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Spin Wave Spectra for Canted Antiferromagnets and Ferromagnets*
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The magnetic resonance conditions and the spin wave spectra are found for canted antiferromagnetic and
ferromagnetic lattices, where the cant is produced by magnetocrystalline anisotropy fields which are non-
collinear. The sublattices are thereby caused to cant towards each other in antiferromagnets and away from
each other in ferromagnets. The cant of the antiferromagnetic sublattices may produce a net moment (weak
ferromagnetism) but does not alter appreciably the usual antiferromagnetic spin wave spectrum in the
presence of anisotropy. The static susceptibility parallel (X&~) and at right angles (Xs) to the vector difference
of the anisotropy fields is calculated, and is shown to be altered from the noncanted result. It is shown that
in antiferromagnets with no apparent weak ferromagnetism, canted sublattices may still be present, and
can be detected by a nonzero ratio of X&& to &z at O'K. The ferromagnetic spin wave spectrum shows a sudden
change from the normal spectrum as soon as one introduces the noncollinear anisotropy fields. An optical
branch is formed and a high-frequency k =0 magnetic resonance is expected. This resonance is a consequence
of the two-sublattice character of the canted ferromagnet and may be termed an exchange resonance.

I. INTRODUCTION

ECENTLV Dzialoshinsky' showed that the weak
ferromagnetism observed' in antiferromagnetic

O,-Fe203 and other materials is plausibly explained by
noncollinear magnetocrystalline anisotropy fields. These
fields serve to turn the antiferromagnetically coupled
sublattices towards each other, producing a net mag-
netic moment. The angle of rotation may give rise to
a ferromagnetic moment of 10 ' to 10 ' of the sublattice
saturation moment. Dzialoshinsky also showed that
some antiferromagnets may be canted by the anisotropy
fields but will not show the weak ferromagnetism if the
net moment of any two neighboring canted spins is
cancelled by the moment of a nearby pair of spins
which are canted in the opposite direction. This
cancellation is a matter of magnetic crystalline
symmetry.

It is the purpose of this paper to derive the magnetic
resonance conditions and spin wave dispersion relations
for antiferromagnets subject to noncollinear anisotropy
fields. We shall also investigate the static magnetic
properties of canted antiferromagnets and indicate how
both the magnitude and angular direction of the
anisotropy fields can be detected by ordinary suscepti-
bility measurements. It should be noted that Vonsovsky
and Turov' have recently considered this problem.
However, they have apparently neglected the magneto-
crystalline anisotropy fields Hz&I which correspond to
the normal anisotropy fields found in antiferromagnets.
Such an omission from the resonance equations drasti-
cally changes their form. As it seems physically reason-
able that such anisotropy fields should be present in a
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canted antiferromagnet, it is necessary that the calcula-
tion be done with these terms included.

The canting of a ferromagnetic spin system can arise
from two noncollinear magnetocrystalline anisotropy
fields, one field acting on one set of spins, the other on
their nearest neighbors. These fields cause the ferro-
magnetic lattice to be broken up into two ferromagnetic
sublattices, rotated away from each other in the plane
containing the anisotropy fields. Here too the angle of
rotation is assumed small. We shall compute the spin
wave spectrum for the canted ferrornagnet and compare
it with the usual ferromagnetic spin wave spectrum
to see if the canting has any eGect on the dispersion law.

For simplicity, we shall assume all the lattices with
which we deal can be subdivided into two magnetic
sublattices, such that the nearest magnetic neighbors
of any given magnetic atom on one sublattice shall all
lie on the other sublattice.

e
HA 'H

A))

FIG. 1. The noncollinear anisot-
ropy fields. Hz' and Hz~ act on
the l and m sublattices, respec-
tively.
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II. CANTED ANTIFERROMAGNET

A. Zero External Field

In this section we compute the zero-field magnetic
resonance (k=O) frequency and also the spin wave
spectrum of an antiferromagnet subject to the non-
collinear anisotropy fields shown in Fig. 1. The anisot-
ropy fields Hzt and Hz act on the spins of the l and
m sublattices, respectively. For our purposes, we assume
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(H~'[= (H~ (. The s axis is taken parallel to
H~' —H~~. The x axis is directed parallel to H~'+H~~
and e is the angle H~' and Hq make with the s axis.
For purposes of computation, we shall take

m and l sublattices, respectively, and s is the number
of nearest neighbors of each spin. For an antiferro-
magnet, S = -Si. The rotation angles p~ and p may
be found by requiring that the sum of the torques be
zero for each sublattice. This results in the pair of
equations

Hgg= Hg siI18= Hg sing,

Bg 1 1
=Bg cosO= Hg 1 1,

Hgi l
=Hg cos6 = —Hg l l,

H. sin(pl+ p )+HA„sing[= H+r cos p(,

H, sin(p~+ p~)+H~„sing =Hq, cosy„„.
where H~& acts along the x direction on both the l and
m sublattices. H~„' and Hg„act in the +s direction
on the l sublattice and in the —s direction on the m
sublattice, respectively. The exact quantum mechani
equation of motion for a spin on the l sublattice is

For small angles the solutions are

p= &pl= 0'm HAr/2H—ep

dSi 2J
=—

t Six( p S )]+y(SixHi),
PL m

cal
where we have assumed H,))H~„Ei~„. As H~i/H,

10 ' to 10 ', we see that the small angle approxi-
mation is justified. We rotate to the new coordinate

(2) systems labelled l' and m' by making the trans-
formations

and similarly for a spin on the nz sublattice. The sum
goes over all spins S which are nearest neighbors to a
given spin S~ on the l sublattice; H~ is the resultant
magnetic field acting on the l sublattice, including
H~„', H~, ', and the external field Hs. We take Hs zero
in this section. The equations of motion'become

dSi 2J 2J
=—St"(P S„*)——( P S ")S~'+ps~"Hg[[ (3a)

dt A - Ii

dSz~ 2J 2J
=—s,*(p s„*)—(p s. )s,*

m $ m

+vSi*H~i —vsi'H~ii, (3b)

Si '——Si cosy' —S~' sinai,

Si &=5)&,

S~ ' ——St' cos pt+S~* sinpt,

S *=S„*cosy +S„'sing„,
5„."=5 ~,

Sto' Stn cos pm Sm sin'ptn.

(7)

We now make the usual spin wave approximations of
small amplitudes and write

Sp ——(e(„e(„,s))=(el„e)„,s),
S„=(e„„e„,S )—(e„„e„„,—S), (8b)

where the e's are assumed small deviations of the
magnetic moment from the s axis of the l' and
coordinate systems. 5& represents the magnitude of the
spin on the l sublattice, and is assumed approximately
constant along the si direction; 5 represents the
magnitude Of the spin on the m sublattice, and is
assumed approximately constant along the s ~ direction.
We take the e's to be in the form of standing waves:

dS&' 2J 2J——=—Sl'( p sm") ——( p sm*)SL" 7SPHAl, —(3c)
dt k m Pi m

d5 " 2J 2J=—S '(Q S)*)——(Q S(')S '
Pg, I, sink, x sink„y sink, s sin~t,

~&„——eI,„'sink, x sink„y sink, s cosset,

' sink x sink„y sink, s singlet,

e „=e „0 sink, x sink„y sink, s cosset.

The sum over nearest neighbors takes the form

+ps *H~i+ys *H~ii, (4b) (9)

dS ' 2J 2J
=—S„(P SP) ——( P St')S "—qs "H&,. (4c)

dt A i h

d5 2J 2J
=—S„v(p S, ) ——(Q Sp)s * ys vHg„, (4a)—

dt

To solve this set of equations, we perform a rotation
of coordinates in the same manner as in Eever and
Kittel. 4 We rotate about the y axis to two new frames
of reference in which the si and s ~ directions are taken
as the static magnetization directions for each sublattice
under the influence of H~„, H~„and the exchange 6eld,
H, . The latter may be taken as 2Jss /yh acting on the
l sublattice and —2Jssi/yh acting on the m sublattice„
where S and Si are the magnitudes of the spins on the

4 F. KeGer and C. Kittel, Phys. Rev. 85, 329 (1952).

Qm emu= &7tcemzi

similarly for e „, ~i„ei„,and

v.= (1/s) 2 cos(e k), I el =~

Here, p-is the vector between a given atom and its
nearest neighbors, and the sum in (11) goes over all
such vectors. Using (5), (6), (7), (8), (9), and neglecting
terms quadratic in the e's, (3) and (4) reduce to
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(oi/v)eiz= sly(Ha cos2y+HAti cosy+HAi silly)

+emyH cv kg

(M/v)e(y = e[~(He cos2y+H~(( cosy+Hgi silly)
+e H Vi cos2y,

12
(oi/V)e~~= —e~y(EE, cos2y+Hg(( cosy+Hgi slny)

& lyII evk)

(M/V) me@ e~*(EEg cos2 y+ HA t I cos y+HAlsln y).
—6~~Hepjt; COs2 p,

Solving this set of equations for co/v, we find

Fio. 2. The rotated anti-
ferromagnetic sublattice co-
ordinate systems. Ho is
parallel to the s axis.

HO

(oi/v)'= [H.(1&vi) cos2y+Hq „cosy+H~„siny]
X[H,(cos2y+V&)+H+„cosy+EEg, sinyf. (13)

For small angles we may simplify this expression using
(6). We find

(~/v)'=H~ii(EE~ii+2EE. )+H '(1—va')

+sEE~'vs(vs~1) (14)

For ka((1, vi=1 —(k'a'/2), so that (14) reduces to

(rot/v)'=Hg (H ) +2EE )+(H ' 'EEg ')k'—a'-(15a)
(ro2/v) =HAil(HAlt+2He)+HAJ.

+ (H ' sH~ ')k'a—' -(15b)
The k=o resonance frequencies (uniform precession)
are similar to those predicted by Keffer and Kitte14
and Nagamiya' for an external magnetic field Ho at
right angles to the anisotropy axis of a normal anti-

. ferromagnet. Their Hs corresponds to our H~, and their
anisotropy field H& to our Hz„. The spin wave spec-
trum of (15a) is similar to the usual spin wave spectrum
of an uncanted antiferromagnet: quadratic in k for
H'k'a'&2H, H~, ~+H~ ' and linear in k for H 'k'g'
)2H,H~o+H~, P. However, the spectrum of (15b)
divers a little from the usual dispersion law i» that it
is quadratic in k for larger values of ku; i,e., until
H,sk'u') 2H,Hg, )+Hg( P+Hgis.

On solving the equations of motion for the rf suscepti-
bilities, one finds that, if the rf field is in the usual y
direction, only the frequencies (15a) will be excited.
If the rf field is in the x direction (parallel to H~&) the
frequencies (15b) will be excited. The differential
excitation of these modes is very similar to that obtained
by KeGer and Kittel. 4

B. External Field Perpendicular to H~' —H~

In this case, the external field is assumed perpen-
dicular to H~' —H~, i.e., perpendicular to the s axis.
The treatment is similar to section IIA, except that
Hz, is replaced by Hz, +Ha. If Hs is not parallel to
H~„but in the plane perpendicular to the s axis, we
may merely take the vector resultant of Hgi+Hp,
redeem. ne this direction as the x direction, and perform
the same analysis as in Sec. IIA using (Hz&+Hs( for

' T. Nagamiya, Progr. Theoret. Phys. (Kyoto) 6, 350 (&95&).

H~&. The angle of rotation about the new y axis will be
given by

y= yi= y =
I H~i+Ho I /2H, . (16)

The susceptibility perpendicular to the s axis at 0 K,
x„assuming Hs parallel to Hzi, is given by

x,= (1+Hg,/Hs)M, /H„ (17)

where M, is the sublattice magnetization. If H, is
assumed equal to XM, (i.e., the molecular field approxi-
mation), then

x,= (1+Hg,/H p)/X. (18)

In canted antiferromagnets where there is no weak
ferromagnetism, H~& must reverse directions for
alternate pairs of spins. If Hg, and He are in opposite
directions, the perpendicular susceptibility becomes .

x,= (1—H~, /Hp)/X. (19)

The sum of the susceptibilities, (18) and (19), is
xi=1/X, the usual result for an antiferromagnet. We
have taken care of the factor of two by noting that, for
the case of no weak ferromagnetism in canted anti-
ferromagn. ets, (18) and (19) refer to half the total
magnetization.

C. External Field Parallel to H~' —H~

In this case the external field is parallel to H~' —H~,
i.e., parallel to the s axis, and y& no longer equals q,
as is shown in Fig. 2. One finds, in place of (5), by
requiring the sum of the torques to be zero for each
sublattice,

H. sin(yi+ y )+(H~«+He) sinyi ——H~i cosyi,

H& sin(yi+ym)+(Hsi& Ho) slnywa=HAi cosy~.

This set of equations may be solved by assuming p&

and q (&1.%e find

H~i(H~ii —Hs) H~i(H~ii —Hs)
)

EEAI 1 HO +2HsH&I I I 2HaHAi I

(21)
EE~.(&i A I I+EEo) EE.4i(~&n

i'd+Ho)

m

EE~ i P EEo'-+ 2H;E»io—
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Xrn Pro. 3. The rotated ferro-
magnetic sublattice co-
ordinate systems.

X lie

The susceptibility parallel to the s axis at O'K, X«, may
be computed from (21):

X„=M,H A2/22H, H2A„. (22)

+J 2HgHQ l l

(24)

Thus, a lattice cant can be detected even if no
observable weak ferromagnetic moment is present.

We return to our equations of motion (2). We assume
H0 parallel to the s direction, use (20), (21), and solve
for (~h):
(00/y) H (] y/P)+HA/ / (HA [ [+2He)

+H 2+1HA 2~~2~(4H 2H02(1 ~~2)

+8H,HAiiH0' 4(H,HAi'H0'/—HAii) (1 V0')—
+4HA 'H0' Ho'HAi'(7 7—0')—
+ (HA 2H 2/HA 2) (HA 2 H02) (1 Pi2)

+-',HA. 'V2'}' (25)

We have assumed H,)&B~», H~&, and IIO. It is seen
for ka«1 that the spin wave spectrum of (25) is similar
to that calculated in Sec. IIA for a canted antiferro-
magnet with zero external field. The 4=0 uniform
precessional mode has the frequencies

(~/P) HAII (HAlt+2He)+H0 +2HAL
& (SHeHA „H0'+4HA 'II0' —6H0'HA, '

+ eHAi'} ' (26)

As in the noncanted antiferromagnet, 4 an rf field in the

y direction will excite both resonance modes.

III. CANTED FERROMAGNET

In this section we compute the zero-QeM magnetic
resonance (k=0) frequency and also the spin wave

It is to be noted that the O'K parallel susceptibility
is not zero, as it is in the noncanted antiferromagnet.
The ratio X,~/Xi for the canted antiferromagnet becomes

Xi f HA&
(23)

2H,HA„(1yHA, /H0)

For HA&)HA„, i.e., the angle between HA' and HA
less than 90', this ratio may possess a significant value.
It is to be noted that even if the canted antiferromagnet
does not show any weak ferromagnetism, the lattices
will show the nonzero ratio of susceptibilities, given
by (22):

Sp ——(0i„0i„,Si)=(02., 02„,S),
Sm' = (&mee&mylSm)= (0met &mw~S) ~

(28)

We insert the above into our equations of motion and
solve for (cu/y):

(0i/P)2= H 2(1~F0)2+2HeHA„(1&y0)
+HA&I ~ 2HAl Vk(1+7&) (29)

For ka&&1,

(0i,/p)2=HA„2+(H, HA„+ ',HA ')k2a'+2H'k'a' -(30a)

((o2/y)2=4H, (H,+HA([)+HA it' HAi'—
—(2H '+H HA 'H'Ai2)k2~2+ .'H'k'' —-(30b)-

Equation (30a) is the usual ferromagnetic resonance
expression except for the term in B~&' which arises from
the canting field. Equation (30b) however, represents
an optical branch for the ferromagnet. This optical
mode arises from the two sublattice character of the
canted ferromagnet and is similar to the exchange mode
found in ferrites. It can be shown that a uniform rf
field in either the x or y direction will excite only the
lower, or acoustic mode, (30a), at k=0.' The optical

' lt is to be noted that the uniform rf Geld can excite spin waves
of nonzero h if the end pins are pinned, as shown by C. Kittel,
Phys. Rev. 110, $295 (1958).As for %=0, only spin waves in the
acoustic mode will be excited by rf Gelds in the x or y directions.

spectrum of a ferromagnet subject to noncollinear
anisotropy fields as shown in Fig. 3. The ferromagnetic
lattice is subdivided into two magnetic sublattices, l
and m, such that the magnetic nearest neighbors of a
spin on the 1 sublattice lie on the m sublattice and vice
versa. The anisotropy fields HA' and HA act as before
on the spins of the l and m sublattices, respectively.
We assume (HA'(= (HA ( and take the s direction
parallel to HA'+HA . The x axis is directed parallel to
HA' —HA and p is the angle HA' and HA make with
the s axis. For purposes of computation, we shall take

Hg l 1
=H~ cosp =Bg cosp,

H&&= II&r sing= H~&, (27)

II~& ——H~ sing = —H~&,

where B~» acts along the s direction on both the l and
2' sublattices. HA2' and HA, act in the +x direction
on the I sublattice and in the —x direction on the m
sublattice, respectively. The equations of motion are
similar to (3), except that the changes appropriate
to (27) are made. We perform the rotation (7), the
sublattices now being rotated about the y axis away
from the same +s direction, as shown in Fig. 3. Re-
quiring the sum of the torques be zero for each sub-
lattice, we find the angle of rotation q becomes
=HAi/2H, . We have made the small-angle approxi-
mation and assumed B,))HgL. H, is the exchange field,
defined in the ferromagnetic case to be 2JsS /yh
acting on the l sublattice, and 2JzSi/yh acting on the
m sublattice. For this case we take
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mode may be excited either because of a diGerence in
the g values of the two sublattices or by an rf field
parallel to H~'+H~ (z direction). The former corre-
sponds to the exchange resonance in ferrites predicted
by Kaplan and Kittel' and need not be discussed here.
The latter excitation, however, is possible also for
identical sublattices. The rf susceptibility for a field in
the direction of H~'+H~ (z direction) is found to be,
at k=0,

M, sin'y)H, (1+cos2pp)+Hg[( cosp+HAl sing)
xg—

L(~/~)2 (4H 2+4H HAt +HA 2 H~ 2)j
(31)

where M, is the sublattice saturation magnetization.
For small angles q and a resonance line width of AH
the susceptibility at resonance becomes

x,"'= (M,/DH) p'= (3l /DH) (Hzi/2H. ).' (32)

Here X,"' is the usual paramagnetic susceptibility
multiplied by the square of the cant angle. From
comparison with the canted antiferromagnet we may
take q 10 '. Then assuming 3f,~10' and AH~10',
we find X, ' 10 '. This susceptibility may be large
enough to allow detection by present day infrared
equipment.

For H~& diGerent from zero, the number of spin waves
in the acoustic branch is less than the number present
for B~& zero; the remaining spin waves, their number
proportional to the Boltzmann factor between the two
branches, lie in the optical branch. It is to be noted that
both branches follow the cv k' law for ka suKciently
large such that B,k'a'))B~», H~&, For smaller ka the
behavior is more complex, but in general follows the k'
relation.

IV. CONCLUSIONS

The magnetic resonance experiments of Anderson
Merritt, Remeika, and Yager'; and of Kumagai, Abe,
Ono, Hayashi, Shimada, and Iwanaga9 on O,-Fe203 are
dificult to interpret using the analysis of Sec. II because
at the time they were performed, the resonance was
thought to be a ferromagnetic one. Hence the experi-
mentors paid little attention to the direction of Hp,
the external field, relative to the weak moment in the
basal plane, As the canted spins lie in the basal plane
in 0.-Fe203, interpreting their results necessitates a
knowledge of the angle between Hp and the vector sum
of the anisotropy fields, H&'+Hz~, the direction of the
weak moment. Once this angle is determined, the
results of Sec. II can then be used to explain the experi-

7 J. Kaplan and C. Kittel, J. Chem. Phys. 21, 760 (1953).
8 Anderson, Merritt, Remeika, and Yager, Phys. Rev. 93, /1/

(1954).
9Kumagai, Abe, Ono, Hayashi, Shimada, and Iwanaga, Phys.

Rev. 99, 1116 (1955).

mental results. The observed anisotropy of the ferro-
magnetic moment out of the basal plane can be ex-
plained by the analysis of Sec. IIB, in which the external
field Hp is directed normal to H~„and must be added
vectorially to Hz, . The vector sum of Hp and Hz,
determines the direction the net magnetization makes
with the basal plane. The anisotropy in the basal plane
can be explained using the results of Sec. IIC. The field
Hp in the basal plane must be broken into its com-
ponents along B~~ and II~I&'. If these components be
labelled Hp& and Ho», the angle of rotation in the basal
plane of the weak ferromagnetic moment from its zero
field value becomes (H~&+Hp&)Hg~/2H, H~~~.

As Dzialoshinsky has shown, magnetic sysmmetry
considerations predict that some canted antiferro-
magnetic lattices may not show any weak ferro-
magnetism. The cant in such materials can be detected,
however, by the ratio of the static susceptibilities as
defined in Secs. IIB and C, X~~/Xi at O'K. This ratio
will differ from zero as H~iP, as shown in (24). H~, may
thereby be estimated from this ratio if B, and B&» are
determined from the resonance data.

It is to be further noted that the appearance of a
net moment resulting from a canting of the antiferro-
magnetic sublattices does not appreciably alter the
spin wave spectrum of the antiferromagnet. This result
seems surprising at erst glance, as the change from an
antiferromagnet to a ferromagnet produces a violent
change in the dispersion law for H,k'a'))Hz(Hz+211. ).
It is seen from the preceding calculations, however,
that the spins are still compensated in a canted anti-
ferromagnet, such that the antiferromagnetic character
of the dispersion law is preserved.

Observation of the ferromagnetic canting has yet to
be made. Its occurrence will depend upon the local
magnetocrystalline anisotropy fields and the differences
in local environment of the two sublattices. Obser-
vation of the optical branch will serve to confirm the
existence of the canted ferromagnet. It should also be
pointed out that the character of the ferromagnetic
dispersion law for the canted ferromagnet is not
appreciably altered, a result which now seems
reasonable in light of the results for the canted
antiferromagnet.
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