n&(2p —& d) for F, it may be noted that
because the Hartree-Fock 2p function' is appreciably
more internal than the Hartree 2p function used in I,
this term is considerably reduced as compared to the
result obtained in I (1.234 A' instead of the Hartree
value' 3.11 A'). The present result nd(2p ~ d) =1.234
A' is in very good agreement with the value 1.237 A'
obtained by 3urnsI3 using a variational method.
Similarly for Na+ 2p ~ d, Burns' value is also in close
agreement with our result: 0.132 A' as compared to
0.133 A'. The good agreement with the result of the
variational calculation is to be expected for the 2p ~ d
terms, since Burns assumes that nz'(rzp —& d) is given

TABLE II. Perturbation of the wave functions for the Cl ion.
The radius r is in units aH.

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.7
0.8
0.9
1.0
1.1
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
40
4.5
5.0
5.5
6.0
6.5
7.0
8
9

10
11
12
14
16

2u1'(3S —+ P)

—0.013—0.049—0.100—0.165—0.239—0.'316
—0.396—0.477—0.558—0.638—0.782—0.909—1.013—1.094—1.149—1.187—1.202—1.194—1.170—1.130—0.969—0.744—0.479—0.193

0.098
0.387
0.941
1.445
1.867
2.207
2.471
2.660
2.875
2.922
2.855
2.721
2.548
2.355
2.158
1.966
1.776
1.599
1.435
1.283
1.141
1.010
0.737
0.535
0.381
0.265
0.181
0.124
0.055
0.023
0.009

2u1'(3P —+ S)

0.659
1.099
1.366
1.492
1.502
1.426
1.280
1.085
0.852
0.598
0.045—0.515—1.047—1.516—1.919—2.246—2.493—2.667—2.768—2.806—2.649—2.225—1.599—0.857—0.060
0.739
2.205
3.389
4.268
4.848
5.162
5.248
4.954
4.239
3.328
2.369
1.440
0.589—0.162—0.810—1.354—1.803—2.163—2.446—2.660—2.817—3.013—3.000—2.856—2.618—2.356—2.081—1.554—1.123—0.794—0.549—0.371—0.153—0.057

2ui'(3P ~ d)

0.000
0.000—0.001—0.002—0.003—0.005—0.008—0.012—0.016—0.021—0.033—0.048—0.065—0.085—0.108—0.133—0.160—0.189—0.219—0.250—0.334—0.423—0.514—0.606—0.697—0.786—0.960—1.129—1.295—1.454—1.606—1.748—2.001—2.216—2.394—2.541—2.658—2.749—2.815—2.862—2.890—2.896—2.889—2.864—2.827—2.781—2.626—2.433
2022 1—1.983—1.758—1.539—1.144—0.830—0.591—0.413—0.282—0.121—0.048

at r=3.8azz (where ez' ——0.858), whereas the centra, l

maximum is located at r =0.73aH (Nz' ———1.29).
Presumably, the predominant positive contribution is
due to excitation of the 2p electrons into s states lying
above 2s.

The term nq(5d —+ p) of Hg++ will now be discussed.
This term is positive and relatively large (0.935 A).
One might have expected that rrs(5d~ p) would be
negative Land of the order of nq(5d ~5p)j, in simi-
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TABLE III. Calculated and experimental values of the dipole polarizability nd. The rows above nrE(calc) give the contributions to nrg of
the various modes of excitation of the (outermost) shell with highest principal quantum number ep. All values are in units A .

Ion

ng(mps —& P)
ng(rspP ~ s)

nd(happ

~ d)
ng(epd ~ P}

d(npd ~ f)
n~(calc)
nq(exp)

0.346
0.278
1.234

1.858
0.76-1.04

Na+

0.117—0.098
0.133

0.152
0.18-0.26

C1

1.38
0.50
5.31

0.594—0.501
1.148

7.19 1.241
2.97-3.66 0.83-1.20

Cu+

0.0737—0.0753
0.1001
0.442
0.441
0.982
1.6

Rb+

1.027—0.675
2.568

2.920
1.40-1.81

Cs+

2.01
145 1
4.94

0.16'
5.60

2.42-3.14

0.202—0.189
0.320
0.935
1.512b

2.780

0.945—1.195
1.452

0.142b

1.344

a This term is due to 4d —+ f. b This term is due to 5$ -+ f,

as„=—" ur'(5d ~ p)lp'(Sp)dr,
p

(9)

I,„=
,

Np'(5—p)Np'(Sd) rdr.
"0

{10)

It may be noted that a» is also given by

where Ep~ and Esp are the unperturbed Sp and 5d
energies. Since E5„&E5g, the negative sign of
n~(Sd-+Sp) is obtained directly from Eqs. {8) and
(11). From Eqs. (8)—(10), one finds nz(Sd —+ 5p)
= —0.358 A'.

Since the total n~(Sd~ p) is positive and 2.6
times ~nq(5d ~ 5p) ~, it was expected that the 5d + 6p
excitation may make a large contribution. In order to
verify this possibility, the 6p wave function Np (6p)
was obtained for the eGective potential V0, 5~ of the 5d
electrons. It was found that E6„—E5~=0.813 ry. The
term ns(5d-+ 6p) is given by

ng (Sd -+ 6p) = (0.148 A') (16/3) asap„—(0.148 A') (16/3)~prs/(&pi Epd) (12)

where ap„and Jp„are obtained from Eqs. (9) and (10)
by replacing Sp by 6p. From the first expression of (12),
involving asap~, one finds n, (Sd ~ 6p) = 1.186 A'. It
may be noted that from the second expression which
involves Jp„'/(Ep„—Epq), one obtains nd (Sd ~ 6p)
= 1.156 A', in good agreement with the preceding
result (1.186 A').

Upon taking the sum aq(Sd —+ 5p)+n~(Sd -+ 6p)
= —0.358+1.186=0.828 A', one sees that the pre-
dominant term is np(Sd ~ 6p), while the higher excited
states above 6p make only a small contribution:
0.935—0.828=0.107 A'. The situation for ns(Sd-+ p)
of Hg++ is similar to that of nz(2P~s) of F and
nd(3p —& s) of Cl, where the excited states above nps

larity to the nd(npp ~ s) terms of Na+, I+, Cs+, Hg++,
and Us+, which are predominantly due to n&(n, P ~ n ps).
n&(Sd —+ Sp) is given by

ng(Sd ~ Sp) = (0.148 A') (16/3)as+s~, (8)

where a» and J» are defined by

make the predominant contribution, which determines
the positive sign of the integral, as discussed above.

The term nq(3d ~ p) of Cu+ is very similar to the
term nq(Sd +p) -of Hg++, which has just been dis-
cussed. Thus az(3d ~ p) is positive and relatively
large (+0.442 A'). This is probably mainly due to
excitation of the 3d electrons into 4p and higher excited

p states. In the previous calculation (see Table I of I),
the value of n~(3d —+ p) was found to be small and
negative (—0.084A'). The other terms of a~ are not
changed appreciably, so that the total 0.& is increased
from 0.470 A' to 0.982 As. This value is still somewhat
lower than the experimental result a~(exp)=1.6A',
obtained by Tessman, Kahn, and Shockley, "but the
disagreement is no longer as serious as was believed
previously. ' Unfortunately, the only experimental
value of nd available is that of Tessman et al. '4 In this
connection, we note that for Ca++, Sr++, and Ba++,
where several determinations of 0,~ exist, the result of
Tessman e1 al. i4 (see Table VI of their paper) exceeds
other values by the following amounts: for Ca++,
1.1—0.5=0.6 A'; for Sr++, 1.6—0.86=0.74 A'; for
Ba++, 2.5—1.6=0.9 A'. Since the discrepancy for Cu+
is 0.6 A', it is quite possible that a major part of the
disagreement is due to the uncertainties in the experi-
mental determination of eg.

On the basis of numerical estimates, it is believed
that the accuracy of the various terms of nd is within
&3%, which is probably also the limit of error of the
perturbed wave functions ni'(nl-+ l') at various radii
r, except in the regions of r where N~' goes through a
zero.

The range of the experimental values of o.~ is listed
in the last row of Table III. This range of o.d was
obtained from a consideration of the results of Tessman,
Kahn, and Shockley, "Pauling, "Born and Heisenberg, "
and Fajans and Joos."Table III shows that for Na+
and K+, the calculated o.& lies essentially in the range
of the experimental values, whereas for F—,Cl, Rb+,
and Cs+, the theoretical value is larger than az(exp) by
a factor of 2. The agreement for Na+ and K+ is
probably due to the use of Hartree-Fock wave functions

"Tessman, Kahn, and Shockley, Phys. Rev. 92, 890 i1933).
'P L. Pauiing, Proc. Roy. Soc. lLondon) A114, 191 l1927).
'P M. Born and W. Heisenberg, Z. Physi 23, 388 l1924).
'7 K. Fajans and G. Joos, Z. Physik 23, 1 (1924).
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in the calculations, and the fact that in positive ions,
the outer electrons are relatively tightly bound, and
therefore the wave functions are not very sensitive to
the effects of electrostatic correlation between the
electrons, which are not included in the Hartree-Fock
equations. For F and Cl, although Hartree-Fock
wave functions were used, the effects of correlation are
expected to be important, because the outermost (2p
or 3p) electrons are very weakly bound. It may be
noted that for F, the effect of including exchange has
reduced the calculated value from 3.20 A' (Hartree
functions)' to 1.86 A' (Hartree-Fock), i.e., by a factor
1.7. Thus it is quite possible that the inclusion of cor-
relation, which would make the Hartree-Fock wave
functions more internal, would decrease the theoretical
value of e& for F by an additional factor of ~2, and
bring it into agreement with experiment. The same
remarks apply to Cl . For Rb+ and Cs+, the use of the
Hartree functions (excluding both exchange and cor-
relation) probably accounts for the overestimate of ns

For Hg++ and U'+, experimental values of ag do not
seem to be available. The fact that the calculated
nd(U'+) is considerably smaller than nd(Hg++) is
probably mainly due to the larger net charge of the
U+ ion. Upon comparing the calculated values of
ne(Hg++) and nq(U~) with that of ne(Cs+) (=5.60 A'),
it is seen that 0«does not increase with Z beyond Z~50.
Instead, there is actually a decrease of O.d in going from
Cs+ to Hg++. This decrease is probably due in part to
the increase of the net charge. Zp of the ion. The effect
of a change of Zp is very pronounced, as can be seen
from a comparison of ns(Hg++) and nq(U'+), or crd(C1 )
and ng(K+).

IV. ELECTRIC FIELD AT THE NUCLEUS

A sensitive test of the accuracy of the zero-order
wave functions Np' and the perturbed functions N~' can
be obtained by calculating the electric field at the
nucleus E;„d due to the distribution of charge induced
in the ion by an external charge placed at a large
distance @=R from the nucleus. The quantity E;„s is of
interest, because its exact value is known from an
argument first proposed by Feynman. "As shown in I
LEq. (113)j, from the fact that the net force on the
nucleus in the x direction is —Zpe'/R', one finds that the
component E;„q,, along the x axis is given by

TABLE IV. Contributions to the electric Geld at the nucleus due
to the perturbation of the wave functions induced by an external
charge. $ is the induced Geld in units e/R'. The last three rows give
the total calculated $, the actual value of g(=1—Z0/Z), and the
ratio p=g(calc)/(1 —Zp/Z).

Ion

g(is ~ P)
h(2~ P)
k(2P &)

k(2P d)
((calc)
1—Z0/Z

0.230
1.374—1.841
1.670
1.433
1.111
1.290

Na+

0.187
1.027—1.125
1.063
1.152
0.909
1.267

e 8
E;„s,———g K(ns ~ p—)

R n83

8 16
+P K(np -—+ s)+ K(np —+ d—)

np 3 3

16
+Q —K(nd —~ p)+8K(nd —+ f), (14)

where the sums extend over the filled s, p, and d shells,
and K(nl —& l') denotes the following radial integra, l:

K(nl + l') = —t Np'(nl)li'(nl ~ l')r sdr. (15)
el p

It may be noted that, aside from the factor e/R', E;„&,,
differs from the expression for a& only through the
replacement of I(nl ~ l') by K(nl ~ l') Lsee Eq. (1)].

We denote E; e,,/(e/R') by f, so that the actual
value of P is 1—Zp/Z. The quantity $ is given by the
curly bracket of Eq. (14). The terms of $ will be
denoted by $(nl ~ l'). $ was calculated from the
perturbed wave functions for the cases of F and Xa+.
The results of the calculations are given in Table IV.
For 2s —+ p, 2p -+ s, and 2p -+ d, the values of
K(nl —+ l') were obtained by numerical integration over
the functions np' and Ni'. For 1s~p, it was a,ssumed
that Np can be approximated by a hydrogenic wave
function with an appropriate effective Z, obtained by
means of Slater's'p screening constant for 1s (0.30).
Thus

Np'(1s) =2Z, —:rexp( —Z,r), (16)

e t' Zp l
@.d, *=—

I 1——
IR'I Z) ' (13)

with Z,—=Z—0.30. As shown in I (Eq. (18)j, the
corresponding I&' is given by

nr'(1s ~ p) =Z, 'r' exp( —Z,r)$1+sz,rf, (17)

where Zp is the net charge of the ion, and it has been
assumed that the external charge is a unit positive
charge (+e) placed along the positive x axis at a
distance E.

In terms of the perturbed wave functions N~', E;„d,,
is given by Lsee Eqs. (119) and (120) of Ij

' R. P. Feynman, Phys. Rev. 56, 340 (1939).

whence
~o0 2

$(1s -+ p) =— Np'(1s)li'(1s ~ p)r 'dr= .(18)—
3 p Ze

The values of 2/Z, are listed in Table IV. It is seen
that both for F and Na+, the calculated P exceeds the

» J. C. Siater, Phys. Rev. 36, 57 (1930).
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actual value 1—Zs/Z. The ratio p of the calculated to
the actual value, p=—$(calc)/(1 —Zs/Z), is given in the
last row of the table. Similar calculations were carried
out in I (Table V). The values of p obtained in I were
2.05 for F and 1.49 for Xa+, as compared to 1.29 and
1.27, respectively, from the present work. It is seen
that for F in particular, the present value of e repre-
sents a marked improvement, as was to be expected
from the result for ng. This improvement arises both
from the use of Hartree-Fock wave functions, which
mainly decreases $(2p ~ d), and from the more
accurate determination of sit'(2p —+s) which leads to
a more negative value of $(2p~s) (present value
—1.841, as compared to —1.29 obtained in I).

The use of the hydrogenic approximation for 1s
introduces some uncertainty in the preceding results.
However, even if one assumes an uncertainty of &20'%%uo

of the value used (2/Z, ), this leads to a maximum error
of only &0.04 in p for both F and Na+.

For the heavier ions (Cl, K+, ), values of $ have
not been obtained, because the required 2s ~ p,
2p —& s, and 2p -+ d perturbed wave functions have not
been determined for these ions. In contrast to the
situation for nq, the inner shells are expected to make
a significant contribution to $, essentially because the
integrand of E involves the factor r ', which weights
more heavily the region near the nucleus Las compared
to the factor r for I(tel —+ P)j.

It should be pointed out that the calculation of
8;„d,, may provide a sensitive test for a set of Hartree
or Hartree-Fock wave functions for any given ion or
neutral atom. (In the latter case, the actual value of

$ is 1.) The value of p would then be a criterion for the
accuracy of the zero-order wave functions, The calcu-
lation of E;„&,, probably tests parts of the wave func-
tions which are, on the average, closer to the nucleus
than the more external regions which make the pre-
dominant contribution to the energy eigenvalue Ep.
Thus the value of p could be used as an independent
criterion, besides the calculation of Ep for the various
electron shells.

V. CALCULATIONS FOR THE HELIUM-LIKE IONS

We have previously obtained solutions' for the
perturbed wave functions for the following helium-like
ions: H, He, Li+, and Be++, for both the dipole
polarizability (is —+ p excitation) and the quadrupole
polarizability (1s~ d excitation). In these calculations,
the zero-order 1s wave functions ep' were taken from
the work of Lowdin. " The dipole perturbation
Ni'(is —+ p) was obtained by means of Eq. (4) (with
/'=1). The quadrupole perturbation Ni'(is-+ d) was
determined from a numerical solution of the equation

( d' 6
-+—+ Vo Eo (er'(ls ~ d) =m—o'(is)r'. (19)

dr' r2

'0 P. O. I.owdin, Phys. Rev. 90, 120 (1953).

The function Up —Ep was obtained from the Lowdin
wave functions by means of Eq. (5).

The solutions ui'(is ~ p) and ui'(is —+ d) were used
in II to obtain the dipole and quadrupole polariza-
bilities ne and rrs (see Table I of II). In connection with
the discussion of the preceding section, it is of interest
to obtain the electric field at the nucleus E;„d,, and the
resulting value of p. g is given by

8
us'(1s)ui'(is —& P)r 'dr.

3 4p
(20)

TABLE V. Calculated values of g, p, and 7 for several helium-
like ions. The values of p were obtained from the present calcu-
lations, using the numerical solutions ur (is ~ pl determined in
II. The values of p were found in I from an analytic approxi-
mation to the solutions NI'(is ~ p). The shielding constants y„
were obtained in the present work. y„(DB) and 7„{S)are the
values of p„previously determined by Das and Bersohn' and by
Schwartz. b

Ion

H
He
Il
Be++

& —~oj~ io ~o~ V~ V~(D~)

3.251 2 1.63 1.91 1.131 1.141
1.261 1 1.26 1.32 0.424 0.416
0.795 0.667 1.19 1.19 0.263 0.256
0.569 0.5 1.14 1.13 0.189 0.185

v„(s)

1.080
0.413
0.255
0.185

a See reference 23.
b See reference 24.

"R. M. Sternheimer, Phys. Rev. 80, 102 (1950);84, 244 (1951);
Foley, Sternheimer, and Tycko, Phys. Rev. 93, 734 (1954);R. M.
Sternheimer and H. M. Foley, Phys. Rev. 92, 1460 (1953); 102,
731 (1956).

The second, third, and fourth columns of Table V list
the values of $, 1—Zs/Z, and p=t/(1 —Zp/Z). For
comparison, we have also given the values of p (here
denoted by p,) which were obtained in I (see Table V)
by means of an analytic approximation to the solutions
mr'(is —+ p). It is seen that both for H and He, the
more accurate numerical solution leads to an appre-
ciably lower value of p than the approximate analytic
solution of I. For Li+ and Be++, the values of p and p,
agree within the accuracy of the calculations.

The perturbation sir'(is ~ d) can be used to obtain
the quadrupole shielding constant" p . For a nucleus
with electric quadrupole moment Q, y„ is defined as the
ratio of the quadrupole moment induced in the electron
core to the nuclear Q. 7„ is taken as positive if the
induced quadrupole moment tends to shield the nuclear

Q, as is the case here. Alternatively, V„can be defined
in terms of the held gradient at the nucleus due to an
external charge. For a charge +e placed at x=R, the
field gradient due to the charge alone is given by
(dE,/dx) s —2e/R'. In——addition, there will be a
contribution due to the charge distribution induced in
the ion. This term can be written as 6 (dE,/dx)
=+2ey„/R', where y„ is the same quantity as defined
above. Thus the total field gradient at the nucleus,
dE,/dx, is given by

dE,/dx = —(2e/R') (1—y„).
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It has been shown" that for medium and heavy ions,
y„ is negative and very large (of order 10—100). The
resulting antishielding of the nuclear quadrupole
moment has important eGects both for the quadrupole
coupling of polar molecules and ionic crystals, and for
the relaxation times in nuclear magnetic resonance
experiments. ""

For an ion with only a filled Is shell, p„ is given by

oo

uo'(1 s)u&'(1 s~ d)r 'dr. (22)

"E.G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958)."T.P. Das and R. Bersohn, Phys. Rev. 102, 733 (19M).
24 C. Schwa, rtz, Ann. Phys. 6, 170 (1959)."R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731

(1956).

The resulting values of y„are listed in the sixth column
of Table V. The last two columns )marked y„(DB)
and p„(S)) give the values of p„previously obtained
by Das and Bersohn" and by Schwartz. "It is seen that
the present results for y„are in good agreement with
those of references 23 and 24.

Note Added in Proof.—Additional calculations of
polarizabilities and antishielding factors have been
carried out for the Na+, K+, and B+ ions. For the case
of Na+, the Fock-Petrashen' wave functions were used
in II to calculate the quadrupole polarizability a~.
Since the Na+ Hartree-Fock wave functions obtained
by Hartree and Hartree are believed to be somewhat
more accurate than the Fock-Petrashen' functions, the
perturbed wave functions ur'(2s —+ d) and ur'(2p —+f)
were recalculated using uo'(2s) of reference 8, and
uo'(2p) of Lowdin, 2O which closely approximates the 2p
function of Hartree and Hartree. ' The function
ur'(2p~ p) pertaining to the Lowdin wave function" has
been obtained previously. "The results for the terms of
n~ are as follows: a,~" (2s —+ d) =0.0102 A', a "'(2p ~p)= 0.0218 A', a,o& (2p -+f ) =0.0314 A', giving for the
total n, of Xa+: e,&"=0.0634 A'. These results may be
compared with the corresponding values for the Fock-
Petrashen functions, as obtained in II: a,&'&(2s —+d)
=0.0133 A' a "'(2p~ p)=0.0173 A', a &"(2p~f)
=0.0256 A', which give n~(2' =0.0562 A'. It is seen that

a~&'& (2s —& d) is smaller than a~&'& (2s ~ d), whereas
a~&'&(2P —+P) and a~a~(2P +f) are larger—than the
corresponding values a~'@(2p —+ p) and a~"'(2p —+f )
obtained from the Fock-Petrashen wave functions.
These results arise from the fact that the 2s function of
Hartree and Hartree' is slightly more internal than the
2s function of Fock and Petrashen, ' whereas for uo'(2p),
the function of Hartree and Hartree' is somewhat more
external than that of Pock and Petrashen. ' The present
values for a~&'&(nl-+ l') are in good agreement with the
results obtained by Burns" by means of a variational
calculation using the wave functions of reference
8 a a(2s —+ d) =0.0101 A', aP (2P —+ P) =0.0226 A',
a s(2p + f) =0.0322 A'. —

I

From the wave functions uq'(nl ~ l') one can obtain
the contributions y„(nl~l') to the quadrupole anti-
shielding factor y„. y„(nl ~ l') is given by

7„(nl~ l') =c(nl ~ l') f up'(nl)uy'(nl ~ l')r 3dr, (23)
0

where c(nl ~ l') is a constant which has the following
values: c(ns -+ d) = 8/5, c(np -+ p) =48/25, c(np ~f )
=72/25. One thus obtains for Na+, using the wave
functions of references 8 and 20: y„(2s-+d) =0.234,
y„(2p-+ p)= —5.16, y„(2p +f)=—0.303. y„(1s~d)
is approximately given by" (2/3)Z, —'=0.062. Thus the
total y„due to the angular modes of excitation (ns -+ d
and np ~f ) is: y„(ang) =0.599, and the total y„ for
Na+ L=y„(2p —+ p)+y„(ang) j is —4.56. The present
results for y„(nl ~ l') can be compared with the corre-
sponding values of Das and Bersohn": y„na(1s-+d)
=0.064, y„na(2s~d)=0. 326, y (2p-+ p)= —5.23,
y„na(2p +f) =0.—304. It is seen that there is good
agreement, except for the term y„(2s —+ d). The reason
for the discrepancy in this case may be a shortcoming
of the variational method used by Das and Bersohn. 23

Thus the actual perturbed function u~'(2s —+ d) has no
node, "whereas the variational function of reference 23
has one node, being proportional to uo'(2s). Inside the
node of uo'(2s) at r=0.20aII, the functions uo'(2s) and
ur'(2s —+d) have therefore opposite sign, so that the
actual contribution to the integral of Eq. (23) is nega-
tive, whereas the variational calculation gives a positive
integrand for all r. Thus the absence of a node in the
function uq'(2s~d) will act to reduce y„(2s —+d), in
agreement with the results obtained above.

For K+, values of the terms y„(nl —+ l') have been
obtained from the wave functions u~'(nl —+l') calcu-
lated in II, and from the wave functions vr'(nl~ l')
determined" in III, which represent the distortion of
the electron core by a nuclear quadrupole moment Q.
LThese functions were called uq'(nl —+l') in III, but
we use the notation vj' here in order to avoid confusion
with the present functions N~' which pertain to the
perturbation due to an external charge. $ In the calcu-
lation of vi' in III, the Hartree-Fock functions for K+
were used' for uo'. In terms of vr', y„(nl ~ l') is given by

y„(nl —+ I') =c(nl +1') —uo'(nl) vr'(nl-+ l') r'dr (24).
From Eq. (24), the following results were obtained:
y„(1s~ d) =0.0368, y„(2s —+ d) =0.1016, y„(2P —+ P)—1.219, y„(2p + f) =0.1366, y„—(3s. ~ d) =0.298,
y„(3p —+ p) = —17.15, y„(3p +f)=0.478. Thus—the
total y„due to the angular modes is: y„(ang) =1.051.
The total p„ for K+ is given by

-(K-')=v-( g)+ -(2p p)
+y„(3p —+ p) = —17.32. (25)

26 R. M. Sternheimer, Phys. Rev. 105, 158 {1957).This paper
will be referred to as III.
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As a check on some of the terms, values of y„(rtl ~ l')
were also obtained by means of Eq. (23) from the
functions N~' determined in II. The results are as
follows: y„(2p ~ p) = —1.230, y„(3s -+ d) =0.303,
p~(3p ~ p) = —17.83, y„(3p ~f)=0.485. It is seen
that these values are in good agreement with those
obtained from v~'. The maximum deviation occurs for
y„(3p~ p), where the difference amounts to 4%. The
present results for the terms due to the radial (ztp —+ p)
modes can be compared with those of Wikner and Das"
who used a variational method and obtain:
y„~D (2p ~ p) = —1.22, y„~D (3p ~ p) = —13.03. The

agreement is very good for y„(2p —& p), but for 3p -+ p,
p„~D (3p -+ p) is lower by 24% than the value obtained
from the present work.

We have also calculated y„ for the (1s)'(2s)' core of
the boron atom, using the wave functions vr'(1s~ d)
and nr'(2s-+d) determined in III. These perturbed
wave functions are based on the Hartree wave functions
for boron obtained by Brown, Bartlett, and Dunn. '~

The results are: y„(1s~ d) =0.148, y„(2s~d) =0.620,
giving y„(B+)=0.768.

'7 Brown, Bartlett, and Dunn, Phys. Rev. 44, 296 (1933).
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Application of Wave Functions Containing Interelectron Coordinates.
I. The Ground-State Energy of Lithium*
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Several years ago, Pluvinage made a substantial advance in the use of interelectron coordinates in atomic
systems by illustrating how the Schrodinger equation can be partially separated in such a way that the
interelectron potential no longer appears as the perturbing term. His method gave excellent results when
used to obtain variational energies of helium-like systems. In this paper, the Pluvinage method is modified
in such a way that it can be applied with a reasonable amount of labor to more complex systems. In this
modification, the nuclear coordinates act like Fermi-Dirac "particles" filling the energy levels pairwise,
while the interelectron coordinates act like Bose "particles, " all of which pile into the lowest energy con-
tinuum state. An accurate approximation technique is also developed for use in integrating functions
containing three or more interelectron coordinates over the space of the nuclear coordinates. The modified
Pluvinage approach is used in conjunction with the approximation technique to calculate the ground-state
energy of neutral lithium. Internal evidence indicates that the approximation technique is better than 99%
accurate in evaluating the individual integrals which appear. Although the wave function used here has no
adjustable parameters, it yields an energy value for lithium which is slightly better than the two-parameter
value of Wilson.

1. INTRODUCTION

'HE problem of suitably describing atomic systems
has been attacked since the advent of Quantum

Theory. The statistical theory of Thomas' and Fermi, '
the self-consistent method of Hartree' and the methods
of Slater' and Morse' are among the oldest and have
been widely investigated. All of these methods deal, in
essence, with the nuclear coordinates of the individual
electrons. Although it has long been recognized that
the interelectron potential within the atom is of
comparable magnitude to the nuclear potential, little

*The research reported in this document has been partially
sponsored by the Geophysics Research Directorate of the Air Force
Cambridge Research Center, Air Research and Development
Command, Contract No. AF 19(604)4555.' L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927).' E. Fermi, Z. Physik 48, 73 (1928).' D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 111 (1928).' J. C. Slater, Phys. Rev. 34, 1293 (1929).' P. M. Morse et A. , Phys. Rev. 48, 948 (1935).

work was done originally in using interelectron coor-
dinates explicitly. The well-known variational method of
Hylleraas' does introduce the interelectron coordinates.
However, the wave function is specified only after a
variational calculation of the energy, and the method
is consequently di@.cult to apply to excited states and
to atoms much heavier than lithium. The method of
configuration interaction as generalized by I.owdin'
and applied by Tycko, Thomas, and King' shows
excellent promise in treating the interelectron effects
although the interelectron coordinates are not intro-
duced in a direct manner. The recent approaches of
Brueckner and of Bohm and Pines' which also treat

' E. A. Hylleraas, Z. Physik 54, 374 (1929).
7 P. O. Lowdin, Phys. Rev. 97, 1474 (1955).' Tycko, Thomas, and King, Phys. Rev. 109, 369 (1958).
'K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344

(19SS).
'z D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951).


