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InAs to that of InSb, the theory presented may also be
applied to Geist's susceptibility data on InAs. " As
expected, there is a qualitative similarity between the
data on these two substances.

CONCLUSION

The results of measurements on the carrier suscepti-
bility in e-InSb show that the susceptibility departs
appreciably from that of a parabolic band. The essential
feature of the observed susceptibility is that it increases
with increasing carrier density at low carrier densities
and decreases at high carrier densities. A theoretical
analysis based on current ideas about the band structure
of InSb shows that at low carrier densities the inter-
action between the valence band and the conduction

"D. Geist, Z. Naturforsch. 15a, 699 (1958).

band is the principal contributor to the susceptibility.
This interaction alone cannot explain the observed

, behavior of g at the higher densities. The eGect of higher
bands is estimated to be of sufhcient magnitude to
account for the decrease of the susceptibility at the
higher densities. Within the limitation resulting from
the approximate computation of the higher band inter-
actions, the observed susceptibility appears consistent
with Kane's band-structure calculation.
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The energy levels of an electron in a periodic potential and a constant magnetic Geld are found as the
solutions to a secular determinant when the following approximations are made: (a) the energy band of
interest is spherically symmetric and (b) lattice broadening of the levels is neglected. Inclusion of spin-orbit
coupling gives the g factor as function of position in the band. Perturbation theory is used to treat the eBect
on the free energy of small departures of the band from spherical symmetry.

INTRODUCTION

~ 'HIS paper is concerned with the determination of
the energy levels of an electron in a periodic

potential and an applied constant magnetic field. The
problem is formulated in the Luttinger-Kohn' repre-
sentation and since this representation has been used in
several papers dealing with the magnetic properties of
conduction electrons, we first review brieQy this previous
work.

The treatments of Luttinger and Kohn' and Kjeldaas
and Kohn' for nondegenerate bands are based on an
expansion in powers of ko, the wave-vector at the Fermi
surface and thus are useful only if this expansion
converges fast enough. Considering the magnetic levels
of the valence band of germanium, Luttinger' included
the interactions4 between the valence band and other
bands to order O'. When the band structure coefficients
were such that the valence band was spherically
symmetric, the magnetic levels could be obtained

' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).' T. Kjeldaas and W. Kohn, Phys. Rev. 105, 806 (1957).' J. M. Luttinger, Phys, Rev. 102, 1030 (1956).
'The expression "interaction between bands" refers to the

oG-diagonal elements in the hamiltonian matrix, resulting from
the interband matrix elements of the velocity between the L. K.
states.

exactly. On the other hand, in the case of two-
dimensional graphite the energy is not an analytic
function of 4 at k=o so that an expansion in powers
of k is impossible. For this case, McClure obtained the
magnetic levels for any k exactly as far as the magnetic
interactions are concerned; however other approxi-
mations were made in the calculation.

It is the purpose of this paper to extend these results
by pointing out that in the approximation of spherical
bands the existence of a selection rule in the interband
matrix elements of the velocity makes it possible to
obtain the energy levels exactly' for arbitrary k. Since
energy bands are not in general spherical, the levels
thus obtained are strictly speaking, not those of an
electron in a lattice, except in the case of cubic sym-
metry with only s and p bands interacting. Rather
they are the levels of a model which is an approxi-
mation to substances with nearly spherically symmetric

energy bands, such as the alkali metals or semi-

conductors such as InSb. ' The corrections to the energy

' J.W. McClure, Phys. Rev. 104, 666 (1956).
'Except for the lattice broadening which is neglected; see

below.' Treated in R. Bowers and Y. Yafet, preceding paper [Phys
Rev. 115, 1165 (1959)j.
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levels arising from the departure from sphericity cannot
be treated by perturbation theory because the level
splittings of the quantized levels are very small.
However the corrections to the nonoscillatory part of
the free energy can be obtained by perturbation theory,
as seen below, so that the spherical model can provide
a consistent procedure for approximating some of the
magnetic properties of solids and in particular the
susceptibility. Furthermore the simplicity of the
solutions which it gives, both for degenerate and non-
degenerate bands and including all the interband sects,
makes this model worthy of consideration.

The inclusion of spin-orbit coupling offers no diK-
culty so that the g factor for spin resonance can be
found as function of position in the band. The method
of obtaining the energy levels and wave functions will
be given first for the case of no spin-orbit coupling,
the eGect of the latter will be considered next and finally
the perturbation treatment of a departure from
sphericity will be sketched.

ENERGY LEVELS AND WAVE FUNCTIONS

The crystal Hamiltonian H =Ps/2'+ V (r) is assumed
to have space inversion symmetry. %e choose the
gauge A= (O,Xx,0) for the magnetic field R. The
representative of the Hamiltonian in the L. K. states
X„ I, (r) =N„(r)e'"' is given, in atomic units, ' by

a„.„,,„„„„=Z„,s„.„"S(lt'-1")+P (p,)„.„. (lr'~k, l1 ")

+g -', 8„„"(k'~k,s~ L"). (1)

Here p,
' is the band index, E„ is the energy at k=0, and

the (p;)„„"are the interband matrix elements of the i
component of momentum. The operators k; are given by
k,=k„k„=k„+isr}/itk„k,=k, with s=e3C/Ac and
their representatives (lt'~k;~k") are taken over plane-
wave states.

The eigenvalue equation for (1) is an infinite set of
coupled diGerential equations for the components of the
wave function i.n the L.K. states. These components are
clearly of the form 8(k„—k„')8(k,—k, ')F„;np„',i, '(k,),
where m is the quantum number for the degree of
freedom k„ the F„(k,) obey the relations

(E„+-,'O' —}I)F„(k.)+ Q P„„"t'&k;F„"(k.) =0. (2)
~l I+~/

In solving (2) we shall disregard the broadening of the
magnetic levels caused by the -discreteness of the
lattice'; as long as the electron distribution does not
touch the zone boundaries (which is a requisite of the
spherical approximation) the effect of broadening
should be negligible.

Formally, broadening is neglected by disregarding
the identity between two X„.& (r) differing by a

Atomic units, e=A=m=1 are used throughout this paper.' A. D. Brailsford, Proc. Phys. Soc. (I.ondon) A70, 275 (1957);
%. Kohn, Proc. Phys. Soc. (London) 72, 1147 (1958).

reciprocal lattice vector and imposing as boundary
conditions on the F„(k.), the condition of being normal-
izable in unbounded k„k„space.

When we neglect broadening the energy levels of (2)
are seen to be independent of the value of k„' since a
k,-dependent phase factor exp(ik„'k /s) multiplying
the wave function F„(k,) can be used to eliminate k„'
from (2). Therefore k„' is taken equal to zero in which
case the interband terms of (2) can be written as

L(P+).'"&-+(P-)'."&++(P.)'."k.jF."(k ), (~)

with P~=s(P,&r'p„) and k~=k„&sr}/8k, Fo.r a given
pair (p', p,") in general all three P+, p, P, may have a
nonvanishing matrix element.

%e now make the spherical approximation, assuming
that the u„(r) are given by N&, &, ~ R&(r)Yi, ——(H, y)
where Ri(r) is a radial function for the band t and Fi
is the spherical harmonic for angular momentum l and
a component of angular momentum ns along the mag-
netic field. With y'=(t', t', m') and writing the mo-
mentum in spherical coordinates, it is seen that the
matrix elements of P~, P, do not vanish only for tis'

=no"&1 and m'=m", respectively. Therefore in each
of the equations (2), only one of k+, k or k, acts on
P„, p"/p, ' while only k' operates on the inband part
Ii„. Finally we notice that k+, A;, k, and k', acting on
the harmonic oscillator function C „(k,/sl) of the
variable (k,/s'*), give again a single harmonic oscillator
function with quantum number I+1, ts 1, I, a—nd ts,

respectively. It follows that the solutions of (2) are
given by

F o i, '&' ' 'i =C„'" ' '&(ts, k, ',s)C „(k,/s'),
n&~ tN' (4)

=0, n&nz'

where the index 0, denotes the band, A special case of
the solution (4) was obtained by Luttinger, ' to order k',
in the spherical approximation to the valence band
levels in germanium.

For computational purposes it is necessary to limit
the number of L. K. states used in obtaining the matrix
of B. Suppose that we are interested in the band
(i,l,m) for the values of tie= t to tie=—+1, and let S
be the number of L. K. states of diGerent energies
which it is sufhcient to include for the determination
of the energy X&, i, i '(k') in the absence of the field to a
desired accuracy. Then the solution (4) with the matrix
elements

gives a secular determinant of order r =P i i~(2li +1),=
whose solution gives the energy levels X (k,",ts,s) "and
the coeKcients C &' ' '&. The spherical approximation

' E. I. Blount has pointed out (private communication) that
even without the spherical approximation and quite generally,
the set {2}may be immediateiy converted into an infinite set of
algebraic equations by expanding the F„(k ) into the complete
set of harmonic oscillator functions of {k,/s&} and using {5}.
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has therefore enabled us to reduce the set of differential
equations to a finite (for finite X) set of algebraic linear
equations.

The wave function in r space, neglecting effects of
the same order a.s those causing broadening, is given
by the sum of the Fourier transforms of the components
of the wave function in k space, and since the transform
of C„(k./s') is (—z) "4„(xs-'*),we obtain

(r) —~z(L&&&&+&zzz) Q ( z) z&—zzG ip)

xc..L(~+k„/.).—:7 „(.). (6)

Thus in the spherical approximation the wave function
has a rather simple form, being the sum of v terms, each
of which is the product of a periodic part C„'»zz„(r)
characteristic of the periodic potential and an envelope
function which is the same as the wave function for a
free particle.

In calculations of the magnetic susceptibility the
energy levels are needed only to order s'; in the rest
of this section we shall show that the secular equation
which must be solved may then be reduced to that in
the absence of a field by expanding the secular determi-
nant in powers of s and we shall obtain the form of this
expansion.

We consider first the secular equation for K=O and
take the s direction along k. Because p, has matrix
elements only between states of the same m, the secular
equation factors into a product of 2lo+1 factors,
D"&(X,k') =II& &

D (X,k'), where to is the largest /value
of the L. K. states used. From the invariance of the
hamiltonian under reQection in a plane it follows that
D P, ,k') —=D (li,k') so tha, t there is a, double de-
generacy at all k for m/0, and no degeneracy for m =.0.

We shall now prove two properties of the secular
determinant D(X,k, ',s,n) in the presence of K, relating
to its dependence on the set of quantum numbers sn';
this dependence arises from the o8-diagonal elements
(5) and from the diagonal elements

(C„,O'C„.) =k,"+s(2n+1—2m').

(1) By using the symmetry operation y —+ —y it is
seen that the matrix elements of p; between the zz„(r)
obey the relations

pz)&', m'; i",zz' = (pz)i', —zz'; i",—m'
& (pg) Z , i'z'z, zn"'

= (p+)i,--; i-.-- ' (g)

From (5), (7), and (8) it follows that if the basic
vectors u~ ~ C ~ are sent into N~, ~, 4 + ~ the
matrix elements of the Hamiltonian undergo simply the
transformation {m') —& {—m'). Since the determinant
D is unchanged by this relabelling of rows and columns,
it follows that D as a function of the set of numbers
{m') is invar'iant under the operation of rejecting
{m') into {—m'). This is true only for n&~lo, for n(lo
it is necessary to do the calculations individually for
each e by deleting the rows and columns for which
n —~n &0.

(2) The second property to be proved is that D
contains only even powers of each matrix eIement
(5) (and of k, ') so tha, t it is a polynomial in s, n, and nz'.

This property insures that the coeKcients of the
expansion in powers of s are Rnite for all e. To prove
it we consider in a given term of D, the oG-diagonal
elements which connect m' with m"=m'&1 (m' is the
row index, m" the column index). The definition of a
determinant implies that the two sets {m,') and
{m,"}must be identical. From m"=m'&1 it follows
that always two factors with m and ns values inter-
changed occur together in each term of D. Hence D
contains no square roots. A similar argument using the
fact that the nonvanishing o6-diagonal elements
connect only states with values of l' diGering by an odd
number shows that only even powers of k, ' occur in D.

These two properties are the result of rotation-
reRection invariance of our model. To obtain the secular
equation we notice one more fact, that in the absence
of BC and taking instead of (4) a, solution of definite
k ', the matrix elements for m'=m"&1 are obtained
by substituting k,"for 2s[n+-,' —m'&-,'7 in the matrix
with the 6eld present. By considering each term of D
expanded in powers of s(m'+m") and using the
symmetry of D under the transformation {m') —&

{—nz') the secular equation is obtained to order s':

DP, ,k.-',n, s) =II D 0&k,'+ (s2 n+1)7
+s'G(), , k z, s(2n+1))+ . , (9)

where 6 is a polynomial in its three arguments.
The solutions of (9) are of two types, depending

on whether a branch of a band with m=0 or (m~ NO
is under consideration:

(a) For m =0, the energy levels are

&&, &&(k ',n, s) ='n, &&&')[kzz+s(2n+1)7

+s9 ~z& (k.' s(2n+1) ), (10)

where X& 0&0&(k') is the energy in the absence of X, and

l&, ,&'& = —G(X, 0 "&,k,', s(2n+1))

(BDO)II' D„.(~, , & &; k )~( c&l&. », =&, 0&z&

(b) For m/0, D&
&

occurs twice in (9) so that

y(kz &zz&s) =X&,zz +sX& l»zl +s9, & l&»l

with

(~, ,
„&&'))'=—G(~, , "')

(12)

and a more complicated expression for A, &~
I(". The

linear terms sX(" correspond to the orbital moment
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a,rising from the double degeneracy in the absence of
X. Equation (12), and in case 3 is a degenerate band,
Eq. (11) fail at k=O since the levels in the absence of
X are (2l+1) fold degenerate at that point and the
denominators of (12) or (11) vanish. For degenerate
bands, the magnetic levels in the vicinity of k=0 must
be considered individually. It is possible to prove, as a
result of a further factorization of the secular equation
for k, =0, that at k, =0, X~~ ~(" vanishes and the
degeneracy of the eth levels belonging to the two
branches t, t rrz~, & is removed only to order s'.

Remarks on the Energy Levels

(a) The first term Xi a&'& in (10) is identical with the
result of the semiclassical quantization rule of Onsager"
with a value of 0'=-, ; this is seen by noticing that the
area in k„k„space embraced by the curve, intersection
of a plane of constant k, with the constant energy
surface X&,&"&(k')=li«&" (k,' zz s) is equal to 2zrs(zz+ —',}.
It is of interest to inquire whether there are cases in
which the semiclassical treatment gives the complete
answer. It can be shown, by using appropriate linear
combinations of the basis functions, that if only s and p
bands (in any number) are included, and in addition
the interband elements of p, are so large that the free
mass terms k,z/2 can be neglected, then G=O so that

('~ for m=0, &1.As soon as levels with l& 1
are included, or when the free mass is not neglected,
G does not vanish in general and level shifts occur.

(b) In the accompanying paper' the susceptibility
resulting from the semiclassical quantization of the
levels, i.e., for Xi 0 ——Xi,ohio'$k. '+s(2zz+1)), is calculated
as a part of the total X and is denoted by X,. In view of
some confusion which has occurred in the literature
we want to stress that X is not identical with the X3

term of Peierls" except for the case of free electrons.
The difference between the two is easy to see in the

spherical approximation. The semiclassical levels are
those of a Hamiltonian function Xi,o"&(k '+k '+k ')
where the dependence on the noncommuting operators
k,', k„' is prescribed as follows: expand formally
lii, o'to~(k~'+k„'+k,.z) in powers of k,', k„', k.', sym-
metrize each term with respect to k,' and k„' (e.g.,
write k 'k„'+k„'k ' for 2k 'k„') and substitute the
operators k,' and A;„' for k ' and k„'. The Hamiltonian
for which the susceptibility is X3 is also obtained by
symmetrization of X~,p"& but the di6'erence is that each
term is symmetrized with respect to k, and k„(thus
k 'k„' is written as the sum of six terms). The levels of
these two Hamiltonians diGer by terms of order s' and
hence lead to diferent susceptibilities.

EFFECT OF SPIN-ORBIT COUPLING

When spin-orbit coupling is included the treatment
is similar to the foregoing, the diGerence being that:

L. Onsager, Phil. Mag. 43, 1006 (1N2)."R. Peierls, Z. Physik 80, 703 (1933).

(a) the N~ i, are replaced by spinors zz~, , where
j=l+—,

' is the total angular momentum with 8 com-
ponent m, (b) the Zeeman energy (g,/2)PXo, with
g, =2.0023 has to be added to the Hamiltonian, and
(c) the velocity is now zz=p+(1/4c')eXVV, the a.;
being the Pauli matrices. The interband matrix elements
of the Hamiltonian are due to zr.k.+zr k+.+zr+k
where:

zr, =p,+zA(r)((x —zy)a~ —(x+zy)o $,

zr~ =p~azX (r) L (xazy) a.,—za~$,

with a~= o,Rio„and. X(r) = (1/Sc') (1/r) (BV/Br} Th.e
matrix elements, (zr.)„„",(zr~)„„" do not vanish only
for m'=m", m'=no"&2 as a consequence of the fact
that the 2' component of angular momentum j,
commutes with x„j+x, and j m+. Therefore the
components of the wave functions are of the type (4)
but because ns' is a half-integer, a half-integer must be
added to the subscript of C. We shall associate the
harmonic oscillator level n with m'= —-'„so that in the
expressions (5) and (7) for the matrix elements rz+2
goes over into e. By using the symmetry operation JE,
where J is the inversion of the space coordinates and
E is a rotation by m around Oy, the symmetry properties
of the secular determinant can be found just as in the
case of no spin-orbit coupling with the result that to
order s', D is given by

D=g D (X, kPz+2srz)+s'G(X, k,z, 2zzs) (13).
Here the values of zrz range from —(ho+ a) to + (lo+2),
the D (li,k') are the factors of the secular equation in
the absence of K with D =D and G is again a
polynomial in its variables.

In spin resonance, the interaction a+ (transverse
magnetic field) induces transitions between levels
having the sets of harmonic oscillator quantum
numbers, frz —zm' —-', ) associated with N„, differing by

1. When the levels thus connected belong to the two
branches t, ~zzz(, & of the same band, (i.e., when they
are Kramers-degenerate) the energy diA'erence is
proportional to s and defines the g factor, gt, t t. An
expression for gi, ~~~ can be derived from (13) but it is
not particularly illuminating and will be omitted.

USE OF PERTURBATION THEORY

The band structure of an actual crystal is in general
not spherically symmetric; we shall outline in this
section a perturbation treatment of the departure from
sphericity and give the range of validity of such. a
treatment.

Ke write the crystal Hamiltonian matrix in the true
I,.K. states as the sum of a zero-order matrix Ho having
the structure of a spherically symmetric Hamiltonian
and a perturbation matrix H'. The levels of Hp are
obtained as above. The elements of the matrix H' are
constants or terms linear in the A;;. Because of this
property H' connects only a few eigenstates of the
spherical Hamiltonian, having values of the harmonic
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oscillator quantum numbers diGering only by a small
integer. These matrix elements, which are readily
found, are of two types depending on whether they
connect magnetic levels in diferent bands, or levels in
the same band. The correction to the energy levels due
to the former can be obtained by perturbation when
the energy separation between the bands involved is
large; this was done in reference 10. On the other hand,
because the levels in one band are closely spaced in
energy, the matrix elements of B' between these cannot
be treated as perturbations on the individual levels.
It has been shown by Peierls" that a perturbation
expansion of the free energy is still possible in such
cases.

The range of validity of a perturbation expansion in
powers of H' has been found for the present case by
using Peierls' argument" with a minor change because
the unperturbed levels are discrete instead of con-
tinuous. Denoting by i the Fermi energy and by V
the order of magnitude" of the matrix elements of H'
between states in the band of interest, the requirement

"The reader is referred to reference 12, pp. 772-774 for the
detailed argument.

'4 The quantity V is at most of order ~EP ~; it may be smaller
than this if the bands that are split by the symmetry of the crystal
are fax removed from the band which contains the electrons.

for the convergence of the expansion is that V(gkT.
However the condition for the convergence of the
nonoscillatory part of the free energy, for k'1« i, is
only that V«t T.his latter condition is equivalent to
saying that the departure of the Fermi surface from a
sphere must be small.

SUMMARY

We have shown in this paper that the energy levels
of an electron in a periodic potential and a magnetic
field can be obtained rather simply if one makes the
spherical approximation to the band structure. General
expressions for the expansions of the levels in powers
of the magnetic field have been given. Spin-orbit
coupling has been included so that it is possible to
obtain the g factor for spin resonance as function of
position in the band. Finally, for substances with
nearly spherical energy bands, these levels can be
conveniently used for a calculation of the nonoscillatory
part of the free energy from which magnetic properties
such as the susceptibility can be calculated.
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Techniques have been developed to extend the measured electric field dependence of the sidewise 180'
domain-wall velocity in liquid-electroded BaTi03 crystals. The wall velocity data now cover about eight
decades of velocity. The wall velocity is given by s„exp(—S/E), where S is found to increase slightly with
field. The temperature dependence of v has been measured over a limited temperature range and the data
show that 8 varies with temperature faster than T '. The shapes and orientations of the reversed domains
are field dependent. As the electric field is increased, the approximately square reversed domains observed
in the low-field region go over into octagonal domains. At still higher fields, approximately square domains
rotated by 45' about the ferroelectric axis with respect to the low-field domains are observed. Several of
the important features of the sidewise wall motion are consistent with a nucleation-controlled model which
is currently under investigation.

INTRODUCTION
' 'N a recent paper, ' the electric field dependence of the
~ - sidewise 180 domain-wall velocity in liquid-elec-
troded BaTi03 crystals has been described. The experi-
ments involved electrical measurements of the rate of
growth of a single reversed domain as a function of the
applied electric 6eld. The experimental techniques were
such that the wall velocity could not be obtained for
fields higher than about 350 v cm '. In the present re-
search, methods are employed which permit one to

' R. C. Miller and A. Savage, Phys. Rev. 112, 755 (1958).

extend the earlier measurements of the sidewise 180'
domain-wall velocity, and other relevant data, to fields
of the order of a thousand volts per centimeter. The
earlier data will be referred to as low-field data while
the present data will be termed high-field data. The
temperature dependence of the wall velocity, which
preliminary data' indicated was quite pronounced, has
been investigated in more detail. Square reversed
domains with sides at approximately 45' to the crystal-
line u axes have been observed' ' in the low-Geld region.

' R. C. Miller, Phys. Rev. 111, 736 (1958).


