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Magnetoresistance in a Multivalley Model with (110)-Ellipsoids of General Shape
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Expressions are derived for the three weak-field magnetoresistance coefBcients, b, c, and d, using a multi-
valley model having ellipsoids of general shape along the (110)directions in k space. The results are given in
terms of statistical and scattering integrals and of the two mass ratios E and L needed to specify the relative
values of the three eRective-mass components characterizing the ellipsoids, The properties of b, c, and d as
functions of E and L are discussed, including in particular the fact that the symmetry conditions which are
appropriate for each of the three ellipsoid-of-revolution models are satisfied along certain lines in the E-L
plane.

INTRODUCTION

HE galvanomagnetic properties of the three cubi-
cally symmetric multivalley models having con-

stant-energy surfaces which are ellipsoids of revolution
along the (100), (110), and (111) directions in k space
have been previously investigated. ' 4 However, cubic
symmetry does not require ellipsoids of revolution
(hereafter abbreviated EOR) for the (110) model, but
only that the principal axes of each ellipsoid lie in
certain directions which do not violate the restrictions
imposed by the reQection planes on which the ellipsoid
is centered. For example, the ellipsoid in the first
quadrant of the k -k„plane has principal axes (see
Fig. 1) in the $001j, [110j,and t 110)directions. (The
particular sense chosen for each axis establishes a
specific right-handed coordinate system which will be
used later. ) The purpose of this paper is to investigate
the weak-field magnetoresistance of this generalized
(110)model, and to compare the results with the simple
band model (spherical energy-surfaces) and with the
three EOR models.

In a weak magnetic field we may write
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' B. Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954).' M. Shibuya, Phys. Rev. 95, 1385 (1954).' C. Herring, Bell System Tech. J. 34, 237 (1955).
4 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
I' F. Seitz, Phys. Rev. 79, 372 (1950).

where Ap/pII is the fractional change in the zero-field
resistivity pII, birr is the Hall mobility (err ——R/pII), R is
the Hall coeScient, H is the magnetic field strength,
M p~

'& is a dimensionless proportionality constant, and
c is a factor having the dimensions pIIH and a magni-
tude which depends upon the system of units used. In
emu, Gaussian, and practical units, c'=1, 3&&10's cm/
sec, and 10' cm'-gauss/v-sec, respectively. The sub-
script and superscript of M p~~'& indicate, respectively,
the direction of the sample current and of the magnetic
field relative to the cubic axes of the crystal. A weak
field implies (prrH/c')((1. From an expression of Seitz'
which is valid to second order in magnetic field for any

cubically-symmetric crystal model, it may be shown
that
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THE MODEL

The model is based on the following assumptions:
i. Only one type of carrier is present.
2. The band edge occurs at 12 equivalent points

along the (110) directions in k space.

FIG. 1. The principal axes 1, 2,
and 3 for the ellipsoid in the first
quadrant of the k,-k& plane, where
k, k„,and k, are the axes of cubic
symmetry of the crystal.
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' G. L. Pearson and H. Suhl, Phys. Rev. SB, 768 (19S1),
7 R. S. Allgaier, Phys. Rev. 112, 828 (1958).

and
M.p, 'r=b+c(P; I,,q,)'+d(P; I,,sri,'). (3)

In Eq. (2), E, I, and H are the electric field, current
density, and magnetic field strength, respectively, and
V' is a diagonal tensor in the cubic-axis system of the
crystal whose elements are the squares of the magnetic
field components. In the same coordinate system the I,;
and tl, of Eq. (3) are the direction cosines of the current
and magnetic field vectors. The parameters b, c, and d
used here diGer from those of Seitz in that the factor
(tu~/c')' has been removed, thus making them dimen-
sion1.ess.

The aim of the calculation presented here is to obtain
expressions for b, c, and d. It seems particularly de-
sirable to express the results in terms of these three
quantities, since then any magnetoresistance coefBcient
is immediately obtainable by using Eq. (3).Expressions
for b, c, and d for the three KOR models have been sum-
marized elsewhere. '
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3. Near a band edge, the energy 8 can be approxi-
mated by an ellipsoidal function of k (the wave vector
of the charge carrier relative to its value at the band
edge) which in the principal-axis system is

k2 (k12 k22 k22 )+ +
2 Eml m2 mo)

6 a jkjk). The surface integral is

Jj=2"'3 '2r(mlmomo) "2m, h@'= Fm, b""-

Then Eqs. (7), (8), and (9) become
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where the m's are the eGective masses along the coordi-
nate axes 1, 2, and 3 of the ellipsoid.

4. At a fixed temperature, the scalar scattering time 7

depends on the energy only. This condition may be
generalized to a v which is a diagonal tensor in the
principal-axis system, so long as all components have where
the same energy dependence, merely by replacing each
m; in the result by m,/r;, where r; is the corresponding
tensor component of 7.4
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THE CALCULATION

We consider Grst the sects from a single ellipsoid
The jth component of the current density from one
ellipsoid may be written

2j &j&k+&jkl+k~~l+& jkleePk+1+eee (3)

if terms of higher power than 8 and B2 are neglected.
(Summation over a repeated index is implied in this
and all subsequent equations. ) By solving Boltzmann's
equation, the current density may also be expressed as
an integral over k space of a function of h, r, E, H, the
carrier charge q, the unperturbed carrier energy distri-
bution fo, and the effective mass components m;. '
Comparison of this expression with Eq. (5) yields (in
the principal-axis coordinate system of the ellipsoid)

All of the nonzero conductivity tensor components
from a single ellipsoid are listed in Appendix A. The
components of the tensors of each rank diGer from one
another by factors which are combinations of the mass
ratios

E=mo/ml and L=mo/ml. (16)
The mass component m, lies along the ith principal axis
of the ellipsoid, and the principal axes I, 2, and 3 of the
ellipsoid in the 6rst quadrant of the k -k„plane of the
crystal are in the L0017, L1107, and

I 1107 directions,
respectively (see Fig. 1). Thus L=1 corresponds to
equal transverse masses, and E is the ratio of a longi-
tudinal to a transverse mass, a quantity which has
generally been used in the past as a parameter to de-
scribe the EOR models.

The jth component of the current density due to all
the ellipsoids may be written

I;=~,kPk+~, klPkK+~;k,.PkK~. . (»)
ln order to seek the minimum number of distinct terms,
Eq. (17) is referred to the cubic axes of the crystal. The
quantity I; is obtained by adding the i; from each
ellipsoid, after having transformed each i j to the cubic
axis coordinate system of Eq. (17). The necessary
transformation matrices are described in Appendix B.
The results are

where Jj is the integral over a constant-energy surface
in k space

53kj2dSJ e~~

"s L(kl/m&)'+ (k2/m2) '+ (ko/m, ) '7" (9)
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The choice of the principal-axis coordinate system re-
duces the 9 possible nonzero 0;k to 3 (j=k), the 27 0.;kl
to 6 (jWkAlW j), and the 81 o.jkl to 12 (6 0.;;kk and

and a= g2/42roho, b =g/c' (q may be positive or negative),
and the eel are zero except for gjij
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and
ab'IiGs ( 1 4 1 )z,„.+z,„,= —
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DISCUSSION

Before discussing the expressions for b, c, and d, we
will quote briefly some pertinent results for the simple
band model and for the three EOR models. For each
EOR model there is a symmetry condition which relates
b, c, and d, regardless of the scattering law, the statistics,
or E, the ratio of longitudinal to transverse mass.
There are also restrictions on the signs of b+c and d.
These features are summarized in Table I. When E= 1,
all three KOR models reduce to the simple band model
with spherical energy-surfaces. The properties of the
simple band model are also listed in Table I.

An inspection of Eqs. (24)—(26) shows that they are
not affected by exchanging E and L. This may be

TABLE I. Behavior of the weak-Geld magnetoresistance coefB-
cients b, c, and d for the simple band model and for the three
ellipsoid-of-revolution models.

MOdel

Simple band model
(100) EOR
(110) EOR
(111)EOR

Symmetry relation

~ ~ ~

b+c+d =0
b+c—d =0

b+c=0

b+c

0
&0
&0

0

0
&0
&0
&0

The terms 2;I„~and Z, I,I,; are written together because
they are the coefficients of the same combination of
components of E and H and have no separate physical
significance.

We next express the conductivity components in
terms of the resistivity components defined by

~~ =It~sIs+It,&A%+It;si~IsKIIm (23)

The A's may be expressed in terms of the Z's (see Eq.
3.29, reference 1). When this is done, and the result is
compared with Eq. (2), we obtain b, c, and d in terms
of a statistical and scattering factor and the mass ratios
E and L. The relationships are

GtGs (KL+K+L) (E—1)' (L—1)'
6+ +

2Gss (E+L+1)' E I.
1 (E—L)'
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FIG. 2. Relations among the weak-Geld coefficients as a function
of the mass ratios E=m8/mi and L=ms/mi. The quantity b+c
is negative only in the lightly shaded regions and d is negative
only in the more darkly shaded regions.

explained by considering the effect on the ellipsoid
whose principal axes are shown in Fig. 1. Interchanging
E and L interchanges the axes 2 and 3; i.e., the ellipsoid
is rotated 90' about its 1-axis. However, the other three
ellipsoids in the k,-k„plane are each rotated 90' about
parallel axes, and the net effect is to exchange their
orientations, pair by pair. The calculation presented
here recognizes ellipsoid orientation, but not position.
The position of an ellipsoid would appear in the mean
free time v if intervalley scattering were considered.
Then v- would be influenced by the magnitude of the
wave number of the intervalley phonon, which would
depend on the separation of the valleys in k space. We
have assumed a 7 which depends most generally on the
energy and wave number of the charge carrier relative
to an individual ellipsoid. Thus no effect at all can result
from exchanging ellipsoid orientations, and this model
therefore reduces to the (110)-EORmodel not only when
L= 1, but also when E= 1, and the symmetry condition
b+c d=0 holds —along these two lines in the EI-
plane.

We consider next the line E=L. Inspection of Eqs.
(24), (25), and (26) reveals that in this case b+c+d=0;
this is the symmetry condition appropriate for the
(100)-EOR model. This result may also be explained
with the aid of Fig. 1. The condition E=L implies that
re2=m3, i.e., the ellipsoid has become an EOR with its
symmetry axis parallel to a cubic axis of the crystal.
Again, since only the orientation of the ellipsoids is

significant, this situation is indistinguishable from the
(100)-EOR model. We wish to emphasize at this point
that in the cases discussed thus far, not only are the
symmetry conditions for the appropriate EOR models
satisfied, but the expressions for b, c, and d individually
reduce to those for the simpler models.

Figure 2 plots the E-L, plane on a log-log scale, and
illustrates the special situations just described, as well

as some additional features which are perhaps more
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~= (1—*)/(1—3*), (28)

where x is a function of K and L and may take on any
non-negative value. Therefore, any value of e, positive
or negative, may occur except 3 (e(1.This exclusion

may be linked to the requirement that no longitudinal
magnetoresistance coe%cient be negative.

Another feature shown in Fig. 2 is the existence of
d=0 lines in the K-L plane. These are

E= L
—(L'—L+1)+ (L—1)(L'+6L+1)ij/

(2L—3). (29)

Along these lines, the magnetoresistance becomes iso-

tropic in the sense that the magnetoresistance depends

only on the angle between the directions of current and

magnetic 6eld, but does not depend on the orientation
of the current and magnetic field relative to the cubic
axes of the crystal. This is never true for the three EOR
models except when they all degenerate to the simple

band model with spherical energy-surfaces.

CONCLUSION

We have derived expressions for the weak-field

magnetoresistance coefficients b, c, and d for a (110)
multivalley-model with ellipsoids of general shape. We
find that the condition b+c+28d=O is satisfied along
some line in the K-L plane so long as e lies outside the
range -', (e(1.This therefore includes the conditions
b+c+d=O, b+c d=O, and b+c=—O which are appro-
priate for the (100), (110), and (111)ellipsoid-of-revolu-

tion models, respectively. We also find that along
certain lines in the K-L plane, magnetoresistance de-

pends only on the angle between the current and
magnetic field.

The fact that the symmetry conditions for any of the
ellipsoid-of-revolution models may be satisfied by a
general (110)-model does not necessarily mean that the

surprising. It shows, erst of all, that there are also
lines in the K Lpl-ane along which b+c=O, the condi-

tion appropriate for the (111)-EOR model. These
lines are

E=2 L—and (1/E) = 2—(1/L). (27)

It is clear that no (110) ellipsoid can reduce to a
(111)EOR (except for the trivial case E=L= 1). The
expressions for b, c, and d do not reduce to the simpler
model in this case. Note from Fig. 2 that the lines
b+c=O are actually boundaries between regions where

b+c is positive and negative. A negative b+c does not
occur for any of the EOR models.

What other conditions of the type b+c+23d=0 may
be satisfied in the E-L plane? It is easily shown that e
is of the form

occurrence of these special symmetry conditions may
no longer be interpreted as suggesting a particular
ellipsoid-of-revolution„model. Any material having the
band structure described in this paper may satisfy an
infinite variety of symmetry conditions, and it is there-
fore very improbable that it will satisfy one of the two
which are appropriate for the (100) and (111)ellipsoid-
of-revolution models.

APPENDIX A

Evaluation of Eqs. (12), (13), and (14) leads to the
following nonzero conductivity tensor components:

oil (13+/ml)G1

o22 (1/——L)o 11, (Al)
o.33——(1/E) o 11,

and

o123 o218 (iib+/mlm2)+2

o281= —o821 = (1/E) ~123,

&812 &182 (L/K) o128)

(A2)

o1122 (o'b +/ml m3)G3

o1188 (E/L)&1122)

o2288 (K/L )o1122

&2211 (1/L )o1122)

&3311 (1/KL) &1122)

&3822 (1/E)o 1122)

(A3)

o1212 o2121 o1818 o3131 o2323 o8282 (1/L)o1122.

APPENDIX B

The transformation matrix of the transformation
from the ellipsoid axes of Fig. 1 to the crystal axes is

0 —1/v2 1/v2
0 1/v2 1/v2.

—1 0 0
(81)

The other 6ve matrices may be obtained by writing

down the rows k, k„and k, of the matrix (81) in the

following arrangements, with changes of sign as indi-

cated:
k, kg

—ky k, k
k k, k —

kg k, .
kg k, k, k, —k„

(82)
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